Digital Twins to Predict Crack Propagation of Sustainable Engineering Materials under Different Loads
Abstract
:1. Introduction
2. Crack Propagation Modelling and Solution
2.1. Problem Description
2.2. Solving Procedure
2.2.1. Solution to Sub-Problem (i) for the Macro-Crack
2.2.2. Solution to Sub-Problem (ii) for Micro-Cracks
2.2.3. Solution to Sub-Problem (iii) for the Macro-Crack
2.2.4. Solution to Sub-Problem (iv) from Micro-Cracks
2.3. Solution to KI and KII
2.3.1. Solution of LEFM
2.3.2. Correction of SIF for Ductile Materials
3. Discussion on Crack Propagation
3.1. Steady Propagation (SP)
3.2. Rapid Propagation (RP)
3.3. Propagation Direction
4. Experiment
5. Summary and Conclusions
- (1)
- The propagation of a macro-crack and micro-cracks depended mainly on the failure configurations of the micro-cracks in front of the macro-crack as well as the loading conditions.
- (2)
- Micro-cracks with a small inclination angle (−25° < β < 25°) required less external stress to activate propagation.
- (3)
- Randomly distributed micro-cracks affected the propagation of the micro-cracks and the macro-crack more significantly than radially distributed micro-cracks.
- (4)
- Micro-cracks affected the propagation of the macro-crack primarily due to the pure shear load, followed by the tension-shear load and the pure tension load.
- (5)
- The presence of micro-cracks guided the propagation path of the macro-crack. The macro-crack would coalesce with a favorable micro-crack to form an extended macro-crack.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Bi, Z.M.; Jin, Y.; Markopoulos, P.; Zhang, W.J.; Wang, L. Internet of Things (IoT) and Big Data Analytics (BDA) for Digital Manufacturing. Int. J. Prod. Res. 2023, 62, 4004–4021. [Google Scholar] [CrossRef]
- Bi, Z.M.; Zhang, W.J.; Wu, C.; Luo, C.; Xu, L. Generic Design Methodology for Smart Manufacturing Systems for a Practical Perspective, Part II-Systematic Designs of Smart Manufacturing Systems. Machines 2021, 9, 208. [Google Scholar] [CrossRef]
- Bi, Z.M.; Zhang, W.J.; Wu, C.; Luo, C.; Xu, L. Generic Design Methodology for Smart Manufacturing Systems for a Practical Perspective, Part I–Digital Triad Concept and Its Application as a System Reference Model. Machines 2021, 9, 207. [Google Scholar] [CrossRef]
- Bi, Z.M. Petersons Stress Concentration Factors, 4th ed.; John Wiley & Sons: New York, NY, USA, 2021. [Google Scholar]
- Zhang, W.; Liu, Y. Investigation of incremental fatigue crack growth mechanisms using in situ SEM testing. Int. J. Fatigue 2012, 42, 14–23. [Google Scholar] [CrossRef]
- Ronevich, J.A.; Somerday, B.P.; San Marchi, C.W. Effects of microstructure banding on hydrogen assisted fatigue crack growth in X65 pipeline steels. Int. J. Fatigue 2016, 82, 497–504. [Google Scholar] [CrossRef]
- Li, X.T.; Jiang, X.Y. Effect of a Micro-crack on the Edge Macro-crack Propagation Rate and Path Under Mixed Loads. Acta Mech. Solida Sin. 2019, 32, 517–532. [Google Scholar] [CrossRef]
- Petrova, V.; Tamuzs, V.; Romalis, N. A Survey of Macro-Microcrack Interaction Problems. Appl. Mech. Rev. 2000, 53, 117–146. [Google Scholar] [CrossRef]
- Petrova, V.; Schmauder, S. Mathematical modelling and thermal stress intensity factors evaluation for an interface crack in the presence of a system of cracks in functionally graded/homogeneous biomaterials. Comput. Mater. Sci. 2012, 52, 171–177. [Google Scholar] [CrossRef]
- Petrova, V.; Schmauder, S. Thermal fracture of a functionally graded/homogeneous bimaterial with system of cracks. Theor. Appl. Fract. Mech. 2011, 55, 148–157. [Google Scholar] [CrossRef]
- Kachanov, M. A simple technique of stress analysis in elastic solids with many cracks. Int. J. Fract. 1985, 28, 11–19. [Google Scholar] [CrossRef]
- Kachanov, M. Elastic Solids with Many Cracks: A Simple Method of Analysis. Int. J. Solids Struct. 1987, 23, 23–43. [Google Scholar] [CrossRef]
- Tamuzs, V.; Romalis, N.; Petrova, V. Fracture of Solids with Microdefects; Nijhoff: Leiden, The Netherlands, 2000. [Google Scholar]
- Tamuzs, V.P.; Petrova, V.E. On macrocrack–microdefect interaction. Int. Appl. Mech. 2002, 38, 1157–1177. [Google Scholar] [CrossRef]
- Li, X.; Jiang, X.; Xu, L.; Yang, H.; Zhang, Y. Solution of an inclined crack in a finite plane and a new criterion to predict fatigue crack propagation. Int. J. Mech. Sci. 2016, 119, 29–36. [Google Scholar] [CrossRef]
- Li, X.; Xu, L.; Jiang, X. Influence of a micro-crack on the finite macro-crack. Eng. Fract. Mech. 2017, 177, 95–103. [Google Scholar] [CrossRef]
- Li, X.; Xu, L.; Yang, H.; Jiang, X. Effect of micro-cracks on plastic zone ahead of the macro-crack tip. J. Mater. Sci. 2017, 52, 13490–13503. [Google Scholar]
- Loehnert, S.; Belytschko, T. Crack shielding and amplification due to multiple microcracks interacting with a macrocrack. Int. J. Fract. 2017, 145, 1–8. [Google Scholar] [CrossRef]
- Sutula, D.; Kerfriden, P.; Dam, T.V.; Bordas, S.P.A. Minimum energy multiple crack propagation, Part III: XFEM computer implementation and applications. Eng. Fract. Mech. 2018, 191, 257–276. [Google Scholar] [CrossRef]
- Gong, S.X.; Horii, H. General solution to the problem of microcracks near the tip of a main crack. J. Mech. Phys. Solids 1989, 37, 27–46. [Google Scholar] [CrossRef]
- Roberts, R.; Erdogan, F. Closure to “Discussion of ‘The Effect of Mean Stress on Fatigue Crack Propagation in Plates Under Extension and Bending’”. J. Basic Eng. 1968, 90, 414–417. [Google Scholar] [CrossRef]
- El Haddad, M.H.; Topper, T.H.; Smith, K.N. Prediction of non propagating cracks. Eng. Fract. Mech. 1979, 11, 573–584. [Google Scholar] [CrossRef]
- Liu, J.Y.; Bao, W.J.; Zhao, J.Y.; Zhou, C.Y. Fatigue Crack Growth Behavior of CP-Ti Cruciform Specimens with Mixed Mode I-II Crack under Biaxial Loading. Materials 2022, 15, 1926. [Google Scholar] [CrossRef] [PubMed]
- Khan, S.M.A.; Khraisheh, M.K. Analysis of mixed mode crack initiation angles under various loading conditions. Eng. Fract. Mech. 2000, 67, 397–419. [Google Scholar] [CrossRef]
- Wang, L.Y.; Chen, W.Z.; Tan, X.Y.; Yang, J.P. The impact of various crack geometrical parameters on stress field over tip under different mixed loading conditions and inclination angle. Theor. Appl. Fract. Mech. 2019, 102, 239–254. [Google Scholar] [CrossRef]
- Ghaffari, M.A.; Pahl, E.; Xiao, E. Three-dimensional fatigue crack initiation and propagation analysis of a gear tooth under various load conditions and fatigue life extension with boron/epoxy patches. Eng. Fract. Mech. 2015, 135, 126–146. [Google Scholar] [CrossRef]
- Petel, A.; Jager, A.; Babai, D.; Jopp, J. Fatigue Crack Growth in a Monocrystal and Its Similarity to Short-Crack Propagation in a Polycrystal of Nickel. Metals 2023, 13, 790. [Google Scholar] [CrossRef]
- Liu, Y.; Jiang, P.; Duan, G.; Wang, J. Investigation on the Fatigue Crack Propagation of Medium-Entropy Alloys with Heterogeneous Microstructures. Materials 2022, 15, 6081. [Google Scholar] [CrossRef] [PubMed]
- Reymer, P.; Leski, A.; Dziendzikowski, M. Fatigue Crack Propagation Estimation Based on Direct Strain Measurement during a Full-Scale Fatigue Test. Sensors 2022, 22, 2019. [Google Scholar] [CrossRef]
- Dong, Q.; Xu, G.; Hu, Y.; Peng, Z. Research on the Residual Strength of Cracked Plate Considering Fatigue Crack Propagation under Cyclic Load. J. Mar. Sci. Eng. 2023, 11, 706. [Google Scholar] [CrossRef]
- Li, X.; Yang, H.; Zan, X.; Li, X.; Jiang, X. Effect of a micro-crack on the kinked macro-crack. Theor. Appl. Fract. Mech. 2018, 96, 102–110. [Google Scholar] [CrossRef]
- Basoglu, M.; Zerin, Z.; Kefal, A.; Oterkus, E. A computational model of peridynamic theory for deflecting behavior of crack propagation with micro-cracks. Comput. Mater. Sci. 2019, 162, 33–46. [Google Scholar] [CrossRef]
- Yates, J.; Zanganeh, M.; Tomlinson, R.; Brown, M.; Garrido, F.D. Crack paths under mixed mode loading. Eng. Fract. Mech. 2018, 75, 319–330. [Google Scholar] [CrossRef]
- Liu, G.; Zhou, D.; Guo, J.; Bao, Y.; Han, Z.; Lu, J. Numerical simulation of fatigue crack propagation interacting with micro-defects using multiscale XFEM. Int. J. Fatigue 2018, 109, 70–82. [Google Scholar] [CrossRef]
- Zhu, Y.; Yang, J.; Pan, H. Three-Dimension Crack Propagation Behavior of Conical-Cylindrical Shell. Metals 2023, 13, 698. [Google Scholar] [CrossRef]
- Ohr, S. An electron microscope study of crack tip deformation and its impact on the dislocation theory of fracture. Mater. Sci. Eng. 1985, 72, 1–35. [Google Scholar] [CrossRef]
- Gao, Y.; Zhang, C.; Xiong, X.; Zheng, Z.; Zhu, M. Intergranular corrosion susceptibility of a novel Super304H stainless steel. Eng. Fail. Anal. 2012, 24, 26–32. [Google Scholar] [CrossRef]
- Bai, Y.; Wang, H.; Xia, M.; Ke, F. Statistical meso-mechanics of solid, linking coupled multiple space and time scales. Appl. Mech. Rev. 2015, 58, 372–388. [Google Scholar] [CrossRef]
- Muskhelishvili, N.I. Some Basic Problems of the Mathematical Theory of Elasticity; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2013. [Google Scholar]
- Pook, L. Why Metal Fatigue Matters; Springer: Berlin/Heidelberg, Germany; Dordrecht, The Netherlands, 2003. [Google Scholar]
- Milella, P. Fatigue and Corrosion in Metals; Springer: Berlin/Heidelberg, Germany; Dordrecht, The Netherlands, 2013. [Google Scholar]
- Miller, K. Short Fatigue Cracks; Springer: Berlin/Heidelberg, Germany; Dordrecht, The Netherlands, 1989. [Google Scholar]
- Stephens, I. Metal Fatigue in Engineering; Wiley: Hoboken, NJ, USA, 1980. [Google Scholar]
- Haddad, M.H.; Smith, K.N.; Topper, T.H. Fatigue crack propagation of short cracks. J. Eng. Mater. Technol. Trans. Asme 1979, 101, 42–46. [Google Scholar] [CrossRef]
- Wang, W.; Liu, Q. Study on fatigue crack growth rate of PD3 and U71Mn rail steel. J. Mech. Strength 2007, 29, 1026–1029. [Google Scholar]
- Wolf, E. Fatigue crack closure under cyclic tension. Eng. Fract. Mech. 1970, 2, 37–45. [Google Scholar] [CrossRef]
- Tanaka, K. Fatigue crack propagation from a crack inclined to the cyclic tensile axis. Eng. Fract. Mech. 1974, 6, 493–507. [Google Scholar] [CrossRef]
- Erdogan, F.; Sih, G. On the crack extension in plates under plane loading and transverse shear. J. Basic Eng. 1963, 85, 519–525. [Google Scholar] [CrossRef]
- Bouchard, P.O.; Bay, F.; Chastel, Y. Numerical modelling of crack propagation: Automatic remeshing and comparison of different criteria. Comput. Methods Appl. Mech. Eng. 2003, 192, 3887–3908. [Google Scholar] [CrossRef]
- Miranda, A.; Meggiolaro, M.; Castro, J.; Martha, L.; Bittencourt, T. Fatigue life and crack path predictions in generic 2D structural components. Eng. Fract. Mech. 2003, 70, 1259–1279. [Google Scholar] [CrossRef]
Fatigue Limits Δσ0 | C | m | ΔKth | D | Yield Limits σs | a0 |
---|---|---|---|---|---|---|
96 MPa | 4.597 × 10−13 | 2.88 | 2.2 MPa·m1/2 | 100 μm | 550 MPa | 167 μm |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, X.; Li, G.; Bi, Z. Digital Twins to Predict Crack Propagation of Sustainable Engineering Materials under Different Loads. Machines 2024, 12, 125. https://doi.org/10.3390/machines12020125
Li X, Li G, Bi Z. Digital Twins to Predict Crack Propagation of Sustainable Engineering Materials under Different Loads. Machines. 2024; 12(2):125. https://doi.org/10.3390/machines12020125
Chicago/Turabian StyleLi, Xu, Gangjun Li, and Zhuming Bi. 2024. "Digital Twins to Predict Crack Propagation of Sustainable Engineering Materials under Different Loads" Machines 12, no. 2: 125. https://doi.org/10.3390/machines12020125
APA StyleLi, X., Li, G., & Bi, Z. (2024). Digital Twins to Predict Crack Propagation of Sustainable Engineering Materials under Different Loads. Machines, 12(2), 125. https://doi.org/10.3390/machines12020125