
Citation: Li, B.; Zhu, Y.; Liu, Q.; Yao,

X. Development of Deterministic

Communication for In-Vehicle

Networks Based on Software-Defined

Time-Sensitive Networking. Machines

2024, 12, 816. https://doi.org/

10.3390/machines12110816

Academic Editors: Yuping He and

Qinghui Zhou

Received: 22 October 2024

Revised: 8 November 2024

Accepted: 13 November 2024

Published: 15 November 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Article

Development of Deterministic Communication for In-Vehicle
Networks Based on Software-Defined Time-Sensitive Networking
Binqi Li , Yuan Zhu *, Qin Liu and Xiangxi Yao

School of Automotive Studies, Tongji University, Shanghai 201804, China; bqli_tongji@tongji.edu.cn (B.L.);
2241584@tongji.edu.cn (Q.L.); yaoxxi@tongji.edu.cn (X.Y.)
* Correspondence: yuan.zhu@tongji.edu.cn

Abstract: To support more advanced functionality in vehicles, there is the challenge of deterministic
and reliable transmission of sensor data and control signals. Time-sensitive networking (TSN) is
the most promising candidate to meet this demand by leveraging IEEE 802.1 ethernet standards,
which include time synchronization, traffic shaping, and low-latency forwarding mechanisms. To
explore the implementation of TSN for in-vehicle networks (IVN), this paper proposes a robust
integer linear programming (ILP)-based scheduling model for time-sensitive data streams to mitigate
the vulnerabilities of the time-aware shaper (TAS) mechanism in practice. Furthermore, we integrate
this scheduling model into a software-defined time-sensitive networking (SD-TSN) architecture to
automate the scheduling computations and configurations in the design phase. This SD-TSN archi-
tecture can offer a flexible and programmable approach to network management, enabling precise
control over timing constraints and quality-of-service (QoS) parameters for time-sensitive traffic.
Firstly, data transmission requirements are gathered by the centralized user configuration (CUC)
module to acquire traffic information. Subsequently, the CNC module transfers the computed results
of routing and scheduling to the YANG model for configuration delivery. Finally, automotive TSN
switches can complete local configuration by parsing the received configuration messages. Through
an experimental validation based on a physical platform, this study demonstrates the effectiveness of
the scheduling algorithm and SD-TSN architecture in enhancing deterministic communication for
in-vehicle networks.

Keywords: time-sensitive networking (TSN); in-vehicle (IVNs); software-defined networking;
deterministic communication; IEEE 802.1 Qbv; time-aware shaper (TAS)

1. Introduction

With more and more sophisticated and advanced features of connected and automated
vehicles (CAVs), such as the advanced driver assistance system (ADAS) and infotainment
systems, the need for high-speed, real-time, and reliable data transmission in in-vehicle
networks (IVNs) has increased significantly [1]. However, conventional on-board buses,
e.g., CAN, CANFD, and LIN, are no longer suitable for data transmission in these systems
due to their low bandwidth. Therefore, ethernet has been introduced from the traditional IT
industry to the automobile. Nevertheless, ethernet typically uses a best-effort approach to
transmit data and cannot guarantee bounded-latency data transmission. To address this issue,
time-sensitive networking (TSN) has been proposed by the IEEE 802.1 task group to support
strict real-time requirements [2]. A novel transport protocol, TSN has been widely used in
technologies such as 5G and IoT to provide low-latency communications [3,4]. TSN looks to
be the backbone of next-generation automotive electronic and electrical architecture [5].

In addition to the introduction of TSN, the architecture of IVNs in autonomous vehicles
has been evolving. In the earliest distributed architectures, each individual electronic
control unit (ECU) was responsible for a single function, making the in-vehicle network
structure complex and difficult to scale. To simplify IVNs, a domain-based architecture was

Machines 2024, 12, 816. https://doi.org/10.3390/machines12110816 https://www.mdpi.com/journal/machines

https://doi.org/10.3390/machines12110816
https://doi.org/10.3390/machines12110816
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/machines
https://www.mdpi.com
https://orcid.org/0000-0002-9343-6035
https://doi.org/10.3390/machines12110816
https://www.mdpi.com/journal/machines
https://www.mdpi.com/article/10.3390/machines12110816?type=check_update&version=1

Machines 2024, 12, 816 2 of 17

developed where all relevant functions are integrated into a single domain controller. This
approach has significantly improved the integration of automotive electronic–electrical
architecture (EEA) and is widely adopted today. To fully leverage the advantages of
ethernet, researchers have proposed a new zonal control architecture [6]. In this architecture,
the functions of each zone are managed by its own zone controller, reducing the length
and weight of the vehicle’s wiring harness while enhancing the utilization of the ethernet
backbone bandwidth [7].

In order to achieve bounded delay and reduce jitter during transmission, the TSN
task group has proposed various traffic-shaping and -scheduling mechanisms in recent
years. The time-aware shaper (TAS) mechanism proposed in the IEEE 802.1Qbv protocol [8]
enables deterministic transmission of time-sensitive streams that are feasible by virtue of
strict prioritization mechanisms and time-slot reservation [9]. As shown in Figure 1, traffic
will be filtered into different queues according to its priority when it passes through the
egress port of the switch. The gate status of each queue is controlled by the gate control
list (GCL) periodically. This fine-grained time-slot control ensures that time-triggered (TT)
flows that are typically used to transfer mission-critical data, such as control signals, are
not disturbed by the best-effort (BE) flows. Therefore, finding a feasible GCL is crucial
for achieving deterministic transmission of TT streams, even when there are BE streams
transmitting simultaneously on the network at the same time.

Machines 2024, 12, x FOR PEER REVIEW 2 of 19

In addition to the introduction of TSN, the architecture of IVNs in autonomous
vehicles has been evolving. In the earliest distributed architectures, each individual
electronic control unit (ECU) was responsible for a single function, making the in-vehicle
network structure complex and difficult to scale. To simplify IVNs, a domain-based
architecture was developed where all relevant functions are integrated into a single
domain controller. This approach has significantly improved the integration of
automotive electronic–electrical architecture (EEA) and is widely adopted today. To fully
leverage the advantages of ethernet, researchers have proposed a new zonal control
architecture [6]. In this architecture, the functions of each zone are managed by its own
zone controller, reducing the length and weight of the vehicle’s wiring harness while
enhancing the utilization of the ethernet backbone bandwidth [7].

In order to achieve bounded delay and reduce jitter during transmission, the TSN
task group has proposed various traffic-shaping and -scheduling mechanisms in recent
years. The time-aware shaper (TAS) mechanism proposed in the IEEE 802.1Qbv protocol
[8] enables deterministic transmission of time-sensitive streams that are feasible by virtue
of strict prioritization mechanisms and time-slot reservation [9]. As shown in Figure 1,
traffic will be filtered into different queues according to its priority when it passes through
the egress port of the switch. The gate status of each queue is controlled by the gate control
list (GCL) periodically. This fine-grained time-slot control ensures that time-triggered (TT)
flows that are typically used to transfer mission-critical data, such as control signals, are
not disturbed by the best-effort (BE) flows. Therefore, finding a feasible GCL is crucial for
achieving deterministic transmission of TT streams, even when there are BE streams
transmitting simultaneously on the network at the same time.

Figure 1. Time-aware shaper (TAS) mechanism in IEEE 802.1 Qbv standard.

This means that during the design phase, the network developer must plan the
routing path and implement a well-calculated GCL based on information about the
characteristics of all the traffic to be transported in the network, such as periodicity, load,
and latency requirements. This task, referred to as QBV scheduling, can be converted into
a job-shop problem. Qbv scheduling is a job-shop problem, which is a typical
combinatorial optimization problem with NP-hard difficulty [10]. In runtime, time-
sensitive data must be transmitted at specified moments to align with the allocated time
slots in the GCL, ensuring that time-sensitive data streams are not interfered with by other
traffic. However, the TAS mechanism has limitations in practice. If, due to some
uncertainty, the data miss the time slot, the delay can fluctuate significantly. Therefore,

Figure 1. Time-aware shaper (TAS) mechanism in IEEE 802.1 Qbv standard.

This means that during the design phase, the network developer must plan the routing
path and implement a well-calculated GCL based on information about the characteristics
of all the traffic to be transported in the network, such as periodicity, load, and latency
requirements. This task, referred to as QBV scheduling, can be converted into a job-shop
problem. Qbv scheduling is a job-shop problem, which is a typical combinatorial optimization
problem with NP-hard difficulty [10]. In runtime, time-sensitive data must be transmitted
at specified moments to align with the allocated time slots in the GCL, ensuring that time-
sensitive data streams are not interfered with by other traffic. However, the TAS mechanism
has limitations in practice. If, due to some uncertainty, the data miss the time slot, the delay
can fluctuate significantly. Therefore, these uncertain factors must be considered in order to
enhance the robustness of the system when performing Qbv scheduling.

After generating the forwarding tables and GCLs that meet the transmission require-
ments, network administrators must configure them to the corresponding switches in the
network. However, as the topology of IVNs evolves in the direction of increasing com-
plexity, there will also be more data streams that need to be transmitted in the future. This
poses a great challenge to the traditional manual configuration approach. An emerging
network management paradigm, software-defined networking (SDN) offers a flexible and
efficient solution by tackling this challenge through the separation of the control plane
and the data plane [11]. To guide the configuration of TSN based on SDN principles, the

Machines 2024, 12, 816 3 of 17

IEEE 802.1Qcc standard [12,13] proposes three different types of configuration models:
distributed, centralized, and fully centralized. The centralized configuration model uses
employs a centralized user configuration (CUC) module to gather requirements from end
systems and then passes this information on to a centralized network configuration (CNC)
module. The CNC, with a global view of all switches, topology, and traffic, is responsible
for configuring the network devices using remote network management protocols.

However, the majority of most current studies on TSN are limited to the simulation
level and lack validation based on actual physical platforms [14]. In order to address
the abovementioned challenges in the practical applications of TSN in IVNs, this paper
proposes a software-defined TSN (SD-TSN) architecture to manage the routing, scheduling,
and configuration tasks. Additionally, we introduce a robust integer linear programming
(ILP)-based scheduling model that accounts for external influences in real-world scenarios.
This algorithm aims to reduce the vulnerability of the TAS in practical applications. We
integrate it into the SD-TSN to calculate transmission offsets of time-sensitive data flows
on the forwarding paths.

The remainder of this paper is organized as follows. Section 2 reviews the related
literature. Section 3 formulates a robust ILP-based scheduling algorithm used to compute
the forwarding paths and transmission offsets. In Section 4, the workflow of the SD-TSN
architecture is elaborated. An experimental validation based on a physical platform is to
demonstrate the effectiveness of the robust scheduling model and SD-TSN architecture in
enhancing deterministic communication for in-vehicle networks is described in Section 5.
Finally, Section 6 provides conclusions and outlines future work.

2. Related Work

SAE International (Society of Automotive Engineers) has defined six levels of au-
tonomous driving, and for level 2 and above, real-time and reliable data transmission is
crucial for autonomous vehicles [15]. As a result, the evolution of E/E architecture [16]
and in-vehicle time-sensitive networking [17] has garnered significant attention from re-
searchers. Wang et al. proposed a joint routing and scheduling algorithm in order to achieve
deterministic data transmission for in-vehicle networks [18]. However, the algorithm is
designed for the cycle queuing and forwarding (CQF) mechanism, which is not currently
supported by automotive TSN switches. To address the delay issue in in-vehicle ethernet,
Chen [19] proposed a fixed-point message scheduling algorithm based on TSN technology
and demonstrated its effectiveness in improving message transmission efficiency through
simulation experiments.

In recent years, numerous studies have focused on the Qbv scheduling problem
to compute a feasible GCL. The primary solution methods can be classified into two
categories: exact methods based on the integer linear programming [20] or satisfiability
modulo theories (SMT) [21,22] and optimal approximate methods based on heuristic
algorithms [23] or deep learning [24]. Craciunas et al. analyzed the transmission process of
TT flows in IEEE 802.1Qbv and built a constraint model for offline scheduling [25]. This
constraint model has become the mainstream approach for computing the transmission
offset of each time-sensitive flow along routing paths exactly. Schweissguth et al. [26]
introduced a novel integer linear programming (ILP) formulation to combine the routing
and scheduling process into one ILP model. Compared to separate routing and scheduling
approaches, this joint method offers a lager solution space, which improves the success rate
of scheduling. In addition, scholars have optimized the solution process of this scheduling
problem. A conflict-aware stream partitioning technique is proposed to improve the
scalability of scheduling and can be used to select the optimal path from multiple reachable
paths [27]. Kwon [28] applied machine learning to optimize the traffic scheduling problem
in autonomous vehicle networks. The experimental results demonstrated the feasibility
of optimizing TSN traffic scheduling using artificial intelligence-based algorithms. To
compare the performance of various scheduling algorithms, Stüber implemented eleven
algorithms and evaluated them with respect to schedule quality and runtime [29].

Machines 2024, 12, 816 4 of 17

Configuring TSN based on SDN principles is also a major point of interest for re-
searchers. Based on the centralized configuration model, Luo Kun [30] designed a TSN
configuration management system that supports topology discovery, scheduling com-
putation and configuration functions. However, this system is resource-intensive and
requires end systems and switches to support advanced protocols, such as the link layer
discovery protocol (LLDP). Consequently, deploying this system on resource-constrained
platforms, such as automotive embedded systems, is challenging. To address the need
for dynamic reconfiguration in industrial Internet of Things scenarios, Venkatraman et al.
integrated routing and scheduling algorithms into an SDN controller to calculate TSN con-
figurations online [31]. Junli et al. conducted a simulation and concluded that SDN-based
TSN configurations can meet the end-to-end latency requirements of time-sensitive data
streams [32]. Dürr developed an SDN-based TSN framework integrating IEEE 802.1Qbv
and IEEE 802.1Qcc standards to reduce the cost of validation for TSN deployments [33].

3. Problem Formulization of TAS Scheduling
3.1. System Model

An example of an in-vehicle network topology with a zonal architecture is illustrated
in Figure 2. This topology consists of four different types of nodes: endpoints, switches,
gateway, and PC. Endpoints represent components such as microcontrollers, sensors, or
actuators in the vehicle. They are directly connected to switches within their respective
zone via ethernet. All switches are interconnected through a gateway, which in turn is
connected to a PC, representing a high-performance computing unit. The subsequent
construction of the physical experimental platform is based on this topology, and the two
data flows (Figure 2) will be discussed in more detail in Section 4.2. A directed graph model
can be used to represent the network topology, capturing both the structure of the network
and the attributes of nodes and links within it.

G = (V, E);
v = (v.name, v.ip, v.mac);
e = (vs, vd, ps, pd, e.bd),

(1)

Here, G represents the entire topology model, V is the vertex set consisting of all nodes
within the topology, and E is the set of all directed edges in the topology. Each vertex v ∈ V
is defined by a three-tuple to store the node information, where v.name, v.ip, v.mac denote
the name, IP, address, and MAC address, respectively, of the node. Each edge e ∈ E is
defined by a five-tuple to store the edge attributes, where vs, vd are the source vertex and
destination vertex of the directed edge, ps, pd represents which port of the source node vs
the edge is concatenated from and which port of the destination node vd it is connected to,
and e.bd is the bandwidth of the edge.

Machines 2024, 12, x FOR PEER REVIEW 5 of 19

Figure 2. An automotive zonal architecture of in-vehicle networks.

 (1)

Here, represents the entire topology model, is the vertex set consisting of all nodes

within the topology, and is the set of all directed edges in the topology. Each vertex

 is defined by a three-tuple to store the node information, where

 denote the name, IP, address, and MAC address, respectively, of the

node. Each edge is defined by a five-tuple to store the edge attributes, where

are the source vertex and destination vertex of the directed edge, represents which

port of the source node the edge is concatenated from and which port of the

destination node it is connected to, and is the bandwidth of the edge.

To ensure deterministic transmission of time-sensitive data flows , it is essential to

gather information on their attributes. Subsequently, the collection of these modeled
attributes serves as input for the subsequent scheduling algorithm. A detailed definition
of the traffic model is provided below.

 (2)

The symbols in the equation represent the source node, destination node, period
priority, payload, maximum latency requirement, and VLAN ID, respectively.

3.2. Formulization of the Robust Scheduling Model
Scheduling for time-sensitive data flows is a classical job-shop problem (JSP) that

which is NP-complete, and is recognized as one of the most challenging combinatorial
optimization problems [34]. Integer linear programming (ILP) is widely acknowledged as
an effective approach for tackling this issue. In this subsection, a robust ILP-based
scheduling model is formulated that can be applied to practical in-vehicle network
scenarios. To reduce computational complexity, this study segregates separates routing
and scheduling computations, utilizing the basic shortest-path algorithm to determine the
forwarding paths of time-sensitive data flows.

Figure 2. An automotive zonal architecture of in-vehicle networks.

Machines 2024, 12, 816 5 of 17

To ensure deterministic transmission of time-sensitive data flows f , it is essential to
gather information on their attributes. Subsequently, the collection F of these modeled
attributes serves as input for the subsequent scheduling algorithm. A detailed definition of
the traffic model f is provided below.

f = (f .src, f .dst, f .T, f .priority, f .load, f .latency, f .vid). (2)

The symbols in the equation represent the source node, destination node, period
priority, payload, maximum latency requirement, and VLAN ID, respectively.

3.2. Formulization of the Robust Scheduling Model

Scheduling for time-sensitive data flows is a classical job-shop problem (JSP) that
which is NP-complete, and is recognized as one of the most challenging combinatorial
optimization problems [34]. Integer linear programming (ILP) is widely acknowledged
as an effective approach for tackling this issue. In this subsection, a robust ILP-based
scheduling model is formulated that can be applied to practical in-vehicle network scenarios.
To reduce computational complexity, this study segregates separates routing and scheduling
computations, utilizing the basic shortest-path algorithm to determine the forwarding paths
of time-sensitive data flows.

3.2.1. Transmission Start Constraint

The start of the transmission time on each link plus the transmission delay must fit
within the flow period to ensure that sufficient time remains for transmission.

∀ fk ∈ F, ∀em ∈ Rk :
0 ≤ tm

k ≤ fk.T − fk .load
em .bd ,

(3)

Here, Rk represents the routing paths of fk . The decision variable tm
k represents the

transmission offset of flow fk on edge em .

3.2.2. Flow Isolation Constraint

In practice, a data flow may consist of one or multiple frames. Instead of employing
frame isolation constraints, which offer higher fault tolerance, this paper opts for flow
isolation constraints to reduce the number of decision variables and thereby simplify the
scheduling model. As shown in Figure 3, assume that two flows, flow k and flow l , are
passing through a common edge em . A constraint must be placed on the timing of their
arrival at this edge. If flow k arrives at em first, flow l must wait until flow k completes
its transmission on the common edge em before it can proceed to the next edge em from
the previous hop edge eq . The same applies if flow l arrives at em first. Specifically, at any
given time, a switch output port’s buffer queue of the switch’s egress port is restricted to
storage frames exclusively from the same data flow. Only after the current flow has been
completely transmitted from the port will the next flow be transmitted from its previous
node to the current node.

∀ fk, fl ∈ F|k ̸= l,∀em ∈ (Rk ∩ Rl)|em.vs ̸= (fk.src ∪ fl .src),
∀µ ∈

[
0, hpkl

fk .T

)
, ∀ν ∈

[
0, hpkl

fl .T

)
:(

tm
k + µ ∗ fk.T + fk .load

em .bd ≤ tq
l + ν ∗ fl .T

)
∨
(

tm
l + ν ∗ fl .T + fl .load

em .bd ≤ tp
k + µ ∗ fk.T

)
,

(4)

Here, hpkl represents the hyper-period between flows fk and fl , which equals the least
common multiple of their respective periods. An edge em is a common edge obtained
by taking the intersection of the routing paths Rk and Rl of two flows. Variables µ and ν
denote the instances of flows fk and fl within this hyper-period. The indices p and q signify
the respective previous-hop link edges for flows fk and fl before arriving at link edge em .

Machines 2024, 12, 816 6 of 17

Machines 2024, 12, x FOR PEER REVIEW 6 of 19

3.2.1. Transmission Start Constraint
The start of the transmission time on each link plus the transmission delay must fit

within the flow period to ensure that sufficient time remains for transmission.

 (3)

Here, represents the routing paths of . The decision variable represents the
transmission offset of flow on edge .

3.2.2. Flow Isolation Constraint
In practice, a data flow may consist of one or multiple frames. Instead of employing

frame isolation constraints, which offer higher fault tolerance, this paper opts for flow
isolation constraints to reduce the number of decision variables and thereby simplify the
scheduling model. As shown in Figure 3, assume that two flows, flow and flow , are

passing through a common edge . A constraint must be placed on the timing of their

arrival at this edge. If flow arrives at first, flow must wait until flow

completes its transmission on the common edge before it can proceed to the next edge

 from the previous hop edge . The same applies if flow arrives at first.
Specifically, at any given time, a switch output port’s buffer queue of the switch’s egress
port is restricted to storage frames exclusively from the same data flow. Only after the
current flow has been completely transmitted from the port will the next flow be
transmitted from its previous node to the current node.

Figure 3. Flow isolation of two flows on the common edge through which they pass.

 (4)

Figure 3. Flow isolation of two flows on the common edge through which they pass.

3.2.3. Link Resource Constraint

The time slots assigned to all flows routed through the same link must not overlap
temporally in the time dimension to ensure conflict-free transmission. Specifically, for every
pair of flows fk and fl , the time slot allocated to fk must either precede or succeed that
allocated to fl .

∀ fk, fl ∈ F|k ̸= l, ∀em ∈ (Rk ∩ Rl);
∀µ ∈

[
0, hpkl

fk .T

)
, ∀ν ∈

[
0, hpkl

fl .T

)
:(

tm
k + µ ∗ fk.T + fk .load

em .bd + GB + C ≤ tm
l + ν ∗ fl .T − C

)
∨(

tm
l + ν ∗ fl .T + fl .load

em .bd + GB + C ≤ tm
k + µ ∗ fk.T − C

)
,

(5)

Here, GB represents the guard band, defined as the duration required to transmit a
maximum-sized frame over the link. In addition to the guard band, we introduce a
compensation value C within this constraint to increase the separation between two flows.
As illustrated in Figure 4, this allows us to add compensation at both ends of each flow’s
required transmission slot, thereby mitigating the potential impact of external factors that
may cause actual traffic to arrive earlier or later than expected. This enhancement improves
the interference resilience of the TAS mechanism when applied in practical scenarios.

Machines 2024, 12, x FOR PEER REVIEW 7 of 19

Here, represents the hyper-period between flows and , which equals the least
common multiple of their respective periods. An edge is a common edge obtained by

taking the intersection of the routing paths and of two flows. Variables and
denote the instances of flows and within this hyper-period. The indices and
signify the respective previous-hop link edges for flows and before arriving at link
edge .

3.2.3. Link Resource Constraint
The time slots assigned to all flows routed through the same link must not overlap

temporally in the time dimension to ensure conflict-free transmission. Specifically, for
every pair of flows and , the time slot allocated to must either precede or succeed
that allocated to .

 (5)

Here, represents the guard band, defined as the duration required to transmit a
maximum-sized frame over the link. In addition to the guard band, we introduce a
compensation value within this constraint to increase the separation between two
flows. As illustrated in Figure 4, this allows us to add compensation at both ends of each
flow’s required transmission slot, thereby mitigating the potential impact of external
factors that may cause actual traffic to arrive earlier or later than expected. This
enhancement improves the interference resilience of the TAS mechanism when applied in
practical scenarios.

Figure 4. Guard band and compensation in GCL.

3.2.4. Flow Transmission Constraint
When a flow originates from its source and traverses the routing path towards its

destination, it incurs delays due to factors such as processing delay, propagation delay,
and transmission delay. In the context of in-vehicle network topology, where wire lengths
typically do not exceed 5 m, the propagation delay through each link is negligible, at the
nanosecond scale, and is therefore not considered in this study.

 (6)

Figure 4. Guard band and compensation in GCL.

3.2.4. Flow Transmission Constraint

When a flow originates from its source and traverses the routing path towards its
destination, it incurs delays due to factors such as processing delay, propagation delay,
and transmission delay. In the context of in-vehicle network topology, where wire lengths
typically do not exceed 5 m, the propagation delay through each link is negligible, at the
nanosecond scale, and is therefore not considered in this study.

∀ fk ∈ F, ∀em, en ∈ Rk|en.vs == em.vd :
tm
k + fk .load

em .bd + dproc ≤ tn
k ,

(6)

Machines 2024, 12, 816 7 of 17

Here, dproc represents the processing delay within the switch. This constraint stipulates
that a flow can only be scheduled on the succeeding edge en after completing transmission
on the preceding edge em , accounting for switch processing delays.

3.2.5. End-to-End Latency Constraint

Finally, we enforce constraints by comparing the departure time from the source node
with the transmission time at the link where the destination node is located, ensuring that
the end-to-end latency requirements are met for time-sensitive data flows.

∀ fk ∈ F, e f irst ∈ Rk

∣∣∣e f irst.vs == fk.src,
elast ∈ Rk|elast.vd == fk.dst :

tlast
k + fk .load

elast .bd − t f irst
k ≤ fk.latency,

(7)

Here. elast represents the last edge before the destination node and e f irst represents the first
edge after the source node.

4. Software-Defined TSN Architecture

In order to achieve real-time transmission of critical data streams in vehicular time-
sensitive networking, intricate complex configurations involving the routing and schedul-
ing of switches are essential. Given the shortcomings of static configuration methods
characterized by high workload and low flexibility, we propose a centralized configura-
tion architecture (Figure 5) based on SDN principles. This architecture aims to dynam-
ically control the forwarding path and reserve bandwidth in in-vehicle time-sensitive
networks to meet the stringent deterministic transmission demands requirements of critical
data streams.

Machines 2024, 12, x FOR PEER REVIEW 8 of 19

Here, represents the processing delay within the switch. This constraint stipulates
that a flow can only be scheduled on the succeeding edge after completing
transmission on the preceding edge , accounting for switch processing delays.

3.2.5. End-to-End Latency Constraint
Finally, we enforce constraints by comparing the departure time from the source

node with the transmission time at the link where the destination node is located, ensuring
that the end-to-end latency requirements are met for time-sensitive data flows.

 (7)

Here. represents the last edge before the destination node and represents the
first edge after the source node.

4. Software-Defined TSN Architecture
In order to achieve real-time transmission of critical data streams in vehicular time-

sensitive networking, intricate complex configurations involving the routing and
scheduling of switches are essential. Given the shortcomings of static configuration
methods characterized by high workload and low flexibility, we propose a centralized
configuration architecture (Figure 5) based on SDN principles. This architecture aims to
dynamically control the forwarding path and reserve bandwidth in in-vehicle time-
sensitive networks to meet the stringent deterministic transmission demands
requirements of critical data streams.

Figure 5. Software-defined TSN (SD-TSN) architecture for in-vehicle networks.

Machines 2024, 12, 816 8 of 17

4.1. Working Principle of the SD-TSN Mechanism

As depicted in Figure 5, the SD-TSN mechanism operates in vehicular networks
by coordinating interactions among four entities—end nodes, switches, gateways, and
controllers—facilitating the execution of the time-aware shaper (TAS) TAS. The detailed
operational principles are elaborated as follows.

1. Achieving precise clock synchronization across the entire network using the precise
time protocol (PTP). In time-sensitive networks, a unified clock reference forming the
cornerstone is essential for numerous traffic shaping and scheduling mechanisms.

2. Talkers or listeners on endpoints interact with the CUC module through the user–
network interface (UNI), transmitting diverse stream attribute information. The
purpose of this interaction process is to request network resources from the CUC to
fulfill their transmission requirements.

3. The gateway incorporates includes the CUC module, which is responsible for the
stream discovery process. It establishes connections to switches to gather real-time
traffic information. After that, the collected stream information is relayed to the
CNC module.

4. Upon receiving stream information, the TSN controller, acting as the CNC, performs
routing and scheduling calculations based on the global topology model. It generates
L2 lookup tables and gate control lists from these calculations and encodes and
transfers these to YANG models for switch configuration. The configuration messages
are then sent to TSN switches in XML format via TCP/IP connections.

5. The TSN switch decodes the XML messages received, extracts configuration details,
and invokes reserved APIs within the chip driver to finalize the configuration of the
local L2 lookup table and gate control list within the TAS mechanism.

4.2. Stream Discovery and Information Collection

In the SDN architecture, the CUC utilizes the UNI for network-wide stream discovery
and transmits the gathered traffic information to the CNC. To enhance traffic information
collection, the proposed centralized configuration model situates the CUC within the in-
vehicle gateway. Since the gateway directly interfaces with all switches in the network,
talkers and listeners can engage with the CUC via the neighboring switch to exchange
traffic details. It is important to state note that the TSN entities (talker and listener) can
choose the appropriate communication protocol to interact with the CUC based on the
upper layer application. For example, SOME/IP and data distribution services (DDSs) are
commonly used as middleware for implementing service-oriented communication (SOC)
in vehicle ethernet. Their dynamic discovery mechanisms are well suited for implementing
stream discovery.

4.3. Path Control and L2 Lookup Table Configuration

Before scheduling time-sensitive flows using the TAS mechanism, we need to identify
the switch ports they traverse within the network. In other words, the routing paths of these
flows must be explicitly controlled to comply with the GCL within the TAS. To eliminate
the uncertainty introduced by the self-learning forwarding method, the L2 lookup table on
each switch must be configured during the design phase.

In this paper, we adopt a centralized approach based on our proposed SD-TSN ar-
chitecture to cope with these time-consuming configuration tasks. The routing algorithm
is deployed within the TSN controller so that it can adaptively compute the forwarding
paths based on prior knowledge of traffic and topology. Scholars have conducted extensive
research on routing algorithms and proposed a variety of routing methods from different
perspectives, such as shortest-path algorithms, load-balancing-aware routing algorithms,
and multipath routing algorithms. Since this work focuses on the implementation process
of path control based on the SDN and does not explore the performance of different routing
algorithms, we employed the shortest-path algorithm, which is the most commonly used
approach, in subsequent experiments.

Machines 2024, 12, 816 9 of 17

The L2 lookup table output generated by the routing algorithm is stored in the YANG
model and converted into an XML-formatted message to be distributed to the TSN switch.
This paper defines the YANG model shown in Table 1 for configuring L2 lookup table entries
on TSN switches, specifying mandatory attributes such as the index number, destination
MAC address, source port, VLAN ID, and destination port information.

Table 1. The YANG model for L2 lookup table configuration.

Entry Entry Type Value Type Description

index leaf Uint16 The index number of this entry in L2 lookup table.
macaddr leaf String The destination MAC address of this stream.
srcport leaf Uint16 The source port through which this stream enters the switch.
vlanid leaf Uint16 The VLAN id used by this stream.

destport leaf Uint16 The destination port through which this stream departs the switch.

4.4. Bandwidth Reservation and GCL Configuration

The purpose of bandwidth reservation is to ensure that time-sensitive data streams
have exclusive access to bandwidth resources regardless of the circumstances. In order to
accomplish the reservation of bandwidth reservation in in-vehicle networks, the time slots
exclusive to time-sensitive streams in the GCL must be designed first, followed by the GCL
configurations on the switches. The ILP scheduling algorithm formulated in Section 2 is
deployed on the TSN controller for computing a GCL that satisfies meets the transmission
requirements sent by the CUC.

To achieve bandwidth reservation based on time-aware shaping, we define a YANG
model, shown in Table 2, for GCL configuration. This YANG model specifies which
port on the switch to be configure initially. Subsequently, a list format stores the TAS
scheduling entries, where each entry includes its index, the status of queue gate controls,
and the duration for which the gate status will be maintained. Once the configuration is
complete, the TAS iteratively executes the entries in GCL to perform real-time scheduling.
It is important to note that the scheduling model proposed in Section 2 outputs only the
initial time offsets for each flow at the start of transmission along their forwarding paths.
To calculate the complete configuration of gate control lists based on these timings, we
introduce the GCL generation algorithm depicted shown in Algorithm 1.

Table 2. The YANG model for TAS configuration.

Entry Entry Type Value Type Description

port leaf Uint16 The port number to be configured on
the switch.

tasScheduleEntry
(list)

index leaf Uint16 The index number of this schedule entry
in GCL.

triggerTime leaf Uint32 The duration of this schedule entry.

gateStatus leaf Uint8 The gate status for each queue of this
schedule entry.

tasParameters
(container)

gateStatus leaf Uint8 The initial gate status before TAS startup.
controlListLength leaf Uint16 The number of GCL scheduling entries.

cycleTime leaf Uint32 The cycle time of the whole GCL.

cycleTimeExtension leaf Uint32 The extension time when the TAS is
being reconfigured.

BaseTime container Uint32 The time of TAS startup.

This algorithm takes the network topology G, flow set F, and scheduling result T as
inputs, and outputs YANG model information for GCL configurations. Current mainstream
scheduling algorithms primarily focus on periodic time-sensitive (TS) data streams for
scheduling. To simplify the scheduling model complexity, the output result T contains
only the transmission offset of flow f on path e within the first cycle. However, the

Machines 2024, 12, 816 10 of 17

GCL cycle on switches throughout the network must remain consistent and equal to the
least common multiple of all periodic time-sensitive flow cycles, referred to as the hyper-
period. Algorithm 1 calculates this hyper-period hp in lines 1–3. Then, lines 4–11 of the
algorithm compute the time points O when gates with priority 7 are open for all TS traffic
across the entire hyper-period. Once these time points are determined for each path, GCL
configurations are generated based on the points in O[e]. The algorithm takes into account
varying bandwidth capacities across links in the in-vehicle network and computes the
required durations for gate openings and guard bands for each link. Since compensation
has already been accounted for within the link resource constraint, the compensation values
are incorporated into the duration calculations in line 18. Subsequently, the algorithm
proceeds in a loop: lines 19–21 add schedule entries for non-time-sensitive traffic; lines
22–24 add guard band entries; and lines 25–27 add entries for time-sensitive traffic. The
number of cyclic executions of the code is proportional to the total number of flows,
assuming the number of edges in the topology and the number of instances of each flow
in the hyper-period are constant. As a result, the complexity of Algorithm 1 is linear and
feasible for practical implementation.

Algorithm 1 GCL Generation Algorithm

Input: G, F, T
Output: O, YANG
1: for f ∈ F do
2: hp = Lcm(hp, f, T);
3: end for
4: for f ∈ F do
5: n = hp / f.T;
6: for T [f][e] ∈ T [f] do
7: for i ∈ n do
8: O[e].insert(T[f][e] + i * f.T);
9: end for
10: end for
11: end for
12: for e ∈ E do
13: YANG.port = LookupPort(e.vs, vd);
14: accuLen = 0;
15: i = 0;
16: for t ∈ O[e] do
17: GB = MaxFrame / e.bd;
18: duration = f.load / e.bd + 2*C;
19: YANGi.index = i++;
20: YANGi.tt = t – accuLen – GB – C;
21: YANGi.gs = 01111111; /*schedule entry for non-TS traffic*/
22: YANGi.index = i++;
23: YANGi.tt = GB;
24: YANGi.gs = 00000000; /*guard band entry*/
25: YANGi.index = i++;
26: YANGi.tt = duration;
27: YANGi.gs = 10000000; /*schedule entry for TS traffic*/
28: accuLen = t + duration + C;
29: end for
30: end for
31: Return YANG

Upon completion of YANG generation for GCL configurations, the model is converted
to XML format and deployed to TSN switches via a TCP connection, thereby enabling
bandwidth reservation based on GCL.

5. Experimental Evaluation

In this section, an experimental evaluation is presented to validate the effectiveness of the
proposed scheduling algorithm and SD-TSN mechanism in ensuring deterministic communication.

Machines 2024, 12, 816 11 of 17

5.1. Experimental Platform

To simulate a realistic in-vehicle network scenario as closely as possible, we developed
a physical validation platform for automotive ethernet, as shown in Figure 6. This platform
features essential components, including two Broadcom (California, USA) Raspberry Pi
5 boards, four NXP (Eindhoven, The Netherlands) SJA1110 switches, two NXP S32G2
evaluation boards, and a PC (connected to the central S32G2 via the yellow ethernet cable).
The NXP SJA1110 is an automotive ethernet switch that supports some basic TSN protocols,
such as IEEE 802.1AS [35] and IEEE 802.1Qbv [34]. On the other hand, the S32G2, a
specialized automotive processor chip developed by NXP, is designed for future in-vehicle
computing and networking architectures. Its robust computational capabilities render it
suitable for deployment as an in-vehicle gateway.

Machines 2024, 12, x FOR PEER REVIEW 13 of 19

Figure 6. The experimental platform for simulating in-vehicle networks.

This experimental platform is constructed in accordance with the zonal architecture
topology shown in Figure 2. In this configuration, the SJA1110 devices function as TSN
switches, two Raspberry Pi 5 boards operate as endpoints E1 and E3, the leftmost S32G2
serves as endpoint E2, and the central S32G2 acts as the gateway, interfacing with the PC
that hosts the TSN controller. All nodes in the platform are interconnected via 100Base-T1
onboard ethernet with a bandwidth of 100 Mbps.

To simulate the whole working process of the SD-TSN mechanism, we chose to
deploy DDS applications at both endpoints and gateways, where they function to serve
as data producers and consumers in the application layer. What is more, this setup allows
the gateway’s CUC to utilize DDS discovery messages for stream discovery functionality.
A TSN controller is deployed on the PC to act as the CNC module, executing routing and
scheduling algorithms, along with the configuration algorithm proposed in this paper.
The network topology is modeled by the igraph package, which is a free and open-source
package for network analysis. The scheduling model is built and solved using a Gurobi
optimizer, which is a professional solver for ILP optimization problems. To deploy the
configurations, the PC connects to the gateway via ethernet and transmits configuration
messages over a TCP/IP connection. Since the SJA1110 does not support the NETCONF
network management protocol in SJA1110, we developed parsing capabilities within
YANG models in its software stack. This enables the switch to dynamically invoke
interfaces from its SDK to configure the L2 lookup table and TAS, ensuring the
transmission of time-sensitive data.

5.2. Experimental Implementation
During the research, two data flows, as shown in Figure 2, were designed to simulate

the working conditions where a mission-critical stream is transmitted simultaneously
with a background stream. Flow 1 represents the time-sensitive flow and flow 2 represents
the non-time-sensitive interference flow. FastDDS in FastDDS is deployed at the
application layer to construct these two flows, and the attributes of these two flows are
configured according to Table 3.

Figure 6. The experimental platform for simulating in-vehicle networks.

This experimental platform is constructed in accordance with the zonal architecture
topology shown in Figure 2. In this configuration, the SJA1110 devices function as TSN
switches, two Raspberry Pi 5 boards operate as endpoints E1 and E3, the leftmost S32G2
serves as endpoint E2, and the central S32G2 acts as the gateway, interfacing with the PC
that hosts the TSN controller. All nodes in the platform are interconnected via 100Base-T1
onboard ethernet with a bandwidth of 100 Mbps.

To simulate the whole working process of the SD-TSN mechanism, we chose to deploy
DDS applications at both endpoints and gateways, where they function to serve as data
producers and consumers in the application layer. What is more, this setup allows the
gateway’s CUC to utilize DDS discovery messages for stream discovery functionality. A
TSN controller is deployed on the PC to act as the CNC module, executing routing and
scheduling algorithms, along with the configuration algorithm proposed in this paper.
The network topology is modeled by the igraph package, which is a free and open-source
package for network analysis. The scheduling model is built and solved using a Gurobi
optimizer, which is a professional solver for ILP optimization problems. To deploy the
configurations, the PC connects to the gateway via ethernet and transmits configuration
messages over a TCP/IP connection. Since the SJA1110 does not support the NETCONF

Machines 2024, 12, 816 12 of 17

network management protocol in SJA1110, we developed parsing capabilities within YANG
models in its software stack. This enables the switch to dynamically invoke interfaces from
its SDK to configure the L2 lookup table and TAS, ensuring the transmission of time-
sensitive data.

5.2. Experimental Implementation

During the research, two data flows, as shown in Figure 2, were designed to simulate
the working conditions where a mission-critical stream is transmitted simultaneously with
a background stream. Flow 1 represents the time-sensitive flow and flow 2 represents the
non-time-sensitive interference flow. FastDDS in FastDDS is deployed at the application
layer to construct these two flows, and the attributes of these two flows are configured
according to Table 3.

Table 3. Experimental flow attributes.

Name Talker Listener Priority Period/ms Payload/Byte

Flow 1 E1 E3 7 50 1024
Flow 2 E2 E3 0 10 3200~102,400

Flow 1 represents a time-sensitive data stream of highest priority, while stream flow 2
serves as an interfering stream with lower priority and a variable payload size to simulate
the state of the network from idle to busy. In the experiments, the maximum allowable
latency for flow 1 is set to 500 microseconds. The talker for flow 1 is deployed at endpoint
E1, and the listener is positioned at endpoint E3. The routing path of flow 1 is established
as E1–SW1–SW2–SW4–E3. The talker for flow 2 is deployed at endpoint E2, and the listener
is positioned at endpoint E3 as well. To ensure that flow 2 interferes with the transmission
of flow 1, the routing path is set to E2–SW1–SW2–SW4–E3.

5.3. Experimental Results

First of all, precise clock synchronization was established across the entire experimental
platform, achieving sub-microsecond synchronization accuracy between adjacent nodes.
Leveraging this setup, the end-to-end latency of flow 1 was measured by timestamping
frames at both the sender and receiver ends. The experiment recorded the end-to-end
latency of 100 consecutive transmissions of flow 1 with under two different scheduling
mechanisms: the traditional strict priority (SP) scheduling mechanism, where TSN is
not required, and the TAS mechanism, which is facilitated by the SD-TSN architecture
proposed in this paper. We compared the latency and jitter of the time-sensitive streams
under varying degrees of interference to assess their impact on deterministic transmission.

The latency test results of the time-sensitive data flow as the load of interfering traffic
increases from idle to full are shown in Figure 7. When the load of interfering traffic is low,
both the SP and TAS mechanisms exhibit relatively small and stable end-to-end delays.
However, when the interfering traffic load exceeds 12,800 bytes, the end-to-end latency
under strict priority scheduling deteriorates significantly, exhibiting not only increased
latency but also greater jitter. The reason for this is that while the TT flow is prioritized
for transmission, it must wait for the transmission of interfering traffic frames to complete
transmission before it can acquire transmission rights. This introduces additional and
unpredictable queuing delays for the TT flow that are unpredictable, thereby inevitably
contributing to increased jitter and end-to-end latency.

Machines 2024, 12, 816 13 of 17

Machines 2024, 12, x FOR PEER REVIEW 14 of 19

Table 3. Experimental flow attributes.

Name Talker Listener Priority Period/ms Payload/Byte
Flow 1 E1 E3 7 50 1024
Flow 2 E2 E3 0 10 3200~102,400

Flow 1 represents a time-sensitive data stream of highest priority, while stream flow
2 serves as an interfering stream with lower priority and a variable payload size to
simulate the state of the network from idle to busy. In the experiments, the maximum
allowable latency for flow 1 is set to 500 microseconds. The talker for flow 1 is deployed
at endpoint E1, and the listener is positioned at endpoint E3. The routing path of flow 1 is
established as E1–SW1–SW2–SW4–E3. The talker for flow 2 is deployed at endpoint E2, and
the listener is positioned at endpoint E3 as well. To ensure that flow 2 interferes with the
transmission of flow 1, the routing path is set to E2–SW1–SW2–SW4–E3.

5.3. Experimental Results
First of all, precise clock synchronization was established across the entire

experimental platform, achieving sub-microsecond synchronization accuracy between
adjacent nodes. Leveraging this setup, the end-to-end latency of flow 1 was measured by
timestamping frames at both the sender and receiver ends. The experiment recorded the
end-to-end latency of 100 consecutive transmissions of flow 1 with under two different
scheduling mechanisms: the traditional strict priority (SP) scheduling mechanism, where
TSN is not required, and the TAS mechanism, which is facilitated by the SD-TSN
architecture proposed in this paper. We compared the latency and jitter of the time-
sensitive streams under varying degrees of interference to assess their impact on
deterministic transmission.

The latency test results of the time-sensitive data flow as the load of interfering traffic
increases from idle to full are shown in Figure 7. When the load of interfering traffic is
low, both the SP and TAS mechanisms exhibit relatively small and stable end-to-end
delays. However, when the interfering traffic load exceeds 12,800 bytes, the end-to-end
latency under strict priority scheduling deteriorates significantly, exhibiting not only
increased latency but also greater jitter. The reason for this is that while the TT flow is
prioritized for transmission, it must wait for the transmission of interfering traffic frames
to complete transmission before it can acquire transmission rights. This introduces
additional and unpredictable queuing delays for the TT flow that are unpredictable,
thereby inevitably contributing to increased jitter and end-to-end latency.

(a)

(b)

(c)

0 20 40 60 80 100
400

450

500

550

600

650

700

750

800
Interference Flow's Payload = 3200 Bytes

D
el

ay
/μ

s

 TAS
 SP

Flow Instance
0 20 40 60 80 100

400

450

500

550

600

650

700

750

800
 TAS
 SP

D
el

ay
/μ

s
Flow Instance

Interference Flow's Payload = 6400 Bytes

Machines 2024, 12, x FOR PEER REVIEW 15 of 19

(d)

(e)

(f)

Figure 7. The end-to-end latency of TT flow instances under different degrees of interference. (a)
Interference flow at 2.56 Mbps; (b) interference flow at 5.12 Mbps; (c) interference flow at 10.24
Mbps; (d) interference flow at 20.48 Mbps; (e) interference flow at 40.96 Mbps; (f) interference flow
at 81.92 Mbps.

In comparison to SP scheduling, it is evident that after adopting the SD-TSN
mechanism, the TAS ensures that the end-to-end latency of the TT flow remains
unaffected, regardless of variations in the load of interfering traffic. This is attributed to
our proposed TAS scheduling model, which allocates dedicated transmission slots for the
TT flow and ensures that its end-to-end latency requirements are met through constrained
scheduling.

To further demonstrate the effectiveness of our study approach in achieving
deterministic transmission, Figure 8 illustrates the latency distribution under varying
levels of interference traffic, represented by boxplots. It is evident that as the intensity of
interference increases, the average latency under the SP mechanism shows an upward
trend, accompanied by a broader overall distribution range. In contrast, with the
implementation of TAS, the latency distribution of the TT time-sensitive flow stabilizes
around 500 microseconds with minimal fluctuation, indicating that compliance with the
requirements for deterministic transmission are consistently met.

Figure 7. The end-to-end latency of TT flow instances under different degrees of interference.
(a) Interference flow at 2.56 Mbps; (b) interference flow at 5.12 Mbps; (c) interference flow at
10.24 Mbps; (d) interference flow at 20.48 Mbps; (e) interference flow at 40.96 Mbps; (f) interference
flow at 81.92 Mbps.

In comparison to SP scheduling, it is evident that after adopting the SD-TSN mech-
anism, the TAS ensures that the end-to-end latency of the TT flow remains unaffected,
regardless of variations in the load of interfering traffic. This is attributed to our proposed
TAS scheduling model, which allocates dedicated transmission slots for the TT flow and
ensures that its end-to-end latency requirements are met through constrained scheduling.

To further demonstrate the effectiveness of our study approach in achieving deter-
ministic transmission, Figure 8 illustrates the latency distribution under varying levels
of interference traffic, represented by boxplots. It is evident that as the intensity of inter-
ference increases, the average latency under the SP mechanism shows an upward trend,
accompanied by a broader overall distribution range. In contrast, with the implemen-
tation of TAS, the latency distribution of the TT time-sensitive flow stabilizes around
500 microseconds with minimal fluctuation, indicating that compliance with the require-
ments for deterministic transmission are consistently met.

Machines 2024, 12, 816 14 of 17Machines 2024, 12, x FOR PEER REVIEW 16 of 19

Figure 8. Latency distribution across different interference traffic loads.

6. Conclusions
Time-sensitive networking (TSN) is poised to become the backbone network in the

next generation of automotive E/E architecture. This paper investigated the practical
applications of time-sensitive networking for deterministic communication in
autonomous vehicles. Specifically, we propose a robust ILP-based scheduling model
designed to tolerate the uncertainties encountered in real-world working conditions. To
address the complexities of TSN configuration in practical applications, an SD-TSN
architecture is proposed to dynamically automate the configuration process for in-vehicle
TSN networks. We formulated a robust ILP-based scheduling model for the TAS
mechanism to achieve deterministic transmission for time-sensitive data flows. What is
more, the YANG models for configuring L2 lookup tables and the GCL were established
to implement path control and bandwidth reservation. The experiments conducted on a
physical platform demonstrated that the SD-TSN mechanism can ensure that other traffic
does not interfere with time-sensitive flows, effectively guaranteeing stringent bounded
latency and jitter. The compensation values in the robust scheduling algorithm are
currently determined based on experience. In future work, we will further explore the
relationship between this compensation value and factors such as the size of the data load,
the processing power, and the operating system of the end system so as to propose a
method that can adaptively calculate the compensation value in the scheduling algorithm.
The effectiveness of the scheduling model and the SD-TSN architecture was evaluated
using a physical platform. Based on the experimental results, the following key
conclusions can be drawn.
1. The robust ILP-based scheduling model effectively mitigates the vulnerability of the

TAS mechanism and improves the availability of the TAS under real-world operating
conditions.

2. The computation and configuration of the forwarding table and gate control list can
be automatically completed by the SD-TSN architecture, significantly reducing the

Figure 8. Latency distribution across different interference traffic loads.

6. Conclusions

Time-sensitive networking (TSN) is poised to become the backbone network in the
next generation of automotive E/E architecture. This paper investigated the practical
applications of time-sensitive networking for deterministic communication in autonomous
vehicles. Specifically, we propose a robust ILP-based scheduling model designed to tolerate
the uncertainties encountered in real-world working conditions. To address the complexi-
ties of TSN configuration in practical applications, an SD-TSN architecture is proposed to
dynamically automate the configuration process for in-vehicle TSN networks. We formu-
lated a robust ILP-based scheduling model for the TAS mechanism to achieve deterministic
transmission for time-sensitive data flows. What is more, the YANG models for configuring
L2 lookup tables and the GCL were established to implement path control and bandwidth
reservation. The experiments conducted on a physical platform demonstrated that the
SD-TSN mechanism can ensure that other traffic does not interfere with time-sensitive
flows, effectively guaranteeing stringent bounded latency and jitter. The compensation
values in the robust scheduling algorithm are currently determined based on experience. In
future work, we will further explore the relationship between this compensation value and
factors such as the size of the data load, the processing power, and the operating system of
the end system so as to propose a method that can adaptively calculate the compensation
value in the scheduling algorithm. The effectiveness of the scheduling model and the
SD-TSN architecture was evaluated using a physical platform. Based on the experimental
results, the following key conclusions can be drawn.

1. The robust ILP-based scheduling model effectively mitigates the vulnerability of
the TAS mechanism and improves the availability of the TAS under real-world
operating conditions.

2. The computation and configuration of the forwarding table and gate control list
can be automatically completed by the SD-TSN architecture, significantly reduc-
ing the workload of network developers and minimizing errors associated with
manual configuration.

Machines 2024, 12, 816 15 of 17

3. The application of the TAS mechanism in IVNs is practical. Experimental tests based
on physical platforms demonstrate that the TAS offers significant advantages in
ensuring bounded delay and jitter, outperforming strict priority scheduling.

This study makes a noteworthy contribution to promoting the practical application
of TSN in the automotive domain. Automotive developers can leverage the concepts
presented in this paper to achieve deterministic transmission of critical data and signals in
vehicles, which is essential for functionality of modern automobiles.

It is important to acknowledge that TSN still has a long way to go before it can be
fully commercialized in the automotive industry. Further research is needed to enhance
the reliability of TSN in in-vehicle networks. Specifically, when streams miss the specified
gating, a key challenge is how to prevent subsequent streams from being affected and how
to recover the scheduling. This is a critical issue that must be addressed in future research.

Author Contributions: Conceptualization, B.L. and Y.Z.; methodology, B.L.; software, B.L.; validation,
X.Y. and Q.L.; data curation, X.Y.; writing—original draft preparation, B.L.; writing—review and
editing, Y.Z.; visualization, Q.L.; supervision, Y.Z.; project administration, Y.Z.; funding acquisition,
Y.Z. All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by the Perspective Study Funding of Nanchang Automotive
Institute of Intelligence and New Energy, Tongji University (grant TPD-TC202211-07) and the APC
was funded by the Research on Computing Power Sharing Mechanism of In-Vehicle Network Based
on DDS and AVTP of UAES Advanced Research Project (NE-2023-6V2).

Data Availability Statement: The original data presented in the study are openly available on Github
at https://github.com/bqli1996/Machines.git, accessed on 22 October 2024.

Conflicts of Interest: The authors declare no conflicts of interest.

Abbreviations

SD-TSN software-defined time-sensitive networking
IVNs in-vehicle networks
TAS time-aware shaper
GCL gate control list
SDN software-defined networking
YANG Yet Another Next Generation
CUC centralized user configuration
CNC centralized network configuration
PTP precision time protocol
QoS quality of service
ILP integer linear programming
TT time-triggered
BE best effort
SP strict priority
DDS data distribution service
SOME/IP service-oriented middleware over IP
UNI user–network interface
XML extensible markup language

References
1. Zhang, C.; Zhou, W.; Yin, Y.; Li, Z.; Gong, J.; Zhang, K. Deterministic communications for in-vehicle network: Overview

and challenges. In Proceedings of the 2021 2nd International Conference on Artificial Intelligence and Information Systems,
Chongqing, China, 28–30 May 2021; pp. 1–6.

2. Deng, L.; Xie, G.; Liu, H.; Han, Y.; Li, R.; Li, K. A survey of real-time ethernet modeling and design methodologies: From AVB to
TSN. ACM Comput. Surv. (CSUR) 2022, 55, 1–36. [CrossRef]

3. Muslim, A.B.; RTönjes, R.; Bauschert, T. Synchronizing TSN Devices via 802.1AS over 5G Networks. Electronics 2024, 13, 768.
[CrossRef]

https://github.com/bqli1996/Machines.git
https://doi.org/10.1145/3487330
https://doi.org/10.3390/electronics13040768

Machines 2024, 12, 816 16 of 17

4. Fletcher, E.P.M.; Ridge, D.; Michaels, A.J. Low-Latency Wireless Network Extension for Industrial Internet of Things. Sensors 2024,
24, 2113. [CrossRef] [PubMed]

5. Alparslan, O.; Arakawa, S.I.; Murata, M. Next generation intra-vehicle backbone network architectures. In Proceedings of the 2021
IEEE 22nd International Conference on High Performance Switching and Routing (HPSR), Paris, France, 7–10 June 2021; pp. 1–7.

6. Bornemann, M. Zone Controllers Build Bridge to Tomorrow’s Technology, Aptiv White Paper. 2021. Available online: https:
//www.aptiv.com/docs/default-source/white-papers/2021_aptiv_whitepaper_zonecontroller.pdf (accessed on 10 October 2024).

7. Park, C.; Park, S. Performance Evaluation of Zone-Based In-Vehicle Network Architecture for Autonomous Vehicles. Sensors 2023,
23, 669. [CrossRef] [PubMed]

8. IEEE Standard for Local and Metropolitan Area Networks–Bridges and Bridged Networks–Amendment 25: Enhancements
for Scheduled Traffic, IEEE Standard 802.1Qbv-2015. 2016. Available online: https://ieeexplore.ieee.org/document/8613095
(accessed on 22 October 2024).

9. Stüber, T.; Osswald, L.; Lindner, S.; Menth, M. A survey of scheduling algorithms for the time-aware shaper in time-sensitive
networking (TSN). IEEE Access 2023, 11, 61192–61233. [CrossRef]

10. Brinkkötter, W.; Brucker, P. Solving open benchmark instances for the job-shop problem by parallel head–tail adjustments. J.
Sched. 2001, 4, 53–64. [CrossRef]

11. Feamster, N.; Rexford, J.; Zegura, E. The road to SDN: An intellectual history of programmable networks. ACM SIGCOMM
Comput. Commun. Rev. 2014, 44, 87–98. [CrossRef]

12. Said, S.B.H.; Truong, Q.H.; Boc, M. SDN-based configuration solution for IEEE 802.1 time sensitive networking (TSN). ACM
SIGBED Rev. 2019, 16, 27–32. [CrossRef]

13. IEEE Standard for Local and Metropolitan Area Networks-Bridges and Bridged Networks–Amendment 31: Stream Reservation
Protocol (SRP) Enhancements and Performance Improvements, IEEE Standard 802.1Qcc-2018. 2018. Available online: https:
//ieeexplore.ieee.org/document/8514112 (accessed on 22 October 2024).

14. Luo, F.; Wang, B.; Yang, Z. Design methodology of automotive time-sensitive network system based on OMNeT++ simulation
system. Sensors 2022, 22, 4580. [CrossRef] [PubMed]

15. Wiseman, Y. Autonomous Vehicles. In Encyclopedia of Information Science and Technology, 5th ed.; IGI Global: Hershey, PA, USA,
2020; Volume 1, pp. 1–11.

16. Zhu, H.; Zhou, W.; Li, Z.; Li, L.; Huang, T. Requirements-Driven Automotive Electrical/Electronic Architecture: A Survey and
Prospective Trends. IEEE Access 2021, 9, 100096–100112. [CrossRef]

17. Peng, Y.; Shi, B.; Jiang, T.; Tu, X.; Xu, D.; Hua, K. A Survey on In-Vehicle Time-Sensitive Networking. IEEE Internet Things J. 2023,
10, 14375–14396. [CrossRef]

18. Wang, W.; Wang, W.; Yu, H.; Wu, B.; Zou, S.; Ni, W.; Zhang, J. Joint Routing and Scheduling for In-Vehicle Networks: A
Deterministic Perspective. IEEE Trans. Intell. Veh. 2024, 1–15. [CrossRef]

19. Chen, J.; Zuo, Q.; Xu, Y.; Wu, Y.; Jin, W.; Xu, Y. Study of Fixed Point Message Scheduling Algorithm for In-Vehicle Ethernet.
Electronics 2024, 13, 2050. [CrossRef]

20. Schweissguth, E.; Timmermann, D.; Parzyjegla, H.; Danielis, P.; Mühl, G. ILP-Based Routing and Scheduling of Multicast Realtime
Traffic in Time-Sensitive Networks. In Proceedings of the 2020 IEEE 26th International Conference on Embedded and Real-Time
Computing Systems and Applications (RTCSA), Gangnueng, Republic of Korea, 19–21 August 2020; pp. 1–11. [CrossRef]

21. Steiner, W. An evaluation of SMT-based schedule synthesis for time-triggered multi-hop networks. In Proceedings of the 2010
31st IEEE Real-Time Systems Symposium, San Diego, CA, USA, 30 November–3 December 2010; pp. 375–384.

22. Pozo, F.; Steiner, W.; Rodriguez-Navas, G.; Hansson, H. A decomposition approach for SMT-based schedule synthesis for
time-triggered networks. In Proceedings of the 2015 IEEE 20th Conference on Emerging Technologies & Factory Automation
(ETFA), Luxembourg, 8–11 September 2015; pp. 1–8.

23. Kim, H.J.; Lee, K.C.; Lee, S. A genetic algorithm based scheduling method for automotive Ethernet. In Proceedings of the IECON
2021–47th Annual Conference of the IEEE Industrial Electronics Society, Toronto, ON, Canada, 13–16 October 2021; pp. 1–5.

24. Wang, X.; Yao, H.; Mai, T.; Nie, T.; Zhu, L.; Liu, Y. Deep Reinforcement Learning aided No-wait Flow Scheduling in Time-Sensitive
Networks. In Proceedings of the 2022 IEEE Wireless Communications and Networking Conference (WCNC), Austin, TX, USA,
10–13 April 2022; pp. 812–817. [CrossRef]

25. Craciunas, S.S.; Oliver, R.S.; Chmelík, M.; Steiner, W. Scheduling real-time communication in IEEE 802.1 Qbv time sensitive
networks. In Proceedings of the 24th International Conference on Real-Time Networks and Systems, Brest, France, 19–21 October
2016; pp. 183–192.

26. Schweissguth, E.; Danielis, P.; Timmermann, D.; Parzyjegla, H.; Mühl, G. ILP-based joint routing and scheduling for time-triggered
networks. In Proceedings of the 25th International Conference on Real-Time Networks and Systems, Grenoble, France, 4–6
October 2017; pp. 8–17.

27. Atallah, A.A.; Hamad, G.B.; Mohamed, O.A. Routing and Scheduling of Time-Triggered Traffic in Time-Sensitive Networks. IEEE
Trans. Ind. Inform. 2020, 16, 4525–4534. [CrossRef]

28. Kwon, J.-H.; Kim, H.-J.; Lee, S. Optimizing Traffic Scheduling in Autonomous Vehicle Networks Using Machine Learning
Techniques and Time-Sensitive Networking. Electronics 2024, 13, 2837. [CrossRef]

29. Stüber, T.; Eppler, M.; Osswald, L.; Menth, M. Performance Comparison of Offline Scheduling Algorithms for the Time-Aware
Shaper (TAS). IEEE Trans. Ind. Inform. 2024, 20, 9736–9748. [CrossRef]

https://doi.org/10.3390/s24072113
https://www.ncbi.nlm.nih.gov/pubmed/38610325
https://www.aptiv.com/docs/default-source/white-papers/2021_aptiv_whitepaper_zonecontroller.pdf
https://www.aptiv.com/docs/default-source/white-papers/2021_aptiv_whitepaper_zonecontroller.pdf
https://doi.org/10.3390/s23020669
https://www.ncbi.nlm.nih.gov/pubmed/36679482
https://ieeexplore.ieee.org/document/8613095
https://doi.org/10.1109/ACCESS.2023.3286370
https://doi.org/10.1002/1099-1425(200101/02)4:1%3C53::AID-JOS59%3E3.0.CO;2-Y
https://doi.org/10.1145/2602204.2602219
https://doi.org/10.1145/3314206.3314210
https://ieeexplore.ieee.org/document/8514112
https://ieeexplore.ieee.org/document/8514112
https://doi.org/10.3390/s22124580
https://www.ncbi.nlm.nih.gov/pubmed/35746369
https://doi.org/10.1109/ACCESS.2021.3093077
https://doi.org/10.1109/JIOT.2023.3264909
https://doi.org/10.1109/TIV.2024.3397645
https://doi.org/10.3390/electronics13112050
https://doi.org/10.1109/RTCSA50079.2020.9203662
https://doi.org/10.1109/WCNC51071.2022.9771665
https://doi.org/10.1109/TII.2019.2950887
https://doi.org/10.3390/electronics13142837
https://doi.org/10.1109/TII.2024.3385503

Machines 2024, 12, 816 17 of 17

30. Luo, K. Research and Implementation of Time-Sensitive Networking Configuration Management Based on IEEE 802.1Qcc.
Master’s Thesis, Chongqing University of Posts and Telecommunications, Chongqing, China, 2021.

31. Balasubramanian, V.; Aloqaily, M.; Reisslein, M. An SDN architecture for time sensitive industrial IoT. Comput. Netw. 2021,
186, 107739. [CrossRef]

32. Xue, J.; Shou, G.; Li, H.; Liu, Y. Enabling deterministic communications for end-to-end connectivity with software-defined
time-sensitive networking. IEEE Netw. 2022, 36, 34–40. [CrossRef]

33. Hagargund, A.G.; Shet, N.S.V.; Kulkarni, M. DTPF Algorithm Based Open-Source Time-Sensitive Network Leveraging SDN
Architecture. IEEE Access 2023, 11, 71037–71047. [CrossRef]

34. Dürr, F.; Nayak, N.G. No-wait packet scheduling for IEEE time-sensitive networks (TSN). In Proceedings of the 24th International
Conference on Real-Time Networks and Systems, Brest, France, 19–21 October 2016; pp. 203–212.

35. IEEE Standard for Local and Metropolitan Area Networks Timing and Synchronization for Time-Sensitive Applications, IEEE
Standard 802.1AS-2020. 2020. Available online: https://ieeexplore.ieee.org/document/9121845 (accessed on 22 October 2024).

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1016/j.comnet.2020.107739
https://doi.org/10.1109/MNET.004.2100436
https://doi.org/10.1109/ACCESS.2023.3293061
https://ieeexplore.ieee.org/document/9121845

	Introduction
	Related Work
	Problem Formulization of TAS Scheduling
	System Model
	Formulization of the Robust Scheduling Model
	Transmission Start Constraint
	Flow Isolation Constraint
	Link Resource Constraint
	Flow Transmission Constraint
	End-to-End Latency Constraint

	Software-Defined TSN Architecture
	Working Principle of the SD-TSN Mechanism
	Stream Discovery and Information Collection
	Path Control and L2 Lookup Table Configuration
	Bandwidth Reservation and GCL Configuration

	Experimental Evaluation
	Experimental Platform
	Experimental Implementation
	Experimental Results

	Conclusions
	References

