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Abstract: Computer-aided engineering (CAE) is an essential tool in a digital twin not only to verify and
validate a virtual twin before it is transformed into a physical twin, but also to monitor the use of the
physical twin for enhanced sustainability. This paper aims to develop a CAE model for a digital twin
to predict the fatigue life of materials. Fatigue damage is represented by the size of a macro-crack that
grows with a cluster of micro-cracks subjected to three different loads. The growth angle is related to
the maximum circumferential tensile stress, and the growth rate is determined by the stress intensity
factor (SIF) at the crack tip. The prediction model takes into consideration the main factors, including
micro-cracks, crack closures, and initial configurations. Simulations are developed for the growth of
macro-cracks with radially distributed micro-cracks and randomly distributed micro-cracks, and we find
that (1) the macro-crack in the second case grows faster than that in the first case; (2) a pure shear
load affects the macro-crack propagation more than a combined shear and tensile load or a tensional
load; (3) the external stresses required to propagate are reduced when the inclination angle of the
micro-crack is small and within (−25◦ < β < 25◦); (4) micro-cracks affect the propagating path of
the macro-crack and generally guide the direction of propagation. The developed model has been
verified and validated experimentally for its effectiveness in predicting the fracture or fatigue damage
of a structure.

Keywords: computer-aided engineering (CAE); digital twins; stress intensity factor (SIF); engineering
materials; fatigue damage; micro-cracks; crack propagation; verification and validation (V&V)

1. Introduction

Pursuing sustainability in design and manufacturing implies that the capability of an
engineering material in a product, structure, or system must be fully utilized to reduce or
avoid any waste. This cannot be achieved without developing a digital twin for a physical
twin so that the physical system (1) is built when its virtual model has been fully verified
and validated and (2) is constantly monitored to respond to any conditional changes for
maintenance or remedies as soon as possible [1–3]. Since physical products or systems
are mainly made from engineering materials, we are especially interested in developing a
generic CAE tool as a part of a digital twin to predict the fatigue damage of engineering
materials. This can be an integral model of a digital twin where fatigue failure can be a
major source of product failure, especially for aerospace products [4].

This paper focuses on fatigue prediction, which is associated with the accumulated
damage of crack, and can be measure based on crack size. It is rare that fatigue damage
consists of a single crack; in fact, numerous micro-cracks have been found near the tip and
the path of a macro-crack using scanning electron microscopy in 7075-T6 aluminum alloy,
X65 steel, and U71Mn steel [5–7]. Depending on their relative sizes, cracks are referred to
as macro-cracks and micro-cracks. We are especially interested in the effects of micro-cracks
on macro-cracks that are subject to various loading patterns.
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Micro-cracks can enhance or reduce the fatigue strength of materials depending
on a number of factors. To investigate the effects of fatigue strength on micro-cracks,
the complex potential method and pseudo-traction method can be used to model the
interactions between macro- and micro- cracks [8–10]. Kachanov [11,12] developed an
interaction matrix and represented the effects of micro-cracks on a macro-crack. Tamuzs and
Petrova [13,14] used the small parameter method to study the effect of a cluster of cracks on
a macro-crack. Li et al. [15–17] assumed that micro-cracks were arbitrarily distributed and
adopted the distributed dislocation technique to estimate their impacts on a macro-crack.
The extended finite element method (XFEM) was used by Loehnert and Belytschko [18] and
Sutula et al. [19] to analyze the effects of micro-cracks.

While the afore-mentioned works discussed the interactions between a macro-crack
and micro-cracks, none of them considered the relationship and propagation of micro-
cracks. We argue linear elastic fracture mechanics (LEFM) should be adopted to investigate
how micro-cracks are propagated.

The direction and growth rate are two critical factors in propagating cracks [20–23].
Kahn [24] analyzed the impact of the initial crack angle in the mixed crack mode subject
to different loads and concluded that the extension of cracks depended on the direction
of stress with respect to the crack face. Wang [25] developed analytical and numerical
solutions to the stress distribution in the surrounding area of a crack and found that the
stress distribution was affected by the loadings and geometrical variations. Finite element
modelling (FEM) was used by Ghaffari [26] to study the initiation and propagation of cracks
in gears. These works ignored the conditions in which micro-cracks pre-existed. In general,
a fracture in the real world is mostly caused by the propagation of a single macro-crack
and is affected by pre-existing micro-cracks [7,27–30].

Many researchers have contributed to the study of initiation, propagation, and co-
alescence of cracks. It has been generally agreed upon that crack propagation is closely
associated with fatigue fractures. For example, Li et al. [31] applied the distributed dislo-
cation technique to variations in plastic zones (PZ) and the locations of micro-cracks. They
found that the micro-cracks in front of a propagated macro-crack did not affect the growth
of the macro-crack. Basoglu [32], Yates [33], and Liu [34] investigated the changes in a
micro-crack when multiple micro-cracks were presented. The experimental methods were
also used to investigate the initiation of and changes in macro-cracks [35–38]. There was a
need to model the effects of micro-cracks on the fatigue growth of macro-cracks.

The rest of the paper is organized as follows. Section 2 presents a model of an infinite
plane that consists of a macro-crack and multiple micro-cracks. The Muskhelishvili’s
complex potential method is used to find the solution, subject to various loading conditions.
Section 3 describes the propagations of cracks, including a macro-crack and multiple micro-
cracks. Section 4 verifies the results of the proposed solutions. Section 5 summarizes the
effects of micro-cracks on a macro-crack and provides a summary with conclusions.

2. Crack Propagation Modelling and Solution

In this section, a generalized representation of an engineering material with accumu-
lated fatigue damage is presented, and the Muskhelishvili’s complex potential method is
used to find the solution of crack propagation subject to various loading conditions.

2.1. Problem Description

To maintain generality, this paper models an engineering material as an elastic plane
with one macro-crack and a set of arbitrarily oriented and distributed micro-cracks sub-
jected to a uniaxial tensional stress of σ∞ and a shear stress of τ∞, as shown in Figure 1.
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Figure 1. A plane with one macro-crack and a set of micro-cracks subject to mixed loads. 

To align the propagation of the macro-crack to the set of micro-cracks shown in Fig-
ure 1, we decompose the original problem in Figure 1 into three sub-problems, as shown 
in Figure 2, and look into the corresponding solutions.  

 

Figure 2. (a–c) Decomposition of the original problem into a set of sub-problems, where the dashed 
line represents the absence of cracks and the solid line represents the real crack. 

Figure 2 shows that the original problem is decomposed into three sub-problems. 
The macro-crack is sized based on its length (2a). The micro-crack k is sized based on its 
length (2ak), where k is the index of the micro-crack. The global coordinate system (o-x-y) 
is established with its origin (o) at the center of the macro-crack, and x and y are aligned 
with the length and perpendicular direction of the macro crack, respectively. A local co-
ordinate system (o-xk-yk) is established with its origin (ok) at the center of micro-crack k, 
and xk and yk are aligned with the length and perpendicular direction of micro-crack k, 
respectively. Moreover, βk and θk denote the inclined orientational angle of micro-crack k, 
respectively, and dk is the distance from o to ok.  

The Muskhelishvili’s complex potential method is adopted to solve the formulated 
problems, and the solutions must satisfy all the boundary conditions applied to the cracks. 

Figure 1. A plane with one macro-crack and a set of micro-cracks subject to mixed loads.

To align the propagation of the macro-crack to the set of micro-cracks shown in
Figure 1, we decompose the original problem in Figure 1 into three sub-problems, as shown
in Figure 2, and look into the corresponding solutions.
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Figure 2. (a–c) Decomposition of the original problem into a set of sub-problems, where the dashed
line represents the absence of cracks and the solid line represents the real crack.

Figure 2 shows that the original problem is decomposed into three sub-problems.
The macro-crack is sized based on its length (2a). The micro-crack k is sized based on its
length (2ak), where k is the index of the micro-crack. The global coordinate system (o-x-y) is
established with its origin (o) at the center of the macro-crack, and x and y are aligned with
the length and perpendicular direction of the macro crack, respectively. A local coordinate
system (o-xk-yk) is established with its origin (ok) at the center of micro-crack k, and xk and
yk are aligned with the length and perpendicular direction of micro-crack k, respectively.
Moreover, βk and θk denote the inclined orientational angle of micro-crack k, respectively,
and dk is the distance from o to ok.

The Muskhelishvili’s complex potential method is adopted to solve the formulated
problems, and the solutions must satisfy all the boundary conditions applied to the cracks.
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For sub-problem (i), the stress distribution surrounding micro-crack j is determined based
on the stress function available in ref. [30]. For sub-problem (ii), the resulting stresses apply
to micro-crack j in the opposite direction. Due to the coupling of multiple micro-cracks,
the stress on micro-crack j exists, but with a small magnitude. For sub-problem (iii), the
solution includes both the redundant stress of micro-crack j from sub-problem (ii) and that
at the position of non-existent micro-crack j. For sub-problem (iv), the stress of non-existent
micro-crack j obtained from the solution to sub-problem (iii) is applied to real micro-crack j.

2.2. Solving Procedure

Assume the material is isotropic and elastic and its deformation on the plane of interest
is within the elastic range of the material, the stress distribution around a crack is expressed
by two complex potentials, ϕ(z) and ψ(z) [39], as follows:

σxx + σyy = 2
{

ϕ′(z) + ϕ
′
(z)

}
σxx − σyy + 2iτxy = 2{zϕ′′ (z) + ψ′(z)}

}
(1)

where z = x + iy; σxx and σyy are normal components along the horizontal and vertical
directions, respectively; τxy is the shear stress; and (′) and (′′) are the operations for the first
and second derivatives with respective to z, respectively.

2.2.1. Solution to Sub-Problem (i) for the Macro-Crack

The stress is distributed as follows [39]:

ϕ(z) =
iτ∝

2

(
z −

√
z2 − a2

)
, ψ(z) =

iτ∝a2

2

(
z − a2

√
z2 − a2

)
(2)

substituting Equation (2) into Equation (1) to find the stress around the tip of a macro-crack.
For micro-crack k, the stress components σ

(i)
xx(k), σ

(i)
yy(k), and τ

(i)
xy(k) can be obtained as follows:

σ
(i)
xx(k) = σσ∝

xx + στ∝

xx , σ
(i)
yy(k) = σσ∝

yy + στ∝

yy , τ
(i)
xy(k) = τσ∝

xy + ττ∝

xy (3)

Further conducing coordinate transformation, the normal and tangential components
of the stress around micro-crack k in the local coordinate system are as follows:

σ
MI(i)
N(k) =

σ
(i)
xx(k)+σ

(i)
yy(k)

2 +
σ
(i)
xx(k)−σ

(i)
yy(k)

2 cos2βk − τ
(i)
xy(k)sin2βk

τ
MI(i)
T(k) =

σ
(i)
xx(k)−σ

(i)
yy(k)

2 sin2βk + τ
(i)
xy(k)cos2βk

 (k = 1, 2, . . . n) (4)

where subscripts N and T denote the normal and tangential direction of the crack,
respectively.

2.2.2. Solution to Sub-Problem (ii) for Micro-Cracks

We find the sub-solution one micro-crack at a time; if there are k micro-cracks, the
solving procedure will be repeated k times. In each step, it is assumed that an infinite plane
contains a single micro-crack j, one virtual macro-crack, and k − 1 virtual micro-cracks. It is
further assumed that micro-crack j is subjected to a non-uniform distributed load of σ

MA(i)
N(j)

and τ
MA(i)
T(j) from the solution in Section 2.2.1, but with the opposite direction.

Firstly, the load is treated as an assembly of numerous small, concentrated forces F,
and the stress due to F applied to the upper and lower boundary of the crack becomes [39]:

ϕ(ζ) = F
2πi

{
ζ0

ζ(ζ2
0−1)

− κ
κ+1 lnζ − ln(ζ0 − ζ) +

ζ2
0(a

(
ζ+ 1

ζ

)
−2z1)

a(ζ0−ζ)(ζ2
0−1)

}
i(ζ2

0−1)
ζ0|ζ0−ζ0|

ψ(ζ) = F
2πi

{
2ζζ0−ζ2

0(ζ2+1)
(ζ2−1)(ζ2

0−1)
+ lnζ

κ+1 + 2
(κ+1)(ζ2−1) − ln (ζ0 − ζ)− 2z1ζ2

0
a(ζ0−ζ)(ζ2

0−1)

}
i(ζ2

0−1)
ζ0|ζ0−ζ0|

 (5)
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The concentrated forces F in the local coordinate system Ojxjyj correspond to the
distributed load [39]:

F = P + iQ =
[
−σ

MI(i)
N(j) dxF

]
+ i

[
−τ

MI(i)
T(j) dxF

]
(6)

where P and Q are the components in the normal and tangential directions, respectively.
Equation (6) can be rewritten using the conformal mapping method to transform ϕ(z)
and ψ(z).

The stress components σMA(ii)
xxF , σMA(ii)

yyF , τMA(ii)
xyF , σMI(ii)

xxF , σMI(ii)
yyF , and τMI(ii)

xyF acting on
the virtual macro-crack and micro-cracks due to F can be obtained using Equations (1), (4),
and (5). The coordination transformation can be applied to find these stress components in
the local coordinate system Ojxjyj as follows:

σ
MA(ii)
xx(j) , σ

MA(ii)
yy(j) , τ

MA(ii)
xy(j) =

∫ ak
−ak

(
σ

MA(ii)
xxF , σ

MA(ii)
yyF , τ

MA(ii)
xyF

)
dxF

σ
MI(ii)
xx(k) , σ

MI(ii)
yy(k) , τ

MI(ii)
xy(k) =

∫ ak
−ak

(
σ

MI(ii)
xxF , σ

MI(ii)
yyF , τ

MI(ii)
xyF

)
dxF

σ
MI(ii)
xx(k) , σ

MI(ii)
yy(k) , τ

MI(ii)
xy(k) = 0 (k = j)


(k = 1, 2, . . . n, k ̸= j) (7)

For the macro-crack, subscript (j) shows the contribution of micro-crack j to the macro-
crack. For a micro-crack, subscript (k) shows the contribution of micro-crack j to the k − 1
virtual micro-crack.

Next, transforming the results from Ojxjyj to the global coordinate system o-x-y and

local coordinate systems for a micro-crack as Okxkyk(k, 1, 2, . . . , n, ), σMI(ii)
N(j) , τMI(ii)

T(j) ,σMI(ii)
N(k) ,

and σMI(ii)
T(k) can be obtained when the stress is applied to micro-crack j. The same procedure

applies to any of other k − 1 micro-cracks as follows:

σ
MA(ii)
N = ∑n

j=1 σ
MA(ii)
N(j)

τ
MA(ii)
T = ∑n

j=1 σ
MA(ii)
T(j)

 (8)

σ
MI(ii)
N = ∑n

k=1 σ
MI(ii)
N(k)

τ
MI(ii)
T = ∑n

k=1 σ
MI(ii)
T(k)

 (k = 1, 2, . . . n) (9)

Taking into consideration of effects of other micro-cracks, the stress in Equation (8) is
not zero. However, the stress magnitude in each micro-crack is insignificant in comparison
with σ

MI(i)
N(j) and τ

MI(i)
T(j) , which were solution to sub-problem (i).

2.2.3. Solution to Sub-Problem (iii) for the Macro-Crack

Here, the effects of one macro-crack in the plane are investigated. The macro-crack
is subjected to a non-uniformly distributed stress whose magnitude and direction are
determined in Equation (7). The sample procedure in Section 2.2.2 is applied. When a
concentrated force F is applied to the macro-crack, σ

MI(iii)
xxF , σ

MI(iii)
yyF , and τ

MI(iii)
xyF on a virtual

micro-crack are obtained as follows [39]:

F = P + iQ =
[
−σ

MA(ii)
N dxF

]
+ i

[
−τ

MA(ii)
T dxF

]
(10)

The stress components in micro-crack k are as follows:

σ
MI(iii)
xx(k) , σ

MI(iii)
yy(k) , τ

MI(iii)
xy(k) =

∫ ak
−ak

(
σ

MI(iii)
xxF , σ

MI(iii)
yyF , τ

MI(iii)
xyF

)
dxF (k = 1, 2, . . . n) (11)
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The normal and shear stresses σ
MI(iii)
N(k) and τ

MI(iii)
T(k) in Okxkyk (k, 1, 2, . . . , n, ) can be

obtained through coordinate transformation, and the stresses of the virtual micro-cracks
are obtained in this step.

2.2.4. Solution to Sub-Problem (iv) from Micro-Cracks

The stresses of micro-cracks have been found based on the solutions to sub-problems
(ii) and (iii); therefore, the loads by the micro-cracks become −

(
σ

MI(ii)
N(k) + σ

MI(iii)
N(k)

)
and

−
(

τ
MI(ii)
T(k) + τ

MI(iii)
T(k)

)
, and, similar to Equations (7) and (8), the stress components of

σ
MA(iv)
N , τ

MA(iv)
T , σ

MI(iv)
N(k) and τ

MI(iv)
T(k) (k = 1, 2, . . . , n) can be obtained.

The aforementioned procedure shows that solving sub-problem (i) leads to the stress
components of σ

MI(i)
N(k) and τ

MI(i)
T(k) . Solving the sub-problem leads to the stress components

of −σ
MI(i)
N(k) and −τ

MI(i)
T(k) on micro-cracks; moreover, σ

MI(ii)
N(k) and τ

MI(ii)
T(k) in Equation (8) are

negligeable in comparison with σ
MI(i)
N(j) and τ

MI(i)
T(j) from the solution to sub-problem (i).

Solving sub-problem (iii) leads to the stress components of σ
MI(iii)
N(k) and τ

MI(iii)
T(k) .

To define the constraints in sub-problem (iv), −σ
MI(ii)
N(k) , −τ

MI(ii)
T(k) , −σ

MI(iii)
N(k) , and −τ

MI(iii)
T(k)

are summed as the stresses due to micro-cracks. Note that the stress components σ
MI(iv)
N(k)

and τ
MI(iv)
T(k) are negligible in comparison with σ

MI(iii)
N(k) and τ

MI(iii)
T(k) . The sub-problems can

be further decomposed to improve the accuracy of the developed models.
In the proposed model, the coupling among the cracks is considered for all sub-

problems. Sub-problem (i) has modelled the effects of the macro-crack on the micro-cracks;
sub-problem (ii) has modelled the effects of the micro-cracks on the macro-crack; sub-
problem (iii) has re-refined the effects of the macro-crack on the micro-cracks, and this
procedure can be iteratively performed until the accuracy becomes satisfactory.

2.3. Solution to KI and KII

Traction-free boundary conditions on the crack surface can be satisfied using a step-
by-step procedure of problem decomposition, as discussed in Section 2.2, since the solution
to each sub-problem can be obtained using LEFM independently.

2.3.1. Solution of LEFM

Let the loads on the macro-crack surface be σ
MA(i)
N = −σ∝ and τ

MA(i)
N = −τ∝ in

sub-problem (i), and the SIFs at the tip of crack are as follows [39]:

KMA(i)
I =

∫ a
−a

−σ∝
√

πa

( a+x
a−x

)1/2dx = σ∝√πa

KMA(i)
I I =

∫ a
−a

−τ∝
√

πa

( a+x
a−x

)1/2dx = τ∝√πa

 (12)

Using the solutions to sub-problems (i), (iii), and (v) in the previous section, the SIFs
at the tip can be further determined as follows:

KMA
I,elastic = σ∝√πa +

∫ a
−a

−
[
σ

MA(ii)
N +σ

MA(iv)
N +σ

MA(vi)
N ...

]
.

√
πa

( a+x
a−x

)1/2dx

KMA
II,elastic = τ∝√πa +

∫ a
−a

−
[
τ

MA(ii)
T +τ

MA(iv)
T +τ

MA(vi)
T ...

]
.

√
πa

( a+x
a−x

)1/2dx

 (13)

The stress components on micro-crack k include (1) −σMI(i)
N(k) and −τMI(i)

T(k) from the

solution to sub-problem (ii), (2) −
(
σ

MI(ii)
N(k) + σ

MI(iii)
N(k)

)
and −

(
τ

MI(ii)
T(k) + τ

MI(iii)
T(k)

)
from the
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solution to sub-problem (iv), and (3) −
(
σ

MI(iv)
N(k) + σ

MI(v)
N(k)

)
and −

(
τ

MI(iv)
T(k) + τ

MI(v)
T(k)

)
from

the solution to sub-problem (vi). Therefore, the SIFs at the tip of micro-crack k become:

KMI
I(k),elastic =

∫ ak
−ak

−
[
σ

MI(i)
N(k) +σ

MI(ii)
N(k) +σ

MI(iii)
N(k) +σ

MI(iv)
N(k) ...

]
.

√
πak

(
ak+x
ak−x

)1/2
dx

KMI
II(k),elastic =

∫ ak
−ak

−
[
τ

MI(i)
T(k) +τ

MI(ii)
T(k) +τ

MI(iii)
T(k) +τ

MI(iv)
T(k) ...

]
.

√
πak

(
ak+x
ak−x

)1/2
dx

 (k = 1, 2, . . . n) (14)

2.3.2. Correction of SIF for Ductile Materials

Crack propagation will be affected when a yield occurs to a ductile material. Here, the
effect of plastic strain is modelled as a correction to SIF by a plastic zone (PZ). It is assumed
that the plastic strain is relatively small (a >> r) in comparison with the size of the visible
crack [4].

Firstly, for a crack with a mixed mode, the stress components in three directions are
determined for failure mode I and mode II as follows [39]:

σx =
KI√
2πr1

, σy =
KI√
2πr1

, τxy =
KI I√
2πr1

, σz = τxz = τzy = 0 (15)

where KI and KII are evaluated in Equations (12) and (13) for macro- and micro cracks,
respectively. Accordingly, the von Mises stress can be found as follows [39]:

σeq =


(
σx − σy

)2
+ (σx − σz)

2 +
(
σz − σy

)2
+ 6

(
τ2

xy + τ2
yz + τ2

xz

)
2


1/2

(16)

where σeq is the equivalent von Mises stress. The characteristic size r1 of the plastic zone
meets the condition of ref. [39]:

σeq =

√
K2

I + 3K2
I I

πr1
= σs (17)

When the material is ideally elastoplastic, r1 = ry is small and is added as the extended
length of a crack (see Figure 3) as follows [39]:

σe f f = a + ry (18)
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Figure 3 shows that ry is doubled due to the effects of stress relaxation. The distance
from the crack tip to the tip of an imaginary crack is as follows [39]:

ry =
K2

I + 3K2
I I

πσ2
s

(19)

The resultant stress at the position of the extended length ry is equal to the yielding
strength and is distributed uniformly in Figure 3. Therefore, the normal and tangential
stresses of the crack become:

σn,plas =

(
K2

I
K2

I +3K2
I I

)1/2
σs

τn,plas =

(
3K2

I I
K2

I +3K2
I I

)1/2
σs

 (20)

With the consideration of PZ, the SIFs are corrected as follows:

KI,plastic =
∫ −a
−(a+r1−)

σn,plas√
πac

(
ac+x
ac−x

) 1
2 dx +

∫ a+r1+
a

σn,plas√
πac

(
ac+x
ac−x

) 1
2 dx

KI I,plastic =
∫ −a
−(a+r1−)

τn,plas√
πac

(
ac+x
ac−x

) 1
2 dx +

∫ a+r1+
a

τn,plas√
πac

(
ac+x
ac−x

) 1
2 dx

 (21)

where ac = a + r1− + r1+ is the modified length of the macro-crack.

3. Discussion on Crack Propagation

Fatigue damage is processed at three phases, i.e., initiation, steady propagation (SP), and
rapid propagation (RP) [4]. When the size of a crack is less than a threshold, it experiences
SP; otherwise, it experiences RP, which rapidly leads to a fracture. It is worth looking into
how a crack is propagated in SP and RP.

3.1. Steady Propagation (SP)

Based on their size, cracks can generally can be divided into three categories: mi-
crostructural short cracks, physical short cracks, and macroscopic cracks. A short crack
becomes a macroscopic crack and SP is transformed into RP when the size of a crack reaches
a critical length. Crack propagation is affected by many factors such as mean and fluctuated
stresses, temperature, and microstructures. Pook [40] and Milella [41] commented that a
critical length for metals is usually in a range of (0.25, 0.3) mm. Miller [42] and Stephens
et al. [43] indicated that a critical size related to grain size is typically a depth of three to
five times the grain size.

Here, we assume that the length of a macro-crack is fixed and above the critical length
of a crack while the sizes of micro-cracks are randomly selected and below the critical
length of a crack. The threshold SIF of the micro-crack is found using the El Haddad
model [44] as follows:

∆Kth =

√
ak

ak + a0
(22)

where ak is the micro-crack length, ∆Kth is the threshold SIF of the micro-crack, and a0 is
the critical length of the material, determined by [44]:

a0 =
1
π

(
∆Kth
∆σo

)2
(23)

where ∆σ0 is the fully reversed fatigue strength. Taking an example, Table 1 shows the
material properties of U71Mn steel.
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Table 1. Material properties of U71Mn steel [45].

Fatigue Limits ∆σ0 C m ∆Kth D Yield Limits σs a0

96 MPa 4.597 ×
10−13 2.88 2.2

MPa·m1/2 100 µm 550 MPa 167 µm

3.2. Rapid Propagation (RP)

The level of a crack closure (U) is characterized by:

U =
1 − Kop/KI,max

1 − R
(24)

where R is the stress ratio, Kop is the SIF corresponding to an opened crack, and KI,max is
the intensity factor of the mode-I crack.

It is known that the residual PZ at the tip of a crack in the last loading cycle causes a
crack closure. Wolf [46] provided an empirical equation to calculate the U of an aluminum
alloy as U = 0.55 + 0.33R + 0.12R2. Note that Equation (24) takes into consideration the
plastic-hardening effect and Kop = 0.45KI,max when U = 0.55 and R = 0. Therefore, the crack
was closure free, and the closure level was U = 1.

For RP, the closure level was affected significantly by the stress ratio and propagation
modes. Moreover, we took into consideration the impact of mode I and mode II on the SIF
in Equation (25) [47] as follows:

∆K =
√

∆K2
I + 2∆K2

I I (25)

3.3. Propagation Direction

Here, the fracture was justified based on the maximum circumferential tensile stress,
and it was used to predict the direction of propagation [48] as follows:

γ = −arccos

3K2
I I + KI

√
K2

I + 8K2
I I

K2
I + 9K2

I I

 (26)

where γ is the direction of crack propagation.
For radially distributed micro-cracks, the propagation angle of macro-crack γ was

−1.89◦, −70.26◦, and −38.86◦ under pure tension, pure shear, and tension-shear loads,
respectively. For randomly distributed micro-cracks, γ was 5.65◦, −70.53◦, and −45.68◦ un-
der pure tension, pure shear, and tension-shear loads, respectively. When the micro-cracks
were virtual around the tip of the macro-crack, γ was 0◦, (−70◦, −100◦) and −40◦ [24],
respectively. Thus, the propagation angle was unique to a specified loading condition and
damage configuration, and the micro-cracks directly affected the propagation path of the
macro-crack. This phenomenon was attributed to the attraction effects of the micro-cracks,
inclusion, and dislocations on crack propagation [49,50]. In other words, the micro-cracks
guided the propagation of the macro-crack, ultimately leading to a fracture. The macro-
crack would coalesce with a favorable micro-crack near the tip of macro-crack to reform a
new macro-crack.

4. Experiment

The experiment was conducted in this section to verify the results of the developed
models based on observation, shown in Figures 4 and 5. The specimen and loading
conditions are shown in Figure 4, and U71Mn steel was selected as the material. The
specimen was rectangular and was 120 mm in length, 15 mm in width, and 1 mm in height.
The macro crack was designed on the edge. It was located in the middle of an edge of the
specimen, and its initial length was 2.846 mm. A fluctuating load with a constant amplitude
was applied through three-point bending at a loading frequency of 1 Hz. The maximum
applied load was 1000 N and the stress ratio was 0.1, recorded using a digital force gauge.
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shown in Figure 5a. The micro-cracks on the plane are highlighted with red arrows, and 
the coalescence of the macro-crack and micro-cracks are highlighted with a red circle. It 
was observed that the macro-crack was deflected and propagated in a zigzag manner; this 
was validated by the observations in ref. [27]. The zigzag path of propagation was greatly 
affected by the presence and propagation of micro-cracks; the micro-cracks guided the 
propagation of the macro-crack, since it would coalesce with a favorable micro-crack to 
form an extended macro-crack. According to Section 3.3, we found that (1) for radially 
distributed micro-cracks, the influence of the micro-cracks on macro-crack propagation 
was relatively small, the changes in the propagation angle of the macro-crack were small; 
(2) for randomly distributed micro-cracks, the influence of the micro-cracks on macro-
crack propagation was relatively large. The macro-crack path would deflect and coales-
cence with the micro-cracks that were in the propagation direction.  
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of selected engineering materials. Fatigue failure is a major concern in applications involv-
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Figure 5. Scanning electron microscope photograph of crack propagation. (a) Numerous micro-cracks
near the macro-crack path; (b) coalescence of the macro-crack and micro-cracks.

There were numerous micro-cracks near the propagation path of the macro-crack, as
shown in Figure 5a. The micro-cracks on the plane are highlighted with red arrows, and
the coalescence of the macro-crack and micro-cracks are highlighted with a red circle. It
was observed that the macro-crack was deflected and propagated in a zigzag manner; this
was validated by the observations in ref. [27]. The zigzag path of propagation was greatly
affected by the presence and propagation of micro-cracks; the micro-cracks guided the
propagation of the macro-crack, since it would coalesce with a favorable micro-crack to
form an extended macro-crack. According to Section 3.3, we found that (1) for radially
distributed micro-cracks, the influence of the micro-cracks on macro-crack propagation
was relatively small, the changes in the propagation angle of the macro-crack were small;
(2) for randomly distributed micro-cracks, the influence of the micro-cracks on macro-crack
propagation was relatively large. The macro-crack path would deflect and coalescence with
the micro-cracks that were in the propagation direction.

5. Summary and Conclusions

This paper aimed to develop a CAE model for a digital twin to predict the fatigue life of
selected engineering materials. Fatigue failure is a major concern in applications involving
metal products [4]. In this paper, the solutions of crack propagation for a plane that
contained a macro-crack and a number of micro-cracks under various loading conditions
were obtained based on highly efficient theoretical models. The effects of micro-cracks on
macro-crack growth were analyzed, and the following findings were obtained:

(1) The propagation of a macro-crack and micro-cracks depended mainly on the failure
configurations of the micro-cracks in front of the macro-crack as well as the loading
conditions.
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(2) Micro-cracks with a small inclination angle (−25◦ < β < 25◦) required less external
stress to activate propagation.

(3) Randomly distributed micro-cracks affected the propagation of the micro-cracks and
the macro-crack more significantly than radially distributed micro-cracks.

(4) Micro-cracks affected the propagation of the macro-crack primarily due to the pure
shear load, followed by the tension-shear load and the pure tension load.

(5) The presence of micro-cracks guided the propagation path of the macro-crack. The
macro-crack would coalesce with a favorable micro-crack to form an extended macro-
crack.

The influence of micro-cracks on macro-crack propagation is an important subject in
fracture mechanics; however, due to the complex calculations of the mutual superposition
of micro-cracks, researchers may choose to ignore or approximate the relationship among
micro-cracks to predigest the calculation. This approach may create a bottleneck when
the number of micro-cracks increases significantly, which can cause an inaccurate result.
In the future, we will continue studying the prediction of micro-cracks on macro-crack
paths, considering a large number of micro-cracks near the macro-crack tip based on the
developed modal, neural network models, or a machine learning method. We also plan
to investigate the impacts of micro-crack parameters (size, initial angle, distance between
cracks, etc.) on propagation behavior. We expect that the results will be utilized to optimize
anti-fracture designs by predicting the fracture behaviors of engineering materials.
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