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Abstract: Workpiece surface quality is a critical metric for assessing machining quality. However, due
to the complex coupling characteristics of cutting factors, accurately predicting surface roughness
remains challenging. Typically, roughness is measured post-machining using specialized instruments,
which delays feedback and hampers timely problem detection, ultimately resulting in cutting resource
wastage. To address this issue, this paper introduces a predictive model for workpiece surface
roughness based on the finite element (FE) method and advanced image processing techniques.
Initially, an orthogonal turning experiment was designed, and an FE cutting model was constructed
to assess the distribution of cutting forces and temperatures under varying cutting parameters.
Image processing methods (including mesh calibration, edge extraction, and contour fitting) were
then applied to extract surface characteristics from the FE simulation outputs, yielding preliminary
estimates of surface roughness. By employing range and regression analyses methods, this study
quantitatively evaluates the interdependencies among cutting parameters, forces, temperatures, and
roughness, subsequently formulating a multivariate regression model to predict surface roughness.
Finally, a turning experiment under actual working conditions was conducted, confirming the model’s
capacity to predict the R, trend with an accuracy of 85.07%. Thus, the proposed model provides a
precise predictive tool for surface roughness, offering valuable guidance for optimizing machining
parameters and supporting proactive control in the turning process, ultimately enhancing machining
efficiency and quality.

Keywords: finite element method (FEM); turning process; multivariate linear regression analysis
(MLRA); image processing; surface roughness

1. Introduction

Turning is a fundamental metal-cutting process renowned for its precision and ef-
ficient material removal capabilities. A comprehensive understanding of the complex
interrelationships between cutting parameters, cutting forces, and heat generation during
the turning process—as well as their impact on surface texture and quality—is critical for
optimizing machining parameters, predicting process outcomes, and enhancing surface
finishes. Bian et al. [1] investigated the influence of the main process parameters of UV
picosecond laser cutting on the cutting quality of 22MnB5 plates. And they found that laser
parameters are the important influences on the roughness of the cutting surface and the
subgrain layer. Similarly, Cui et al. [2] used SEM measurements to observe the impact of
random run-out on surface roughness in milling, revealing that chip residue significantly
compromises surface integrity and increases roughness. However, traditional approaches
to selecting optimal cutting parameters often rely on empirical methods and trial-and-error
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experimentation, which can limit the optimization scope and impede optimal process
performance. This approach also leads to material waste and unnecessary labor costs [3].

Advancements in computer technology and simulation tools have made the finite
element method (FEM) a valuable asset in turning process modeling under various cutting
conditions [4]. Improvements in material constitutive models and meshing techniques
have expanded FEM's application in machining research [5,6], including studies of chip
formation, cutting forces, temperature, tool wear, and microstructural evolution [7]. For
example, Ye et al. [8] used FEM to characterize serrated chip formation, while Liu et al. [9]
applied the Abaqus to investigate tool morphology impacts on thin-walled workpieces.
Similarly, Muhammad et al. [10] developed a 3D thermomechanical coupled finite ele-
ment (FE) model for conventional ultrasonically assisted turning, and other studies have
investigated parameter—tool wear interactions and temperature distribution under varying
cooling conditions [11]. Collectively, these studies demonstrate FEM'’s robust potential for
simulating cutting processes [12].

Surface quality is critical in determining the mechanical properties of machined parts,
such as fatigue strength, tribological performance, and corrosion resistance [13]. Conse-
quently, considerable research has focused on monitoring surface quality in machining
processes. However, conventional offline methods, such as digital microscopy and profilom-
etry, present limitations: they are prone to interference, demand extensive experimental
setups, and involve complex procedures [14]. These limitations highlight the need for more
efficient, accurate methods to assess surface quality. Jia et al. [15] integrated the multi-
objective optimization model for rough and finish cutting parameters in plane milling.
Wang et al. [16] investigated the effects of wire saw processing parameters and sawing
direction on the surface roughness and warpage of monocrystalline silicon, developing an
anisotropic sawing model to predict processing forces, surface roughness, and warpage. Li
etal. [17] optimized Magnetic Field-Assisted Blast Erosion Arc Machining (M-BEAM) using
the Nelder-Mead algorithm to identify optimal parameter combinations, which reduced
Surface Roughness (Sa) by 25.96% and 60.61% in roughing and finishing, respectively. Pei
et al. [18] designed a multi-task dual-domain adaptive deep transfer learning to train the
cutting forces and milling parameters and predicted the geometric errors of machining
holes for milling thin-walled parts. However, this model only works effectively when data
domains have high similarity.

Finite element analysis offers a promising solution by enabling surface roughness pre-
diction while reducing the associated economic costs [19,20]. For instance, Yang et al. [21]
developed a 3D FE model for diamond turning to assess surface roughness, while others
have examined the relationship between cutting parameters and surface quality using
FEM [22,23]. Pan et al. [14] used a second-order polynomial model to describe the sur-
face roughness but noted the necessity of accounting for factors such as tool wear [24],
heat, material properties, and chip thickness. While FEM offers significant advantages,
roughness prediction based on FEM typically requires model construction, which increases
computational complexity and processing time [25]. Moreover, integrating FEM with image
processing for surface roughness assessment remains relatively unexplored.

This study addresses these gaps by combining image processing techniques with a
finite element model generated in Abaqus (2023) to extract surface features and calculate
surface roughness using MATLAB (R2023b). The influence of cutting parameters on
workpiece surface quality, force, and temperature was analyzed using single-factor and
range analysis methods. A multiple linear regression equation was then established to
quantify the relationship between cutting depth, cutting speed, ambient temperature, and
workpiece temperature on surface roughness. The model’s reliability was validated through
the R-squared (R?) index. Finally, turning experiments confirmed that the proposed method
can effectively predict workpiece surface roughness under given cutting parameters.
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2. Finite Element Modelling of Turning Process
2.1. Material Constitutive Modelling for Cutting

During the cutting process, the surface layer of the workpiece experiences elastic—
plastic deformation under conditions of high temperature and high strain. The strain, strain
rate, and temperature within the cut layer exhibit non-uniform distributions, characterized
by significant gradients. The Johnson-Cook model has proven to be effective in describing
the thermal viscoelastic deformation behavior of materials under high-strain-rate condi-
tions [26]. The Johnson-Cook model is expressed in Equation (1):

¢ T—Ty \"
1+Czn<§O>H1—(Tm_TO> ] (1)

where o, eV, E, and t.to are the equivalent stress, equivalent strain, equivalent strain rate, and
reference strain rate, respectively. A, B, «, C, and f are material coefficients, where A is the
yield stress under uniaxial tension, and B and « are obtained through fitting stress—strain
data. C is the strain-rate sensitivity parameter, and f is the temperature softening parameter.
Tp and T}, denote the initial temperature and melting point temperature, respectively. In this
study, Q235B was employed as the workpiece material, and the parameters in Equation (1)
are listed in Table 1. The standard for Q235B refers to [27] GB/T 700-2006, and its chemical
composition parameters are presented in Table 2. The chemical composition and material
properties of Q235B are comparable to those of S235]R specified in EN 10025-2:2019 [28].

o = [A+ BeN]

Table 1. Constitutive model parameters of Q235B [29].

Stress—Strain Strain Stress—Strain Temperature Material Initial
Yield Stress Data Fitting Sensitivity - Softening Melting Point
Data Fitting Temperature
A (MPa) Parameters Parameters Parameters « Parameters Temperature Ty °C)
B (MPa) C B Tm (°C) 0
244.8 899.7 0.014 0.94 0.757 1521.85 25
Table 2. The chemical composition of Q235B (%).
C Si Mn P S
0.20 0.35 1.4 0.045 0.045
The equation for failure strain in this model is given by Equation (2):
gl Ae P!
P 0 VL @
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€
f

where w is the failure parameter, e #' is the initial value of equivalent plastic strain, Ae ™!

is the increment of equivalent plastic strain, and s}?p ' is the failure strain. The mechanical
properties of Q235B are listed in Table 3.

Table 3. Mechanical properties of Q235B.

Density (kg/m3) Conductivity (mW/(mm-K)) Young's Modulus (MPa)
7800 43 212,000

The cutting tool used was the NX2525 model manufactured by Mitsubishi Corpora-
tion, with a specific designation of NGG160402R-F. The mechanical characteristics of the
specimens are listed in Table 4.
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Table 4. Mechanical properties of cutting tool.
Rockwell Hardness Conductivity Expansion Bending Strength Rockwell Hardness
(HRA) (W/m.k) (10~ 6/K) (GPa) (HRA)
92 33 7.8 2 92

2.2. Turning FE Model Construction

During turning processes, numerous input variables exert influence on output vari-
ables. For instance, cutting performance may vary subtly even among tools of the same
model, and minor structural differences might exist within workpieces of identical specifi-
cations. Additionally, variations in turning machine performance may result in differences
in cutting force and surface roughness. Unfortunately, these subtle discrepancies cannot be
precisely captured by any single parameter. Moreover, due to computational constraints, it
is necessary to simplify the finite element model to optimize efficiency, assuming a more
idealized turning model where identical tools, workpieces, machines, and other variables
are considered uniform and have negligible impact on the outputs.

Therefore, in the FE model of this turning operation, the workpiece was strategically
divided into cutting and non-cutting layers, with a 3 mm cutting layer thickness. This
partitioning approach helps balance efficiency without compromising accuracy. As shown
in Tables 3 and 4, the strength of the tool is much higher than that of the workpiece material.
The cutting force and temperature variations, as detailed in Table 5, were prioritized as
dependent variables within the cutting region. Considering the transient nature of the
cutting process and the relatively small size of the cutting zone, we have conservatively set
the workpiece dimensions in the model to a radius of 12 mm and a length of 20 mm.

Table 5. FES results of cutting force and cutting temperature.

Factors (H) Dependent Variable (M)
Apmm iy L CO To CO ) ¢ &
1 0.5 23 -5 25 1156.882 100.598 335.875
2 0.5 40 10 150 1102.146 230.063 569.11
3 0.5 57 25 275 1174.938 345.761 767.819
4 0.5 73 40 400 1198.121 564.005 954.454
5 1 23 10 275 1841.327 317.102 494.456
6 1 40 -5 400 1982.513 501.765 661.162
7 1 57 40 25 1983.465 276.969 693.212
8 1 73 25 150 1963.750 310.250 747.441
9 1.5 23 25 400 2696.075 527.120 621.308
10 1.5 40 40 275 2699.128 477.400 553.558
11 1.5 57 -5 150 2785.703 482.18 689.275
12 1.5 73 10 25 2768.397 245.600 690.892
13 2 23 40 150 3401.107 266.800 414.796
14 2 40 25 25 3510.446 250.580 504.199
15 2 57 10 400 3502.793 555.200 858.687
16 2 73 -5 275 3440.002 482.550 905.883

Regarding mesh generation, structured grids were chosen because they are simple and
can produce high-quality meshes [30,31]. Consequently, we adopted structured grids, with
the workpiece structured as quadrilateral grids, using the CPE4RT mesh type in Abaqus.
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The mesh size for the workpiece was set at 0.05 mm, resulting in a total of 32,400 grids.
The tool used free triangular meshes of the type CPE3T, controlled by sizes ranging from
0.01 to 0.5 mm. The total number of grids for the tool was 9758, as illustrated in Figure 1a.
Considering the relative simplicity of the cutting model, a commonly used penalty friction
contact constraint was employed to simplify the computation. Based on the properties
of Q235B material, the friction coefficient was set to 0.34 [32]. A thermal coupling model
was established between the tool and the workpiece. For efficient computation, the cutting
speed determined the finite element analysis steps, which were divided into 100 increments,
with an average computation time of 12 h per model. For the cutting tool, the cutting edges
and force points involved in the turning process included the leading cutting edge, end
cutting edge, tool nose, and crater, as shown in Figure 1b.

Main cutting edge

(b)

Figure 1. FEM of turning process: (a) mesh model and (b) tool cutting edge.

3. Methodology Description

The surface quality of a workpiece is influenced by multiple factors, including cutting
speed, depth of cut, cutting heat, friction, and vibrations during machining. These factors
are often interrelated, resulting in complex nonlinear interactions. To study these effects,
orthogonal experimental designs are commonly employed in engineering applications.
However, due to the broad range of cutting parameters and the coupling effects among
various factors, the process can be time-intensive, leading to low experimental efficiency
and significant time requirements in turning operations.

To address these challenges, we developed a finite element (FE) model for the turn-
ing process of Q235B. In this study, orthogonal simulation experiments were designed,
selecting four primary cutting parameters [33]—cutting depth A, cutting speed v, ambient
temperature T, and initial temperature of the workpiece Tp—as factors (H) that have a
substantial impact on cutting surface quality. The effects of these four factors on cutting
force, temperature, and surface quality were examined [34]. Each factor was set to four
different levels; for instance, the values for factor A, were set to 0.5, 1.0, 1.5, and 2 mm.
Each combination of parameters was assigned an experimental test number ranging from 1
to 16, as shown in Table 6.

Table 6. The arithmetic means deviation of the workpiece surface profile R,.

Test No. 1 2 3 4 5 6 7 8
(51:1) 7.698 5.600 4.829 5.865 12.267 11.042 6.118 11.635

Test No. 9 10 11 12 13 14 15 16
(511111) 10.423 10.711 9.442 7.010 8.972 12.682 15.2528 13.428

3.1. Cutting Forces and Temperatures Analysis

The cutting speed and depth of the cut regulate the magnitude of the cutting force.
These forces cause cutting vibrations, which affect the texture and quality of the workpiece
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surface [35]. Simultaneously, it has been noted that under constant cutting parameters,
variations in cutting temperature can significantly affect the cutting forces, leading to
variations in the subsurface damage [36]. Therefore, this study developed an orthogonal
simulation experiment encompassing different cutting forces and temperatures. As de-
picted in Figure 2, the force clouds for test numbers 1, 7, 10, and 16 were generated using
FES. The primary cutting force F was determined using Equation (3):

F=\/F*+F}? ®)

where F, and Fy are the maximum values of the cutting forces in the X and Y directions,
respectively, as extracted from the stable portions of the FES results (shown in Figure 2).

5, Mises d
(Avg: 75%)

1343.959

1231.986

1120.013

+- 1008.040

896.067 ~

784.094

- 672121

(b)

S, Mises S, Mises
(Avg: 75%) ' (Avg: 75%)
1339.090
1227.563
1116.035

1004.508 ' ><

(0) (d)
Figure 2. Cutting mises cloud maps of test (a) No. 1, (b) No. 7, (c) No. 10, and (d) No. 16.

In this simulation, due to the tool settings and installation angle, the cutting edge at the
end of the tool (as shown in Figure 1b) did not make contact with the workpiece. Therefore,
the analysis focused solely on the temperatures of the main cutting edge (T;) and the tool
nose (T4p). The maximum temperature values were extracted from the simulation results
once a stable turning process was achieved. Figure 3 presents the temperature distributions
(cloud diagrams) for Tests 1, 7, 10, and 16.

TEMP

(Avg: 75%)
485.695
447304
408912
370521

TEMP
(Avg: 75%)
159.107

(a) (b)

Figure 3. Cont.
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Figure 3. Cutting temperature cloud maps of test (a) No. 1, (b) No. 7, (c) No. 10, and (d) No. 16.

According to the results of the FES, the cutting force and temperature results obtained
for each experimental data set are summarized and listed in Table 5.

3.2. Workpiece Surface Characteristic Extraction

FES analysis not only not only provides insights into cutting force and cutting tem-
perature but also enables the acquisition of surface properties of the workpiece, an aspect
often overlooked in conventional research approaches, which typically rely on offline mea-
surement [37]. Therefore, in this study, FES results were integrated with advanced image
processing techniques to extract two-dimensional characteristic that describe the surface
quality of the workpiece. The image processing method is illustrated in Figure 4. The
processing method begins by marking a grid on the surface image of the workpiece after
FES, as shown in Figure 5a. This grid served as a calibration point for image scaling, as
demonstrated in Figure 5b. Once the pixel size of the calibration point is established, image
processing techniques are employed to identify and measure the edge of the workpiece
surface, facilitating the calculation of the surface roughness, as depicted in Figure 5c.

Obtain surface image of
workpiece after FEM

h 4

Pattern segment

A 4 ¢

Calibration of the
—  grid cell with the
image

Calculate the arithmetic mean
deviation for each pattern

\ 4

Edge extraction ——

\ 4

. Calculate the average
Perform pplynomlal | | arithmetic mean deviation of
fitting the whole edge

Convert pixels
to micrometres

) 4

Figure 4. Flowchart of workpiece surface feature extraction.
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———— S

—

(©)

(b)

Figure 5. (a) Workpiece surface from FES, (b) enlarged reference mesh grid, and (c) enlarged local
workpiece surface.

The extracted surface edge of the workpiece was used to calculate the arithmetic mean
deviation R, of the workpiece surface using Equation (4):

1
R, = ;Z?:1|Zi|'

where 1 is the number of measured points located within the sampling length, and z; is the
distance between the sampling point and the contour centerline. Following the roughness
measurement technique, the procedure involved the initial extraction of surface images
of the workpiece with a contour width of 5 mm. Afterwards, the contour centerline was
computed through polynomial fitting (see the red dotted line in Figure 6), and R, was
subsequently estimated using Equation (4). The measurement position was systematically
shifted from left to right to cover the entire surface of the workpiece, and the average R,
value was calculated. Figure 6 depicts the procedure for extracting and calculating the
surface roughness map for test No. 8.

(4)

Ra=12.8797 um
———S——— e ——~———— — S
(@) (b)
Ra=12.1034 um Ra =12.3479 ym
O — ——— S = ——
(9 (d)
Ra =12.3349 um Ra =12.1759 um
= —N—— e S —— e
(e) (f)
Ra=11.7421 ym Ra=9.861 um
N~— — ==
(h)
Ra=10.1015 um Ra =10.5721 pm
S = — — N— e ————
(i)
Ra =10.4983 um Ra =12.6567 um

(k) o

Figure 6. Extraction of the workpiece surface edge for Test No. 8: (a) measuring position 1,
(b) measuring position 2, (c¢) measuring position 3, (d) measuring position 4, (e) measuring po-
sition 5, (f) measuring position 6, (g) measuring position 7, (h) measuring position 8, (i) measuring
position 9, (j) measuring position 10, (k) measuring position 11, and (1) measuring position 12.
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Through the image processing method, features were extracted for each experimental
set, and the surface roughness R, was obtained, as shown in Table 6.

3.3. Range Analysis

Range analysis is a highly effective and straightforward method for analyzing and
determining optimal combinations of parameters. Initially, the magnitudes of several
factors at equal levels of cutting force, temperature, and surface roughness are computed
using Equation (5) [38]:

. If M
Kj = i ()

where M;; represents the impact of factor j on level 7, and K;; denotes the mean of M;;. In
this experiment, for each factor j, such as the cutting depth A, cutting speed v, ambient
temperature T,, and workpiece temperature T, four different levels were set. According
to the FEM results in Tables 4 and 5, there were four Ml-]- values for each factor level, and KT]
is the mean calculated from the four M;; values. For example, when analyzing the impact
of the four factors on the cutting force F, Ki; represents the impact value on the cutting
force F when factor j is at the first level.
Then, the range R; for each factor mean KT] is calculated in Equation (6):

R]' = max{ Kljr sz, ce /Kij} - min{ Klj/ sz, - /Kij}/ (6)

A higher R; value indicates a more substantial influence of the factor on the experi-
mental results, underscoring its significance. Consequently, R; can be used to analyse and
identify the factors and corresponding levels that have the most substantial impact on a
specific feature of interest. The calculation results of R; are presented in Figure 7.

2500 T T T al 350

I
4

1500

F/N
C

1000 122,97

112.12
100
500 1 59.30
50
65.95
37.61
e d e

o
%

0 0
A, v T T, A, v T T,
(a) (b)
300 285.64 7 6.59
250 s
217.86 .
5
200 -
9] £ 4
g
2150 S
= 3 262
100
2 1.74 1.73
sor 32.13 T
12.14
0 0
A v T i A v T, 2

(9 (d)
Figure 7. Result of range analysis, R; of (a) F, (b) T, (c) T}, and (d) Rq.

The analysis in Figure 7 indicates that for the cutting force F, the most influential
cutting parameter is the depth of cut A,, followed by the cutting speed v and initial
temperature of the workpiece Ty, with the most negligible impact observed for the ambient
temperature T,. The optimal combination within the experimental range is A, = 2 mm,
v =40 m/min, T, = —5 °C, and Ty = 25 °C. For the temperature T at the main cutting
edge, the initial temperature Tj has the highest impact, followed by the depth of cut A, and
the cutting speed v, with the most negligible influence from the ambient temperature 7.
The optimal combination is Ay = 1.5 mm, v =57 m/min, T, =40 °C, and T = 400 °C.
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The cutting speed v has the most considerable impact on the temperature Ty, at the
tooltip, followed by the initial temperature Ty and depth of cut A, with the least influence
from ambient temperature T,. The optimal combination is A, = 2 mm, v = 57 m/min,
T. = 25°C, and Ty = 400 °C. Regarding the workpiece surface roughness R,, the most
influential factor is the depth of cut Ay, followed by the initial temperature Tp and ambient
temperature T,, with the cutting speed v having the least impact. The optimal combination
is Ay = 2mm, v = 40 m/min, T, = 10°C, and Ty = 25 °C.

A comprehensive analysis of the experimental results indicates that increasing both
cutting depth and speed leads to higher cutting forces and temperatures. This escalation
simultaneously exacerbates system vibrations and instability, resulting in a decline in sur-
face quality [38]. Integrating the insights from Figures 2 and 3, it is evident that a greater
cutting depth not only influences the size and shape of the chips but also accelerates their
fracture time, promoting quicker dissipation of cutting heat. Additionally, an increase in
cutting speed enhances the transfer of cutting heat to the chips, thereby reducing the tem-
perature in the cutting zone. And, raising the cutting temperature of the workpiece and the
ambient temperature can modify the material properties of the workpiece, reducing cutting
resistance and pressure, which in turn lessens workpiece vibrations and improves surface
quality. Therefore, selecting and combining the appropriate cutting depth, cutting speed,
and thermal conditions helps enhance surface quality and improve machining efficiency.

3.4. Multiple Linear Regression Analysis

The multiple linear regression analysis (MLRA) method enables the precise represen-
tation of mathematical connection models with limited experiment data [39]. Therefore,
based on the FES results analysed above, MLRA was employed to establish mathematical
models for examining the relationship of cutting force, temperature, and workpiece surface
roughness. This facilitates the optimization and selection of cutting parameters, enabling
precise predictions of the machined surface quality. According to the classical empirical
cutting force formulation [40], the turning force can be expressed in the exponential form
of the cutting parameters as shown in Equation (7):

F =LA o2 T, Ty, )

Here, F represents the total cutting force. L, by, by, b3, and b, are coefficients determined
through the regression analysis. L is a coefficient related to the material, and by, by, b3, and
by are the correction coefficients. The logarithm of Equation (8) gives:

InF = C+b1lnAp + balnv + b3lnT, + bylnTy, (8)

Let InF = y, x1 = InAp, xp = Inv, x3 = InT,, and x4 = InT,; then, the MLR
equation corresponding to Equation (9) is:

Y =by x1 + by xp + b3 x3+ by x4, )

The MLR in Equation (9) expresses the linear relationship between the independent
variables x1, xp, x3,and x4 and dependent variable y. Through the analysis of the 16 sets
of simulation data in Sections 3.3 and 3.4, the MLR formula was applied to the four
independent variables. This resulted in expressions relating the cutting force F, cutting
temperatures (T¢, Ty;p), and surface roughness R, to the cutting parameters, as shown in
Equation (10):

F = 7.478814p0.791200.0337T30.0008T070.0037’

TC — 2'7819Ap0.294500.3638T80.0171 TOO.3232,

Ttip — 3.8806Ap0'026900-528Teo'0037T00'1131,
R, = 1'8794Ap0.280350—0.11273Te70.11162]—’00.077811.

(10)
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Validation of a multiple linear regression model (MLRM) is essential for ensuring its
reliability and efficacy. Therefore, an R-squared (R?) analysis of the MLRM was conducted
to assist in evaluating the fitting quality, which stands for the determination coefficient of
the MLRM.

R? is usually used to measure the extent to which a model explains the variability of the
dependent variable in the MLRM. It ranges from 0 to 1, with a value closer to 1 indicating
a higher ability of the model to explain the variability of the dependent variable, otherwise,
the weaker it is. The calculation of R-squared [41] is given by Equations (11) and (12):

— 1 —m
Y = ;E:l Y;, (11)
2
2, Lina(Xi—Y))
R?=1- ==L, (12)
i:l(Y - Yi)

where X; is the predicted value of the i*" regression model, while Y; corresponds to the i*"
value from FES results. Yis the mean of the true values, and m denotes the total number of
data points.

The coefficient of determination (R?) results for the 16 tests are presented in Figure 8,
where “Error” represents the relative discrepancy between model predictions and the
training data from Tables 5 and 6. The cutting force F model within the MLRM achieves
a particularly high degree of fit, with an R? value of 0.997 and an average relative error
of 1.935. Models for the main cutting-edge temperature T. and tool tip temperature Ty;),
also show substantial fit, with R? values of 0.856 and 0.897, and average relative errors
of 14.808 and 6.341, respectively. Conversely, the regression model for surface roughness
R, yields a comparatively lower fit, with an R? of 0.693 and an average relative error of
15.805. Nevertheless, the model’s overall trend aligns closely with the variations observed
in the simulated experimental data, indicating that the MLRM established in this study can
effectively predict the target parameters based on the results of FEA.

KE:099708
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100 700
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Figure 8. Coefficient of determination (R?) for (a) F, (b) T, (c) Ttip, and (d) R, in the MLRM.
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4. Turning Experiment Verification
4.1. Turning Operation Description

Turning experiments were conducted using a CAK3665di CNC lathe with a power of
5.5 kW. To ensure experimental safety, the coolant was activated during the cutting process
to cool the tool. An experimental levels table for the L9(3%) orthogonal array with three
factors and three levels was established to verify the impact of various variables, as shown
in Table 7.

Table 7. Experimental levels for the L9(3?%) orthogonal array.

Level Factor A, (mm) v (m/min) f (mm/rev)
Level 1 1 127.2345 0.07
Level 2 2 152.6814 0.14
Level 3 3 178.1283 0.21

4.2. Workpiece Surface Roughness Measurement

After machining with different cutting parameters, the roughness of the workpiece
surface was assessed using a roughness measurement instrument. Three positions, namely
the end, middle, and tightened ends of the workpiece, were measured separately. Three
measurements were performed at each position, and then the average values were recorded.
The measurement results are presented in Table 8.

Table 8. L9(3%) Cutting simulation results of the orthogonal experiment.

Test No. Ay (mm) v (m/min) f (mm/rev) R, (um)

1 1 127.235 0.07 2.696
2 1 178.129 0.14 1.936
3 1 152.681 0.21 2.851
4 2 178.128 0.07 2.0873
5 2 152.681 0.14 2.519
6 2 127.235 0.21 3.325
7 3 152.681 0.07 2.934
8 3 127.235 0.14 3.659
9 3 178.128 0.21 2.61

Figure 9 shows the surface photographs following each sequential cut, progressing
from the leftmost end to the rightmost end, with a cutting depth of 1 mm. The workpiece
surface exhibited a vibrational texture caused by self-excited vibrations in the turning
system. Notably, variations in surface texture were observed across workpieces of differing
diameters, despite the use of identical cutting parameters. This observation further demon-
strates the importance of online monitoring and prediction of the workpiece surface quality
in real time during the turning process.

(b)

Figure 9. Workpiece surface after each cut: (a) cutting diameter from 34.91 mm to 32.94 mm,
(b) cutting diameter from 32.94 mm to 30.93 mm, and (c) cutting diameter from 30.93 mm to 29.01 mm.
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4.3. Experiment Result Analysis

To validate the accuracy of this method, the turning experiment parameters (Table 8)
were combined with the MLRM established in Section 3.4 to predict the surface roughness
R, of the workpiece under experimental conditions. Figure 10 compares the model’s
predicted values and the actual experimental measurements. As depicted, the predicted
trend closely follows the experimental trend: an increase in the depth of cut A results in a
corresponding increase in surface roughness R,, while an increase in cutting speed v leads
to a decrease in R,. Furthermore, the predictive model yields an average relative error of
14.928% against the experimentally measured values, indicating an accuracy of 85.072% for
the MLRM model in predicting the R, value of the workpiece surface in the Q235B turning
validation experiments.

4.2

~—©— Experienmental meansurement
4| —— MLRM prediction
—+—Error

381

A .
RN/
AL

24

e Error (%)

Ra / um

Relativ

22

Test No.
Figure 10. Comparison of R, between prediction of MLRM and experimental measurements.

5. Conclusions

This study proposes an innovative method for predicting workpiece surface quality
by integrating finite element (FE) modeling with image processing techniques. Initially,
an orthogonal experimental design was formulated based on commonly used cutting
parameters and levels. Using these parameters, a finite element model of the cutting
tool and workpiece was established to investigate the effects of cutting speed, cutting
depth, workpiece temperature, and ambient temperature on cutting force, temperature in
the cutting zone, and workpiece surface quality. The finite element analysis enabled the
visualization of the cutting force, temperature, and surface conditions of the workpiece.

Subsequently, image processing techniques were applied to extract edge features from
workpiece images generated through FEA. Polynomial fitting was used to quantify these
edge features, and a calibration grid converted the image pixels into surface roughness
values, enabling precise assessment of the actual surface roughness of the workpiece based
on images.

To further analyze the impact of various cutting parameters on workpiece surface
quality, a range analysis was conducted. The results indicated that cutting depth is the
most significant factor affecting surface roughness, followed by workpiece temperature and
ambient temperature, while cutting speed had the least effect. To quantify the relationships
between cutting parameters, cutting force, temperature, and roughness, a multiple linear
regression model was developed and validated using the R-squared (R?) index.

Finally, an orthogonal experiment involving cutting depth, speed, and feed rate was
conducted in an actual cutting environment to verify the effectiveness of this method. The
measured workpiece surface roughness values under each experimental condition showed
good consistency with the model’s predictions, achieving a prediction accuracy of 85.07%.

Despite these encouraging results of the proposed methodology, there are some lim-
itations. Due to experimental and time constraints, this study utilized a three-factor,
three-level orthogonal design, which did not encompass all cutting parameters. Addi-
tionally, a simplified 2D finite element model was employed to reduce computational
time, potentially impacting the accuracy of the simulation results. Future research should
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consider a more comprehensive set of cutting parameters and explore the development
of a 3D finite element model to enhance the accuracy and generalizability of the model.
Furthermore, while the roughness measurement standard used in this study is the Chinese
standard GB/T 1031-2009 [42], future work should consider incorporating international
standards to broaden the applicability of the results.
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