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Abstract: Bolted connections are a common feature of connection in mechanical structures, employed
to secure connected parts by tightening nuts and providing preload. The preload is susceptible to
various factors leading to potential bolt loosening. The acoustoelastic theory is the most common
measure of a bolt structure’s stress. The present study investigates the relationship between the
inherent properties of a structure and its acousticelastic properties. The modal response of the bolted
structure under different preload forces is studied by translating the acoustoelastic relationship of the
structure into an analysis of its intrinsic properties. The modal analysis reflects the relative change in
wave velocity to be determined implicitly based on the eigenfrequencies of the structure. A frequency
formulation of classical bolted structures based on acoustoelastic theory is presented in this paper
to conduct the intrinsic characteristic analysis of bolted structures. The COMSOL5.4 simulation
results are under the acoustic elasticity coefficients for ultrasonic wave propagation in bolt structures,
as predicted by the acoustic elasticity theory, and the present solutions are compared with those
available in the literature to confirm their validity. A systematic parameter study for bolted structures
under the varying preloads with different material parameters, Lame elastic constants, Murnaghan
third-order elastic constants, and structural parameters are presented. These results may serve as a
benchmark for researchers in this field.

Keywords: bolt structure; preload; acoustoelastic theory; fundamental frequency

1. Introduction

Threaded connections are a common and versatile option in engineering structural and
mechanical design, applied in various equipment and components, including wind turbines,
drilling rigs, bridges, and engines. It is crucial to ensure the stability and safety of threaded
connections by providing a sufficient preload. An insufficient preload may result in relative
movement between the connected parts. In contrast, an excessive preload may lead to the
failure of the threaded connection strength or local damage to the mechanical structure.
Both possibilities are damaging to the structural stability of engineering structures. It is,
consequently, vital that bolt preload is checked and recorded regularly in order to ensure
the safe operation of mechanical equipment.

There are numerous methodologies for testing bolt preload. The torque control method
calculates the preload force by measuring the torque applied to the bolt and is widely
used in mechanical assembly [1]. The optical mechanics method is widely used in high-
precision testing by using optical technology to monitor the tiny deformation of bolts
to calculate the preload [2]. The resistance strain gauge detects the axial stress of the
bolt by sensing the surface strain of the bolt, providing a high degree of accuracy in the
measurement of bolt stress [3]. By measuring the magnetic field change caused by the bolt
force, the magnetoresistive sensor calculates that the preload force has a high anti-overload
capability and can work under harsh environmental conditions [4]. However, the torque
control method is affected by the change in the friction coefficient, which may lead to a
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detection error; the photomechanical method is limited by equipment cost, environmental
interference and installation requirements and other factors; excessive stress applied by
the resistance strain gauge may exceed the linear range, resulting in lower measurement
accuracy; and magnetoresistive sensors are limited by magnetic field interference and
depend heavily on material characteristics. The ultrasonic method is a widely used method
to detect the axial stress of bolts. The basic premise of the ultrasonic method is based on
the idea of acoustic elasticity, that is, the speed of ultrasonic propagation changes with the
change of stress. The axial tension of the bolt can be determined indirectly by measuring
the time the ultrasonic pulse passes through the bolt.

A substantial body of research has been conducted by both domestic and international
scholars on the methodology for measuring axial stress in bolts using the theory of ultra-
sonic acoustoelastic. The detection of ultrasonic stress represents a fundamental aspect of
non-destructive testing, given the capacity of ultrasonic waves to penetrate deeply and
rapidly propagate through the material under examination. This quality endows the tech-
nique with significant versatility, rendering it suitable for a wide range of testing scenarios.
In a study by Yan Lv et al. [5,6], based on the principle of acoustoelastic effect, the axial
stress of bolts was measured by a longitudinal and transverse wave combination method
and signal inter-correlation algorithm. Shan Gao et al. [7] optimized an electromagnetic
ultrasonic transducer by analyzing the propagation characteristics of ultrasonic waveforms
and application scenarios and modelled the multi-physics field coupling in COMSOL.
Sang-Hyung Lee et al. [8] proposed an ultrasonic detection method of the pre-tension force
of high strength bolts based on the principle of the double wave method, which is easy to
operate and has high accuracy, and can effectively improve the accuracy of detecting the
pre-tension force of bolts. Qinxue Pan et al. [9] showed, by normalization and polynomial
fitting, that a functional relationship between bolt axial stress and normalized relative
nonlinear coefficients can be established to achieve high accuracy bolt axial stress detection.
Sheng Feng et al. [10,11] studied the bolt stress ultrasonic inspection process and procedure
by establishing an acoustic elasticity coefficient calculation model, analyzing the tempera-
ture effect and optimizing the inspection process. S. OKA [12] discovered the acoustoelastic
phenomenon in elastic materials, namely, the correlation between sound wave propagation
speed and stress, making it possible to measure structural stress through changes in sound
velocity indirectly. Janusz et al. [13] created a piezoelectric self-excited acoustic device to
monitor structural stress variations. A mathematical model combining various factors,
including the acousticelastic coefficient and ultrasonic acoustic time, was constructed and
later verified using finite element simulation and testing. Xin-Xin Zhao et al. [14] measured
the axial force of high-strength bolts in railway steel bridges by accurately distinguishing
the different force regions of the bolts and calculating the ultrasonic propagation time
in each region. Moradi et al. [15] proved experimentally that bolt axial stresses have a
significant effect on the change in ultrasonic sound velocity, and the presence of shear
stresses leads to a further decrease in the ultrasonic sound velocity. Brandon Mills et al. [16]
validated the PAUT as a powerful tool for enhancing the safety and longevity of wind
turbine towers for bolts of different sizes, materials, and tightening depths.

The relationship between the natural frequency of a structure and bolt preload remains
an area of ongoing research, and this paper addresses this topic as its primary focus. Mode
analysis is a method used to analyze a structure’s natural frequency and mode. It is one
of the most commonly employed techniques for quantifying the dynamic behavior of a
structure in vibration analysis. Mode analysis can be employed to corroborate the precision
of finite element models, assess the dynamic attributes of structures, identify vulnerable
points within structures, regulate system noise, modify the system dynamic parameters,
determine the optimal part installation positions, and ascertain the system health status.

By analyzing the structure’s natural frequency characteristics, the structural stiffness
change can be identified, and the location and degree of damage can be determined [17]. In
accordance with the principles of vibration theory, any given structure can be regarded as
a system comprising a number of physical properties, including stiffness and mass. Any
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alteration to these physical properties will affect the structure’s dynamic parameters, such as
its mode natural frequency. Consequently, the measurement of alterations in these dynamic
parameters enables the inference of the structural damage state. Prior research has indicated
that the stiffness of bolt joint surfaces is subject to variation in response to alterations in
bolt preload [18]. Gou Baiyong et al. [19] employed the Mahalanobis square distance outlier
analysis method to quantitatively assess bolt pretension force by applying the first five-order
natural frequencies of bending modes to the structure. An analysis of the first six natural
frequencies of the structure was conducted by Weiwei et al. [20], which allowed them to
determine the function curve between spring stiffness and natural frequency. This resulted
in an accuracy error of less than 8% in identifying stiffness. Zhao Gong et al. [21] employed
the hammer mode test method to determine the parameters of the virtual material and to
analyze the influence of bolt preload on mode frequency. The test results indicated that when
the bolt tension increased, there was a distinct trend for the natural frequencies to climb
in accordance with each order. Zhao et al. [22] determined the bolted connection stiffness
in reverse by an examination of the first six-order mode natural frequencies. The findings
demonstrated that an increase in stress resulted in an overall rise in natural frequency, which
the comparable joint stiffness of the virtual material can adequately reflect. Sah et al. [23]
conducted a transverse impact experiment to create bolt-bending vibration in two bolt heads
of various lengths. The relationship between the transverse first natural frequency and the bolt
pretension force was established to assess the bolts’ tightness. Bonisoli et al. [24] investigated
the influence of the stress-hardening effect induced by interference fit on the structural modal
properties and provided a basis for the dynamic analysis of interference fit design. Faria
and Donadon [25] explored the use of the stress-hardening effect of piezoelectric materials
to enhance the flexural properties of laminates and verified the effectiveness of piezoelectric
prestressing in improving structural stability.

This study explores the impact of bolt preload on the inherent frequency, with a
particular emphasis on the detection of bolt tension through the acoustoelastic effect of
ultrasound. Furthermore, the influence of stress on the intrinsic frequency characteristics is
investigated through mode analysis. Firstly, this paper presents an overview of the most
widely used methods for bolt detection and the current status of research in ultrasonic
acoustoelastic detection and mode analysis. Secondly, it gives the calculation equation
for bolt strain and the acoustoelastic theory, utilizing the structure’s natural frequency to
evaluate axial forces through mode analysis. Thirdly, mode analysis of a bolted structure is
undertaken using simulation software to explore the change in frequency under different
preload settings and assess the influence of various parameters on the stress state. The final
section gives a summary, and conclusions based on the paper are drawn accordingly.

2. Analytic Theory
2.1. The Preload of Bolted Structure

In most instances, the bolted structure must be adequately fastened during the instal-
lation process to guarantee that it is adequately preloaded prior to bearing the anticipated
working load. The application of preload force enhances the tightness and reliability of the
connection and prevents the formation of gaps or relative sliding after loading [26,27].

When utilizing a torque wrench to regulate preload, the tightening torque of the bolt
can be calculated by adding together the friction torque exerted between the nut end face
and the connected component’s supporting surface and the friction torque between the bolt
and the nut thread. In this instance, ϕ denotes the tooth side angle, while φν indicates the
equivalent friction angle. Figure 1 demonstrates the force analysis of the thread, illustrating
a transverse force acting on the thread surface.

F′ = Ftan(ϕ + φν) (1)
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Therefore, the friction torque between the bolt thread and the nut thread can be
expressed as follows:

M1 = F′ d2
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According to the basic calculation equation of friction force (3), Equation (4) give the
area between the nut end face and the supporting surface of the connected piece:
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According to this, the friction force per unit area can be determined as follows:
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=
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Therefore, the friction torque between the end face of the nut and the supporting
surface of the connected part can be expressed as follows:
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(6)

According to the tightening torque T, the friction torque M1 between the bolt thread
and the nut thread, and the friction torque M2 between the nut end face and the supporting
surface of the connected piece, can be determined as follows:

T = M1 + M2 =
1
2

F

[
d2tan(ϕ + φν) +

2u
3

D3
0 − d3

0
D2

0 − d2
0

]
(7)

where, d0 is the diameter of bolt hole, φν is the equivalent friction angle, u is the friction
coefficient, and D0 is the nut outside diameter.

The above parameters are put into Equation (7), and the direct relationship between
tightening torque and preloading force can be obtained:

T ≈ 0.196Fd (8)

2.2. Acoustoelastic Theory

The elastic modulus of the solid material undergoes slight alterations in response to
stress, and the material’s elastic modulus is directly proportional to the propagation velocity
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of the ultrasonic wave. It can, thus, be surmised that fluctuations in the internal tension of
a solid material will result in variations in the speed of ultrasonic waves. This provides the
basis for the acoustic elastic effects-based stress detection of materials. The solid acoustic
elastic effect has the potential to be utilized in two principal ways for the measurement of
stress in structural components. Firstly, the speed of ultrasonic waves propagating through
structural components depends on their internal stress, thereby providing a theoretical basis
for stress detection. Secondly, developments in sensing technology and signal acquisition
and processing methods facilitate the precise transmission and reception of ultrasonic waves
and high-frequency signal sampling. In particular, existing signal analysis techniques can
precisely identify ultrasonic propagation sounds at the nanosecond level, thereby providing
technical support for the stress detection of structural components.

The results of research conducted thus far indicate that the elastic modulus of a
material increases with compressive stress and decreases with tensile stress. This suggests
a non-linear relationship between stress and strain in materials. Given that the speed of
ultrasonic waves depends on the material’s elastic modulus in question, it follows that
stress induces changes in the material’s elastic modulus, thereby leading to alterations in
the ultrasonic wave velocity. The non-linear relationship between the internal stress and
the strain of a material can be expressed by the following equation:

e = E0ε +
1
2

E1ε2 +
1
6

E2ε3 +
1

24
E3ε4 + . . . (9)

where Ei is the i-order elastic coefficient of the material, i = 0 ∼ n, e is the strain energy,
and ε is the strain.

It is obtained by the differentiating of Equation (9) as follows:

σ =
de
dε

= E0 + E1ε +
1
2

E2ε2 +
1
6

E3ε3 + . . . (10)

where σ is the stress of the material.
It is hypothesized that E0 = 0, and when the higher order term in Equation (10) above

is removed, the following is obtained:

σ =
de
dε

=

(
E1 +

1
2

E2ε

)
ε = E′ε (11)

where E′ is the effective elastic modulus of the material.
When an elastic wave propagates in a solid, the velocity of the longitudinal wave is

related to the elastic modulus and density of the material; it can be written as follows:

VL =

√
E′

ρ0
(12)

where VL is the longitudinal wave velocity and ρ0 is the density of the material under no
force.

In this way, the connection between the wave velocity and stress can be established
through the effective elastic modulus, which varies with the stress within the material. This
forms the basis of the correlation between sound velocity and stress.

Based on the solid acoustoelastic theory, the relationship between the wave velocity
V and stress σ in the direction of stress in an isotropic solid under simple loading can be
derived:

ρ0V2
L = λ + 2µ + σ

3λ+2µ

[
λ+µ

µ (4λ + 10µ + 4m) + λ + 2l
]

ρ0V2
T = µ + σ

3λ+2µ

[
λn
4µ + 4λ + 4µ + m

] (13)

where VL is the velocity of the longitudinal wave propagating along the uniaxial stress
direction, VT is the velocity of the transverse wave propagating along the uniaxial stress
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direction, λ, µ is the second-order elastic constant of the isotropic medium, namely, the
Lame constant, l, m, n is the third-order elastic constant of the isotropic medium, namely,
the Murnaghan constant, and σ is the uniaxial stress on the isotropic media.

The propagation velocity of the longitudinal wave in a body without stress (i.e., σ = 0)
can be obtained from Equation (13):

VL0 =

√
λ + 2µ

ρ0
(14)

It is assumed that the relative change is small; the relative change in the wave velocity
with axial strain can be calculated from Equations (13) and (14):

dVL =

[
λ+µ

µ (4λ + 10µ + 4m) + λ + 2l
]

2ρ0VL(3λ + 2µ)
dσ (15)

dVL/VL0

dσ
=

λ+µ
µ (4λ + 10µ + 4m) + λ + 2l

2(λ + 2µ)(3λ + 2µ)
(16)

Because the strain is very small, it is assumed that there is a linear relationship between
the stress and strain, that is, σ = E·ε. From Equation (16), the acoustic elastic coefficient
of the longitudinal wave when the dimensionless propagation direction is parallel to the
stress direction can be further obtained:

L =
dVL/VL0

dε
=

E
[

λ+µ
µ (4λ + 10µ + 4m) + λ + 2l

]
2(λ + 2µ)(3λ + 2µ)

(17)

According to the relationship between the Lame constants λ, µ and the elastic constant
E (E = µ(3λ+2µ)

λ+µ ) of linear elastic materials, the following equation is obtained:

L =
dVL/VL0

dε
=

(λ + µ)(4λ + 10µ + 4m) + λµ + 2µl
2(λ + µ)(λ + 2µ)

(18)

The acoustic elastic coefficient, related to the solid’s elastic modulus and the second-
and third-order elastic constants, and other pertinent quantities, represents the rate of
change in the ultrasonic wave velocity brought on by the strain. However, it is a difficult
measurement to obtain since the acoustic elastic coefficient cannot be tested directly using
equipment. Therefore, we verified the change regulation of the structure’s acoustic elastic
coefficient under preload by investigating its inherent properties.

In acoustoelastic simulations and tests, the propagation time is typically measured
directly. However, tensile strain occurs when the bolted structure is subjected to preload.
Instead of directly computing the wave speed, which can be a difficult task, the structure’s
eigenfrequencies are used to obtain the wave speed implicitly. The relative change in the
wave velocity is defined as Vσ−V0

V0
, and the relative change in the wave velocity under unit

strain is Vσ−V0
εV0

.
When the tensile strain is not considered, the relative variability of the wave speed is

calculated as follows:
K′ =

Vσ − V0

εV0
(19)

In the post-tensile measurement, the respective propagation times are calculated as
shown in Equations (20) and (21) due to the existence of tensile strain.

V0 =
L
t0

= L· f (20)
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Vσ =
L + ∆L

tσ
=

(1 + ε)L
tσ

= (1 + ε)·L· fσ (21)

Therefore, the equation for calculating the relative variation value of the wave velocity
can be expressed as Equation (22):

K′ =
Vσ − V0

εV0
=

(1 + ε)L fσ − L f
εL f

=
fσ − f

ε f
+

fσ − f
f

+ 1 =

(
1
ε
+ 1

)
fσ

f
− 1

ε
(22)

It is evident that the investigation moves beyond the structure’s acoustoelastic relation-
ship to look at its underlying properties. Moreover, it offers a more thorough description of
how bolt preload and structural natural frequency are related.

3. Results and Discussion

As shown in Figure 2, the test structure consists of two square steel cubes, 100 mm
long, 100 mm wide, and 80 mm high, together with a bolt and nut. The bolts are used to fix
the center of the specimen, which has a through hole; the diameter and material parameters
of which are given in Table 1. The hyperelastic materials are assigned to the bolts and nuts,
while the linear elastic materials are assigned to the connectors to capture the acoustoelastic
properties of the bolts better.
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Table 1. Material parameters.

Parameters Bolts and Nuts Connected Structures

Density (kg/m3) ρ 7850 7850

Young’s modulus (GPa) E / 205

Poisson’s ratio v / 0.28

Lame constants (GPa) λ 115.8 /
µ 79.9 /

Murnaghan constants
(GPa)

l −248 /
m −623 /
n −714 /

COMSOL was used for simulation, and the boundary conditions were set as follows:

(1) Boundary conditions: Using the solid mechanics physical field, the upper surface of
the square steel is set as a fixed constraint, and the bottom end of the screw is set as a
specified displacement.

(2) Mesh division: Tetrahedral mesh division is used for the bolt head and nut, and the
sweeping division method is used for the bolt rod and square steel.

(3) Post-processing: Steady-state analysis and characteristic frequency analysis are adopted
to import the simulation data related to frequency and strain into Origin for data
processing and draw the correlation curve.
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3.1. Modes Analysis of Preload on Bolted Structure
3.1.1. The Modes of the Bolted Structure Under the Non-Stress Conditions

Prior to conducting a formal study on the service performance of bolted structures, an
analysis of the mode characteristics of bolted structures in a non-stress state was performed.
The research data for simulating the behavior of bolted structures in service were accumu-
lated by studying the structural modes in an unconstrained state, and an estimation was
made regarding the range of characteristic frequencies.

Figure 3 illustrates the three modes of the outer hexagonal bolt in the free boundaries.
The bending mode presents a significant challenge in achieving single-mode excitation
and recognition, largely due to the complex dispersion characteristics and the prevalence
of mode aliasing during practical operation. Due to axial symmetry, the torsional mode
exhibits circumferential displacement in the wave structure’s displacement distribution,
with zero radial and axial displacement components. Its waveform resembles the A-mode
and SH wave in a plate, representing a special form of shear wave. The longitudinal mode
also has axial symmetry, which makes it less vulnerable to interference from other modes
and, therefore, it is simpler to establish single-mode excitation.
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3.1.2. Verification of the Characteristic Frequency and Preload

The application of preload to a bolted connection places the bolt in a tensile condition,
thereby ensuring that the bolt and the connecting member come into direct contact with
one another. The components are firmly fixed together by the preloading force, which also
provides them with the necessary tolerance for loads and external forces. In order to ensure
reliability and security, it is essential that the preload force is properly determined and
applied in accordance with the operating circumstances and specifications of the associated
parts. In practical engineering, the ability to adjust and control bolted connections’ preload
is paramount for maintaining stability and reliability.

Upon substituting Lame elastic constants and Murnaghan’s third-order elastic con-
stants from Table 1 into Equation (18) [28], an acoustic elasticity coefficient value of L of
−2.5 is obtained. To illustrate, the eigenfrequencies of an M30 × 200 mm hexagonal bolt in
both its free state and at a strain of 0.001 are calculated in COMSOL Multiphysics. Figure 4a
represents the bending-torsion longitudinal modal diagram of the bolt in its free condition.
In contrast, Figure 4b illustrates the bending-torsion longitudinal modal pattern of the
bolt when exposed to tensile strain. When a bolt is subjected to tensile strain, both its
length and its prestressed state change, resulting in a shift in the wave velocity within the
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material. Taking its longitudinal mode as an example, the frequency in the free state is
12,414 Hz. According to Equation (20), when the bolt length is fixed, the sound velocity
is only related to the frequency. When subjected to a stress that generates 0.001 strain,
its frequency is 12,366 Hz. It can be seen from Equation (21) that the sound velocity is
related to the frequency and strain when the bolt length is fixed. Substituting the value
of the frequency in the free state and the value of the frequency in the strain state into
Equation (22) provides a value of −2.8, which matches well with the value determined
using Equation (18).
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Figure 4 illustrates that the eigenfrequencies of the bolted structure exhibit variability
when the structure is in different states. This allows for the establishment of a relationship
between wave speed and stress based on the relative change in wave speed. Consequently,
the assessment of pre-stressing can be conducted by examining the shift in the eigenfre-
quency of the workpiece.

3.2. Influence of Material and Structural Parameters
3.2.1. Influence of Bolt Material Parameters on Natural Frequency Characteristics

The contact state of the bolted joint structure is contingent upon factors such as
the material and the actual load, which significantly influence the structure’s dynamic
properties. Therefore, it is imperative to investigate the impact of varying material factors
on the intrinsic properties of the bolted structure. Table 2 presents the material parameters
of the bolted structure.
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Table 2. Material parameters.

Materials λ (GPa) µ (GPa) l (GPa) m (GPa) n (GPa)

high manganese steel 115.8 79.9 −248 −623 −714

45 steel 111.59 81.79 −81.25 −583.1 −782.85

nickel steel 109 81.7 −56 −671 −785

high-strength steel 109 82 −426 −619 −708

20 steel 116.8 80.6 −69 −574 −670

Figure 5 depicts the impact of varied preloading pressures on the fundamental frequency
variation across distinct modes. It may be proved that the fundamental frequencies of bolted
constructions display analogous tendencies across different modes. Nevertheless, it is obvious
that different materials exert varying degrees of effect on the modes. In the case of bending
modes, an increase in strain is accompanied by an increase in frequency, whereas in the case
of torsional modes, an increase in strain is accompanied by a decrease in frequency. Similarly,
the change in the longitudinal mode follows a pattern comparable to that of the torsional
mode, exhibiting a decline with increasing strain. However, there is a disparity of roughly
155 Hz between different materials in the torsional mode frequency range, with a reasonably
dense distribution interval of around 105 Hz, compared to the longitudinal mode. It is noticed
that the material parameters exert the least influence on the bending mode, followed by the
longitudinal mode. Conversely, the torsional mode is the most strongly influenced. The
frequency range for all three modes stays relatively small when the strain is less than 10−4.
However, considerable variations in frequency values are detected as the strain increases from
10−4 to 10−2, with the bending mode frequency exhibiting a notable increase while both the
torsional and longitudinal modes experience a pronounced decrease.
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Figure 5 illustrates that the fundamental frequencies of bolted structures comprising
different materials exhibit comparable variation patterns. Therefore, the effect of the
material parameters, namely, Lame second-order elastic constants λ, µ and Murnaghan
third-order elastic constants l, m, n, on the fundamental frequencies of bolts under varying
strains will be the primary focus of the analysis. The following analysis will be conducted
using high manganese steel as the base material for bolts.

Figure 6 illustrates the correlation between the Lame elastic constant and strain on
the fundamental frequency of the structure. Figure 6a depicts the Lame elastic constant
λ, whereas Figure 6b illustrates the Lame elastic constant µ. The numbers 1, 2, and 3
correspond to the bending mode, torsional mode, and longitudinal mode, respectively.
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Figure 6. Surface diagram of mode frequency under strain and elastic constant of Lame. (a1) surface
diagram of bending mode frequency under strain and λ; (a2) surface diagram of torsional mode
frequency under strain and λ; (a3) surface diagram of longitudinal mode frequency under strain
and λ; (b1) surface diagram of bending mode frequency under strain and µ; (b2) surface diagram of
torsional mode frequency under strain and µ; (b3) surface diagram of longitudinal mode frequency
under strain and µ.
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As shown in Figure 6a, the frequency of the bolt structure will change when the strain
and the Lame elastic constant λ are different. As illustrated in Figure 6(a1), there is a gradual
transition in frequency when the strain ε ∈

[
0,10−4] and λ ∈ [115.8×103, 115.8×107] Pa

for the bending mode. However, when the strain ε ∈
[
10−4, 10−2] and

λ ∈ [115.8×103, 115.8×107] Pa, there is an increase in frequency with increasing strain.
Similarly, an increase in frequency is observed with an increase in parameter λ when
the strain ε ∈

[
0,10−2] and λ ∈ [115.8×107, 115.8×1010] Pa. In the case where the strain

ε ∈
[
0,10−4] and λ ∈ [115.8×1010, 115.8×1014] Pa there is a slight increase in frequency

as λ increases. Conversely, there is a notable increase in frequency when the strain
ε ∈

[
10−4, 10−2] and λ ∈ [115.8×1010, 115.8×1014] Pa. This is evident in the torsional

mode illustrated in Figure 6(a2). In the case where λ ∈ [115.8×103, 115.8×1010] Pa and
ε ∈

[
0,10−4], the variation of frequency is relatively minor. However, when ε ∈

[
10−4, 10−2],

there is a notable decrease in frequency with the increase of the strain. When the strain
ε ∈

[
0,10−2] and λ ∈ [115.8×1010, 115.8×1014] Pa, there is an increase in frequency with

an increase in λ. With regard to the longitudinal mode illustrated in Figure 6(a3), it can be
observed that when λ ∈ [115.8×103, 115.8×107] Pa and ε ∈

[
0,10−4], there is minimal vari-

ation in frequency. Conversely, when ε ∈
[
10−4, 10−2] and λ ∈ [115.8×103, 115.8×107] Pa,

there is a notable decline in frequency as the strain increases. However, when the strain
ε ∈

[
0,10−2] and the wavelength λ ∈ [115.8×107, 115.8×1010] Pa, the frequency increases

significantly with an increase in λ. In contrast, when λ ∈ [115.8×1010, 115.8×1014] Pa, the
frequency increases gradually with an increase in λ.

Figure 6b depicts the correlation between the frequency of the bolted structure and
alterations in strain and the Lame elastic constant µ. In the bending mode, torsional mode,
and longitudinal mode, a uniform overall tendency is observed, characterized by a notable
rise in frequency. However, in the bending mode, there is minimal variation in frequency
with strain for changes in strain when µ is within the range of 79.9×109 to 79.9×1012 Pa. It
is only when µ reaches 79.9×1013 Pa that a notable increase in frequency is observed with
an increase in strain. In the torsional and longitudinal modes, a slight increase in frequency
is evident as strain increases.

As illustrated in Figure 7, the correlations between Murnaghan’s third-order elas-
tic constants and strain on the fundamental frequency of the structure are presented.
Figure 7a illustrates the relationship between the frequency of the bolted structure and the
Murnaghan third-order elastic constant l, as well as the effect of strain on this frequency.
For the bending mode shown in Figure 7(a1), an increase in strain leads to a significant
increase in frequency, while an increase in l results in a minimal change in frequency. With
regard to the torsional mode depicted in Figure 7(a2) and the longitudinal mode shown
in Figure 7(a3), an increase in strain results in a notable decrease in frequency, whereas
variations in l give rise to a smaller range of frequency change.

Figure 7b illustrates that the frequency of the bolted structure changes in response to
alterations in the strain and the third-order elastic constant m of the Murnaghan model.
With regard to the bending mode (Figure 7(b1)), it is evident that the frequency increases
markedly in conjunction with an increase in the strain. When the strain is less than 10−2,
the frequency undergoes a gradual change with an increase in m. At a strain of 10−2, the
frequency exhibits a significant increase in m ∈ [− 623×109,−623×108]Pa, followed by a
less pronounced change.

For the torsional mode Figure 7(b2) and the longitudinal mode Figure 7(b3), the
degree to which the frequency changes with strain and m is similar overall. When the
strain ε ∈ [0, 10−4] and m ∈ [− 623×109,−623×103] Pa, the frequency hardly changes.

When ε ∈ [10−4, 10−2
]

and m ∈ [ − 623×107,−623×103] Pa, the frequency increases
with the increase of strain, and almost does not change with the increase of m. When
ε ∈ [10−4, 10−2

]
and m ∈ [− 623×109,−623×107] Pa, the frequency increases sharply

with the increase in strain.
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Figure 7. Surface diagram of mode frequency under strain and Murnaghan’s third-order elastic
constant change. (a1) surface diagram of bending mode frequency under strain and l change;
(a2) surface diagram of torsional mode frequency under strain and l change; (a3) surface diagram
of longitudinal mode frequency under strain and l change; (b1) surface diagram of bending mode
frequency under strain and m change; (b2) surface diagram of torsional mode frequency under strain
and m change; (b3) surface diagram of longitudinal mode frequency under strain and m change;
(c1) surface diagram of bending mode frequency under strain and n change; (c2) surface diagram
of torsional mode frequency under strain and n change; (c3) surface diagram of longitudinal mode
frequency under strain and n change.

Figure 7c illustrates that the frequency of the bolted structure changes in response to
alterations in both the strain and Murnaghan’s third-order elastic constant n. With regard
to the bending mode (Figure 7(c1)), an increase in strain is accompanied by an increase in
frequency, while there is only a slight change in frequency with an increase in n, with the
exception of a slight decrease in frequency when the strain is 10−2 and n is −714×109Pa.
In the torsional mode (Figure 7(c2)) and the longitudinal mode (Figure 7(c3)), the frequency
demonstrates a decrease with the increase in strain and exhibits minimal variation with the
increase in n. A notable decline in frequency is observed only when the strain is 10−2 and
the Murnaghan’s third-order elastic constant n is equal to −714×109 Pa.
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3.2.2. Influence of Bolted Structure Parameters on Natural Frequency Characteristics

This section examines the impact of bolt preload variation on the natural frequency of
the structure for different bolt lengths and diameters. To this end, bolts with diameters of
30 mm and lengths of 160, 180, 200, 220, 240, and 260 mm were selected for analysis at the
frequencies of the bending mode, torsional mode, and longitudinal mode under varying
tensile strains. The findings are presented in Table 3.

Table 3. Mode fundamental frequency (Hz) with different bolt lengths under different strains.

Modes
Bolt Length

(mm)
Strain ε

0 10−6 10−5 10−4 10−3 10−2

bending
mode

160 1251.1052 1251.1310 1251.3626 1253.6743 1276.3310 1462.4871
180 999.6774 999.7043 999.9459 1002.3572 1025.9347 1217.7101
200 816.4894 816.5171 816.7656 819.2445 843.4099 1036.5595
220 679.0554 679.0836 679.3371 681.8648 706.4184 898.8077
240 573.2732 573.3018 573.5590 576.1223 600.9244 791.1777
260 490.3680 490.3969 490.6568 493.2466 518.1976 705.3551

torsional
mode

160 14,758.2860 14,758.2647 14,758.0733 14,756.1568 14,736.7916 14,521.3192
180 13,139.7706 13,139.7520 13,139.5841 13,137.9032 13,120.9241 12,932.7591
200 11,840.5873 11,840.5707 11,840.4212 11,838.9246 11,823.8100 11,656.6958
220 10,774.1496 10,774.1346 10,773.9998 10,772.6499 10,759.0183 10,608.4617
240 9883.7275 9883.7139 9883.5914 9882.3652 9869.9843 9733.5249
260 9129.2540 9129.2415 9129.1291 9128.0043 9116.6478 8991.5975

longitudinal
mode

160 15,366.3660 15,366.3057 15,365.7626 15,360.3260 15,305.3337 14,680.9919
180 13,737.3769 13,737.3234 13,736.8418 13,732.0213 13,683.2901 13,134.8923
200 12,414.3921 12,414.3440 12,413.9115 12,409.5820 12,365.8280 11,875.3106
220 11,322.5266 11,322.4830 11,322.0902 11,318.1582 11,278.4294 10,833.7621
240 10,405.5042 10,405.4644 10,405.1054 10,401.5126 10,365.2200 9960.6934
260 9625.6932 9625.6564 9625.3258 9622.0160 9588.5866 9216.4303

Figure 8 reflects the influence of bolt length and strain change on the fundamental
frequency of the mode from three aspects. Among them, Figure 8a shows the changing
trend in the fundamental frequency of the bolted structure affected by strain and bolt
length in the 3D diagram as a whole. In Figure 8b, the variation curves of different mode
frequencies of the bolted structure under tensile strain are depicted. Additionally, Figure 8c
demonstrates the change in bolted structure frequency with varying bolt length, with the
gray shaded area representing a frequency range of 10−2 and no strain. Let ∆ε =|ε0.01 − ε0|,
which denotes the absolute value of the frequency difference between 10−2 strain and zero
strain (shown as a rose-red dot line). It is more sensible to observe that the frequency trend
changes with varying bolt lengths when comparing strained and no-strain conditions.

The bending mode frequency of the bolt rises as the bolt tensile strain increases, as
seen in Figure 8(b1). When exposed to varying stresses, bolts of various lengths generally
exhibit a similar changing trend. In the initial deformation stage, where the strain value is
less than 10−4, there is hardly any change in mode frequency. However, when the strain
value exceeds 10−4, the mode frequency begins to rise nonlinearly with increasing strain.
Figure 8(c1) demonstrates that the bending mode frequency decreases with an increase in
bolt length, where ∆ε first rises and then decreases with increasing bolt length.

As illustrated in Figure 8(b2), the torsional mode frequency of a bolt decreases slightly
as it is subjected to tensile strain. This decrease is observed with an increase in bolt strain,
and the overall change trend of bolts of different lengths remains similar when subjected to
different strains. Specifically, in the initial stage of small deformation where the strain value
is less than 10−3, there is hardly any change in mode frequency. However, once the strain
value exceeds 10−3, the mode frequency begins to change, showing a nonlinear decrease
with increasing strain. Figure 8(c2) demonstrates that as the length of the bolt increases, its
torsional mode frequency decreases while ∆ε also decreases accordingly.
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less than 10-4, there is hardly any change in mode frequency. However, when the strain 

Figure 8. Influence of bolt length and strain changes on fundamental frequency. (a1) surface diagram
of bending mode frequency under strain and bolt length change; (a2) surface diagram of torsional
mode frequency under strain and bolt length change; (a3) surface diagram of longitudinal mode
frequency under strain and bolt length change; (b1) curve graph of bending mode frequency under
strain and bolt length change; (b2) curve graph of torsional mode frequency under strain and bolt
length change; (b3) curve graph of longitudinal mode frequency under strain and bolt length change;
(c1) differential chart of bending mode frequency under no strain and 0.01 strain; (c2) differential chart
of torsional mode frequency under no strain and 0.01 strain; (c3) differential chart of longitudinal
mode frequency under no strain and 0.01 strain.

As shown in Figure 8(b3), the longitudinal mode frequency of a bolt under tensile
strain decreases with the increase in bolt strain. When subjected to different strains, the
overall change trend of bolts of various lengths is similar. In the small deformation stage,
the strain value is less than 10−3, and the mode frequency hardly changes. When the
strain value exceeds 10−3, the mode frequency begins to change, and the longitudinal
mode frequency decreases nonlinearly with the increase in the strain. When the bolt length
changes, its frequency decreases with the increase in bolt length, and its difference decreases
with the increase in bolt length. Figure 8(c3) shows that the longitudinal mode frequency
decreases as the bolt length increases, and ∆ε decreases as the bolt length increases.
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To investigate the influence of bolt diameter on natural frequency, bolts ranging from
20, 24, 30, 36, 42, 48, and 56 mm in diameter were studied separately. A length of 200 mm
was chosen in accordance with the standards, and the results are shown in Table 4.

Table 4. Mode fundamental frequency (Hz) with different bolt diameters under different strains.

Modes
Bolt Diameter

(mm)

Strain ε

0 10−6 10−5 10−4 10−3 10−2

bending mode

m20 556.0075 556.0515 556.4473 560.3864 597.9781 867.2763
m24 661.7927 661.8287 662.1521 665.3746 696.4897 932.5279
m30 816.4706 816.4982 816.7468 819.2257 843.3908 1036.5284
m36 964.8648 964.8866 965.0829 967.0414 986.2233 1143.3586
m42 1106.5374 1106.5548 1106.7115 1108.2758 1123.6285 1250.2272
m48 1241.7633 1241.7773 1241.9032 1243.1599 1255.4958 1355.3737
m56 1409.4438 1409.4542 1409.5472 1410.4757 1419.5657 1488.2257

torsional mode

m20 11,881.8176 11,881.8016 11,881.6569 11,880.2087 11,865.5911 11,705.0988
m24 11,864.9056 11,864.8893 11,864.7427 11,863.2756 11,848.4636 11,685.3448
m30 11,840.5147 11,840.4981 11,840.3486 11,838.8522 11,823.7392 11,656.6415
m36 11,815.2532 11,815.2363 11,815.0838 11,813.5572 11,798.1335 11,626.7273
m42 11,786.5573 11,786.5401 11,786.3852 11,784.8344 11,769.1594 11,594.1859
m48 11,758.2861 11,758.2686 11,758.1104 11,756.5275 11,740.5192 11,560.4818
m56 11,717.8232 11,717.8052 11,717.6434 11,716.0230 11,699.6249 11,513.2325

longitudinal
mode

m20 12,560.5105 12,560.4628 12,560.0340 12,555.7417 12,512.4062 12,032.7104
m24 12,501.1768 12,501.1290 12,500.6986 12,496.3903 12,452.8744 11,968.4747
m30 12,414.3149 12,414.2668 12,413.8343 12,409.5048 12,365.7510 11,875.2266
m36 12,321.2757 12,321.2275 12,320.7931 12,316.4446 12,272.4644 11,773.9822
m42 12,216.9599 12,216.9117 12,216.4777 12,212.1327 12,168.1574 11,665.5454
m48 12,115.4487 12,115.4007 12,114.9690 12,110.6510 12,065.6764 11,553.3148
m56 11,959.0018 11,958.9538 11,958.5215 11,954.1922 11,910.2540 11,384.7374

Figure 9 reflects the influence of bolt diameter and strain change on the fundamental
frequency of the mode from three aspects. Among them, Figure 9a shows the changing
trend of the fundamental frequency of the bolted structure affected by strain and bolt
diameter in the 3D diagram as a whole. In Figure 9b, the curves depict the variation
in different mode frequencies of the bolted structure under tensile strain. Additionally,
Figure 9c) displays how the bolted structure’s frequency varies with bolt diameter changes.
The shaded gray area represents the frequency range between a strain of 10−2 and no
strain, while the dotted line indicates the absolute value ∆ε =|ε0.01 − ε0| of the frequency
difference between a strain of 10−2 and zero strain.

As shown in Figure 9(b1), the bending mode frequency of a bolt increases with an
increase in tensile strain. The overall change trend for bolts of different lengths is similar
when subjected to different strains. In the initial stage of small deformation, where the
strain value is less than 10−4, there is hardly any change in mode frequency. However,
when the strain value exceeds 10−4, the mode frequency begins to change, and it rises
nonlinearly with an increase in strain. Figure 9(c1) demonstrates that the bending mode
frequency increases with an increase in the bolt diameter, while ∆ε decreases as the bolt
length increases, and this reduction is significant.

As illustrated in Figure 9(b2), the torsional mode frequency of a bolt decreases as it is
subjected to tensile strain. This decrease in frequency is observed with an increase in bolt
strain, and the overall trend remains similar for bolts of different lengths when subjected to
varying strains. In the initial stage of small deformation, where the strain value is less than
10−4, there is minimal change in the mode frequency. However, once the strain value exceeds
10−4, the mode frequency begins to change nonlinearly, decreasing with an increase in strain.
Figure 9(c2) demonstrates that as the bolt diameter increases, so does the decrease in torsional
mode frequency, while ∆ε also increases with an increase in bolt length.
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As shown in Figure 9b1, the bending mode frequency of a bolt increases with an in-
crease in tensile strain. The overall change trend for bolts of different lengths is similar 
when subjected to different strains. In the initial stage of small deformation, where the 

Figure 9. Influence of bolt diameter and strain changes on fundamental frequency. (a1) surface
diagram of bending mode frequency under strain and bolt diameter change; (a2) surface diagram of
torsional mode frequency under strain and bolt diameter change; (a3) surface diagram of longitudinal
mode frequency under strain and bolt diameter change; (b1) curve graph of bending mode frequency
under strain and bolt diameter change; (b2) curve graph of torsional mode frequency under strain
and bolt diameter change; (b3) curve graph of longitudinal mode frequency under strain and bolt
diameter change; (c1) differential chart of bending mode frequency under no strain and 0.01 strain;
(c2) differential chart of torsional mode frequency under no strain and 0.01 strain; (c3) differential
chart of longitudinal mode frequency under no strain and 0.01 strain.

As depicted in Figure 9(b3), the longitudinal mode frequency of a bolt decreases as it
is subjected to tensile strain. This decrease in frequency is observed with an increase in bolt
strain, and the overall trend remains similar for bolts of different lengths when subjected to
varying strains. In the initial stage of small deformation, where the strain value is less than
10−4, there is minimal change in the mode frequency. However, as the strain value exceeds
10−4, the mode frequency begins to exhibit a non-linear decrease with increasing strain.
Figure 9(c3) further demonstrates that as the bolt diameter increases, so does the decrease
in longitudinal mode frequency, while ∆ε increases with an increase in bolt length.
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4. Conclusions

The objective of this study is to analyze the intrinsic properties of bolted structures
with various preloads in order to investigate the fundamental frequency of different modes
within a specified frequency range. This enables the accurate prediction of the acous-
toelastic behavior of the structure in response to a range of conditions. Consequently,
an investigation into the intrinsic characteristics of bolted structures represents a pivotal
approach to both their design and the diagnosis of failure in engineering applications. The
study of the acoustic elastic relationship of the structure is innovatively transformed into
the study of the inherent characteristics of the structure. Through K′ of Equation (22), the
relationship between fσ and f with ε is transferred, and the relationship between structure
natural frequency and bolt prestress is further revealed. In this study, the main structural
modes of bolts under different preloading forces were investigated, and the effects of the
material parameters, Lame elastic constant, Murnaghan third-order elastic constant and
bolt size parameters were investigated. The results show that the natural frequencies of
different vibration modes can be used to predict and detect the change in the preload of
bolt structures. The analysis demonstrates that:

(i) The study of bolts made of various materials shows that the general change trend is
the same, and the natural frequency under different structural modes has an obvious
change trend under different preloading forces. Specifically, the bending mode fre-
quency demonstrates an augmentation with increasing preload, whereas the torsional
and longitudinal mode frequencies display a reduction.

(ii) The parameters of high manganese steel were chosen as the base research parameters
to investigate the variation in bolt natural frequency with preloads when altering the
Lame elastic constants λ, µ in this study. For λ, the bending mode frequency increases
with an increase in preload. While the torsional and longitudinal modes decrease
when λ changes in a small range, as λ reaches a large value, the effect of preload on
frequency becomes less pronounced. In contrast, there is no significant overall change
in the frequencies of the three modes with increasing preload for µ.

(iii) The parametric studies of Murnaghan’s third-order elastic constants l, m, n, show that
the change in the elastic constants is weaker than the pattern of change in the funda-
mental frequency of the structure embodied in the preload force, and the frequency of
l in bending mode increases with preload, while the frequency of l in torsional and lon-
gitudinal modes decreases with preload. As for m, the frequency in the bending mode
increases with preload, while the frequencies in the torsional and longitudinal modes
mainly increase with preload. However, when m = − 623×109 Pa, the frequency
decreases with increasing preload. In the case of n, the bending mode frequency
increases with preload, whereas the frequencies in the torsional and longitudinal
modes decrease with increasing preload.

(iv) The structure parameters of bolts are studied in this paper. It is observed that the bend-
ing mode frequency increases with an increase in preload, while the torsional mode
frequency and longitudinal mode frequency decrease with an increase in preload. In
the bending mode, the frequency value of ∆ε initially increases and then decreases
with an increase in bolt length. It decreases with an increase in bolt diameter. In the
torsion mode and longitudinal mode, the frequency value of ∆ε decreases with an
increase in bolt length and increases with an increase in bolt diameter.

In future research, we will analyze and consider the effect of various complex external
conditions on the intrinsic properties of the equipment structure in the presence of preload.
These conditions include wind load, temperature difference, and extreme conditions such
as high salt and high humidity environments. The goal is to more realistically simulate
the working conditions of the components in actual applications. The utilization of finite
element analysis software and supercomputing platforms for the study of large structural
components enables the accurate simulation and restoration of actual working conditions,
thereby ensuring that the simulation results are more closely aligned with the real situation.
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This is not only conducive to more effective use of theoretical analysis and simulation
analysis to comprehensively verify the preload force on the structural intrinsic properties
of the law, but also markedly enhances the precision of data and the depth of analysis. The
application of online monitoring technology for structural intrinsic properties realizes the
real-time monitoring of in-service bolts, thus ensuring the safety and stability of bolts in
key technological fields such as aviation and marine. The integration of these studies and
technologies will facilitate the development of a more precise and efficient solution for the
maintenance and inspection of bolts, thereby advancing the technological advancement of
related fields while enhancing the durability and reliability of equipment. On this basis,
in conjunction with the subsequent experimental analysis, the reliability of bolt preload
detection can be significantly enhanced, thereby providing a more robust assurance for
the design and practical implementation of large structural components. This approach
effectively integrates theoretical, simulation, and experimental methodologies, thereby
further enhancing the scientific rigor of the analysis and the reliability of the results.

Author Contributions: Conceptualization, L.Z. and R.K.; methodology, L.Z.; software, R.K.; vali-
dation, G.T., X.S. and L.S.; formal analysis, L.Z.; investigation, X.S.; resources, L.S.; data curation,
R.K.; writing—original draft preparation, R.K.; writing—review and editing, L.Z.; visualization, R.K.;
supervision, G.T.; project administration, X.S.; funding acquisition, L.Z. All authors have read and
agreed to the published version of the manuscript.

Funding: This research was funded by the general project of natural science research of Institutions
of Higher Education of Jiangsu Province of China, grant number No. 21KJB510016 and National
Natural Science Foundation of China, grant number No. 62203193.

Data Availability Statement: The original contributions presented in the study are included in the
article; further inquiries can be directed to the corresponding author.

Conflicts of Interest: The authors declare that the research was conducted in the absence of any
commercial or financial relationships that could be construed as potential conflicts of interest.

References
1. Liu, H.B.; Zhang, X.; Liu, Y.K.; Wang, Y.Q. Research on electromagnetic ultrasonic unidirectional stress transverse and longitudinal

wave joint measurement method. Mech. Des. Manuf. 2021, 9, 241–246. [CrossRef]
2. Zhang, X. EMAT-Based Unidirectional Stress Transverse and Longitudinal Wave Joint Measurement Method. Master’s Thesis,

Dalian University of Technology, Dalian, China, 2019. [CrossRef]
3. Lian, J.; Qian, Y.; Dong, L. Research on the effect of assembly process on the preload force of ultra-high-speed test shaft system.

Aerosp. Manuf. Technol. 2018, 2, 52–56.
4. Xin, J. Ultrasonic Non-Destructive Testing and Calibration Technique for Gear Tooth Root Residual Stress. Master’s Thesis,

Beijing University of Technology, Beijing, China, 2015.
5. Lv, Y.; Zhang, X.; Gao, J.; Song, G.; He, C. Method and system for axial stress detection of bolts based on acoustoelastic effect.

Nondestruct. Test. 2023, 45, 11–15.
6. Lv, Y.; Xie, L.; Song, G.; He, C.; Cheng, J.; Ji, S. A method for axial stress detection of bolts based on acoustoelastic effect. J. Beijing

Inst. Technol. 2022, 48, 920–927.
7. Gao, S. Research on Electromagnetic Ultrasonic Detection of Wind Turbine Bolt Stress. Master’s Thesis, Shenyang University of

Technology, Shenyang, China, 2022. [CrossRef]
8. Lee, S.-H. Research on the Measurement Technique of High Tensile Bolt Pre-Tension by Ultrasonic Double Wave Method. Master’s

Thesis, Beijing University of Architecture, Beijing, China, 2023. [CrossRef]
9. Pan, Q.; Chang, M.; Pan, R.; Xu, X.; Li, S.; Zhang, Y. Research on nonlinear ultrasonic detection technology of bolt axial stress. J.

Mech. Eng. 2021, 57, 88–95.
10. Feng, S. Research on Ultrasonic Detection Method of Axial Stress in High Strength Bolts. Master’s Thesis, Hubei University of

Technology, Wuhan, China, 2022. [CrossRef]
11. Feng, S.; Tu, J.; Wei, S.; Chi, Y.; Zhang, X.; Song, X. Ultrasonic testing of axial stress of high strength bolts for bridges. Int. J. Appl.

Electromagn. Mech. 2020, 64, 685–692. [CrossRef]
12. Crecraft, D.I. Ultrasonic measurement of stresses. Ultrasonics 1968, 6, 117–121. [CrossRef]
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