A Review of Proposed Models for Cutting Force Prediction in Milling Parts with Low Rigidity
Abstract
:1. Introduction
2. Models for Cutting Force Prediction When Milling Parts with Low Rigidity
2.1. The Traditional Approach of Force Prediction
2.1.1. Empirical Models
2.1.2. Mechanistic Models
2.1.3. Numerical Models
Reference | Method | Software | Main Work | Material/Constitutive Model | Element Types |
---|---|---|---|---|---|
The effects of process parameters on cutting forces | |||||
[39] | FEM | ABAQUS | Effects of n, fz, ap, ae, d, γ, λ, z on cutting forces and deformations | TC4 (DIN3.7164/5)/ Johnson–Cook | T: solid carbide rigid body WP: linear explicit elements |
[156] | FEM | AdvantEdge | Determination of specific cutting force coefficients | AISI 4340 steel/ N/S | T and WP: N/S |
[164] | FEM | ABAQUS | Study of stress field, temperature field, cutting force, and workpiece deformation by considering coupling effect of strain hardening rate and temperature | Ti-6Al-4V alloy/ modified Johnson–Cook + VUMAT subroutine | T and WP: C3D4T four node thermal coupling tetrahedral elements |
[168] | FEM | ABAQUS | Effects of tool’s helix angle on cutting forces and deformations | 2024-T351 alloy/ Johnson–Cook | T: solid carbide rigid body WP: C3D8R brick elements |
[169] | FEM | N/S | Effect of clamping system on cutting forces and part deformation | Al6061 alloy/ Johnson–Cook | T: cemented carbide rigid body; WP: N/S |
[170] | FEM | DEFORM-3D | Effects of tool’s inclination angle on cutting forces and chip formation morphologies | Ti-6Al-4V alloy/ Johnson–Cook | T: cemented carbide rigid body; WP: tetrahedral elements, adaptive mesh |
[171] | FEM | AdvantEdge | Effects of tool’s inclination angle on cutting forces | Al7075 alloy/ Johnson–Cook | T: cemented carbide YG8 rigid body; WP: N/S |
[172] | FEM | ABAQUS | Effects of process parameters on cutting forces, stress distribution, cutting temperature, part deflection and chip morphology | 2024-T351 alloy/ Johnson–Cook | T: solid carbide rigid body WP: C3D8R brick elements |
[173] | FEM | DEFORM-3D | Study of cutting forces, cutting temperature, thermal stress field | Cr12MoV multi-hardened steel/ Johnson–Cook | T: solid carbide ball-end mill rigid body; WP: plastic body, adaptive mesh |
The effect of cutting forces on deformation/residual stress/vibration of parts | |||||
[23] | FEM | ABAQUS/3D model | Effect of milling strategy on part distortion Identification of precontrol compensation techniques by considering MIRS and IBRS | 7050-T74 alloy 7050-T7451 alloy/ N/S | T: N/S WP: C3D8R brick elements, adaptive mesh |
[148] | FEM | AdvantEdge | Influence of cutting force on residual stresses | Al 7050-T451 alloy/ N/S | T: horniness alloy; WP: N/S |
[160] | FEM | ABAQUS | Influence of cutting force and heat on residual stress generation | Al2024 alloy/ Johnson–Cook | N/S |
[161] | FEM | ABAQUS | Prediction of surface residual stress | Ti-6Al-4V alloy/ Johnson–Cook | T: solid carbide ball-end mill rigid body WP: C3D4T 4-node thermal coupling tetrahedral elements, adaptive mesh |
[165] | FEM | SolidWorks Plug-ins | Influence of cutting force on stress distribution and stress variation trends | Ti-6Al-4V alloy/ N/S | T: N/S; WP: 4-node 3D solid mesh, adaptive mesh |
[166] | FEM | N/S | Cutting force-induced error prediction using stiffness matrix reduction | 6061 alloy/ N/S | T: cantilevered elastic beam WP: 3 mesh densities. |
[167] | FCM | MATLAB/ FCMLab | Prediction of deformation errors | 6061 alloy/ Voxel model | T: solid carbide ball-end mill, rigid body WP: cells mesh |
[174] | FEM | LS-DYNA | Cutting force-induced error prediction | 2A12 aluminum alloy N/S | T: cantilevered elastic beam, tetrahedral elements WP: hexahedral elements. |
[175] | FEM | ABAQUS | Effect of geometry constraints on parts’ deformation and deflection | 2024-T351 alloy/ Johnson–Cook | T: R3D4 elements, rigid body; WP: C3D8R solid elements, adaptive mesh |
[176] | FEM | N/S | Prediction of parts’ deflection | Ti-6Al-4V alloy/ N/S | T: tetrahedron solid element rigid body; WP: tetrahedron solid element, adaptive mesh |
[177] | FEM | ANSYS | Prediction of parts’ deflection and elastic–plastic deformations | Al-7075 alloy/ N/S | T: rigid body; WP: 8-nodes thermal SOLID-70 and structural SOLID-45 brick elements, adaptive mesh. |
2.2. The Modern Approach of Force Prediction
2.2.1. Adaptive Control Techniques
2.2.2. Artificial Intelligence-Based Techniques
2.2.3. Digital Twin Systems
3. Discussion and Conclusions
- Empirical models, despite their low prediction ability, represent a viable solution for optimizing process parameters in order to keep cutting forces under control.
- Dual mechanism force models and numerical models have been intensively used in the traditional approach for cutting force prediction and continue to be a ubiquitous “ingredient” of the digital/hybrid twin-driven cutting force control systems. The challenge to be addressed is finding appropriate methodologies to simplify model complexity without compromising prediction accuracy to ensure the computational efficiency of cyber-systems.
- Intelligent production technologies (i.e., digital or hybrid capabilities) evolve as an emergent solution to increase efficiency and eliminate the weaknesses of the traditional approach. Their full integration in the industrial environment requires finding solutions for ensuring the operational synchronization of the two twins—physical and cybernetic. Although important steps have been taken at the international level in the direction of production digitization, things are still in their infancy, and the development and implementation of intelligent production systems require significant changes both in terms of technological and economic capabilities of companies and especially in terms of human resources, i.e., the identification or training of specialists possessing digital skills and know-how required by technological progress. This will be one of the biggest challenges of the near future.
- From this perspective, research is particularly important for the modern approach to thin-walled part machining, first by digitizing the process with the help of the machining system digital twin and then by using this facility to increase the process performance.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Herranz, S.; Campa, F.J.; De Lacalle, L.N.L.; Rivero, A.; Lamikiz, A.; Ukar, E.; Sánchez, J.A.; Bravo, U. The Milling of Airframe Components with Low Rigidity: A General Approach to Avoid Static and Dynamic Problems. Proc. Inst. Mech. Eng. Part B J. Eng. Manuf. 2005, 219, 789–801. [Google Scholar] [CrossRef]
- Del Sol, I.; Rivero, A.; López de Lacalle, L.N.; Gamez, A.J. Thin-Wall Machining of Light Alloys: A Review of Models and Industrial Approaches. Materials 2019, 12, 2012. [Google Scholar] [CrossRef]
- Fu, Y.; Gao, H.; Wang, X.; Guo, D. Machining the Integral Impeller and Blisk of Aero-Engines: A Review of Surface Finishing and Strengthening Technologies. Chin. J. Mech. Eng. 2017, 30, 528–543. [Google Scholar] [CrossRef]
- Zawada-Michałowska, M.; Kuczmaszewski, J.; Legutko, S.; Pieśko, P. Techniques for Thin-Walled Element Milling with Respect to Minimising Post-Machining Deformations. Materials 2020, 13, 4723. [Google Scholar] [CrossRef]
- Ratchev, S.; Liu, S.; Becker, A.A. Error Compensation Strategy in Milling Flexible Thin-Wall Parts. J. Mater. Process. Technol. 2005, 162–163, 673–681. [Google Scholar] [CrossRef]
- Bolar, G.; Das, A.; Joshi, S.N. Measurement and Analysis of Cutting Force and Product Surface Quality during End-Milling of Thin-Wall Components. Measurement 2018, 121, 190–204. [Google Scholar] [CrossRef]
- de Lacalle, L.L.; Pérez, J.; Llorente, J.I.; Sánchez, J.A. Advanced Cutting Conditions for the Milling of Aeronautical Alloys. J. Mater. Process. Technol. 2000, 100, 1–11. [Google Scholar] [CrossRef]
- Li, X.; Huang, T.; Zhao, H.; Zhang, X.; Yan, S.; Dai, X.; Ding, H. A Review of Recent Advances in Machining Techniques of Complex Surfaces. Sci. China Technol. Sci. 2022, 65, 1915–1939. [Google Scholar] [CrossRef]
- Radu, P.; Schnakovszky, C.; Herghelegiu, E.; Garcia-Martinez, E.; Miguel, V. Study on the Current State of Research in the Field of Titanium Aluminides Milling Processes. Key Eng. Mater. 2023, 955, 3–13. [Google Scholar] [CrossRef]
- Beranoagirre, A.; Olvera, D.; López de Lacalle, L.N. Milling of Gamma Titanium–Aluminum Alloys. Int. J. Adv. Manuf. Technol. 2012, 62, 83–88. [Google Scholar] [CrossRef]
- Ng, E.-G.; Lee, D.W.; Sharman, A.R.C.; Dewes, R.C.; Aspinwall, D.K.; Vigneau, J. High Speed Ball Nose End Milling of Inconel 718. CIRP Ann. 2000, 49, 41–46. [Google Scholar] [CrossRef]
- Çelik, A.; Sert Alağaç, M.; Turan, S.; Kara, A.; Kara, F. Wear Behavior of Solid SiAlON Milling Tools during High Speed Milling of Inconel 718. Wear 2017, 378–379, 58–67. [Google Scholar] [CrossRef]
- Kawasaki, K. High-Speed Milling of Inconel 625 Alloy Using Carbide Ball End Mills. J. Mech. Sci. Technol. 2022, 36, 6239–6245. [Google Scholar] [CrossRef]
- Xie, X.Z.; Yao, Y.P.; Zhao, R.Z.; Jin, W.Y. Cutting Force Prediction of Stainless Steel in High-Speed Milling. Adv. Mater. Res. 2012, 538–541, 1369–1372. [Google Scholar] [CrossRef]
- Malekan, M.; Bloch-Jensen, C.D.; Zolbin, M.A.; Ørskov, K.B.; Jensen, H.M.; Aghababaei, R. Cutting Edge Wear in High-Speed Stainless Steel End Milling. Int. J. Adv. Manuf. Technol. 2021, 114, 2911–2928. [Google Scholar] [CrossRef]
- Liu, G.-J.; Zhou, Z.-C.; Qian, X.; Pang, W.-H.; Li, G.-H.; Tan, G.-Y. Wear Mechanism of Cemented Carbide Tool in High Speed Milling of Stainless Steel. Chin. J. Mech. Eng. 2018, 31, 98. [Google Scholar] [CrossRef]
- Mantle, A.L.; Aspinwall, D.K. Cutting Force Evaluation When High Speed End Milling a Gamma Titanium Aluminide Intermetallic Alloy. In Intermetallics and Superalloys; Morris, D.G., Naka, S., Caron, P., Eds.; Wiley: Hoboken, NJ, USA, 2000; pp. 209–215. [Google Scholar]
- Aijun, T.; Zhanqiang, L. Deformations of Thin-Walled Plate Due to Static End Milling Force. J. Mater. Process. Technol. 2008, 206, 345–351. [Google Scholar] [CrossRef]
- Jiang, X.; Lu, W.; Zhang, Z. An Approach for Improving the Machining Efficiency and Quality of Aerospace Curved Thin-Walled Parts during Five-Axis NC Machining. Int. J. Adv. Manuf. Technol. 2018, 97, 2477–2488. [Google Scholar] [CrossRef]
- Gao, H.; Zhang, Y.; Wu, Q.; Li, B. Investigation on Influences of Initial Residual Stress on Thin-Walled Part Machining Deformation Based on a Semi-Analytical Model. J. Mater. Process. Technol. 2018, 262, 437–448. [Google Scholar] [CrossRef]
- Zhang, Z.; Luo, M.; Tang, K.; Zhang, D. A New In-Processes Active Control Method for Reducing the Residual Stresses Induced Deformation of Thin-Walled Parts. J. Manuf. Process. 2020, 59, 316–325. [Google Scholar] [CrossRef]
- Li, B.; Deng, H.; Hui, D.; Hu, Z.; Zhang, W. A Semi-Analytical Model for Predicting the Machining Deformation of Thin-Walled Parts Considering Machining-Induced and Blank Initial Residual Stress. Int. J. Adv. Manuf. Technol. 2020, 110, 139–161. [Google Scholar] [CrossRef]
- Weber, D.; Kirsch, B.; Jonsson, J.E.; D’Elia, C.R.; Linke, B.S.; Hill, M.R.; Aurich, J.C. Simulation Based Compensation Techniques to Minimize Distortion of Thin-Walled Monolithic Aluminum Parts Due to Residual Stresses. CIRP J. Manuf. Sci. Technol. 2022, 38, 427–441. [Google Scholar] [CrossRef]
- Munoa, J.; Sanz-Calle, M.; Dombovari, Z.; Iglesias, A.; Pena-Barrio, J.; Stepan, G. Tuneable Clamping Table for Chatter Avoidance in Thin-Walled Part Milling. CIRP Ann. 2020, 69, 313–316. [Google Scholar] [CrossRef]
- Tehranizadeh, F.; Berenji, K.R.; Yıldız, S.; Budak, E. Chatter Stability of Thin-Walled Part Machining Using Special End Mills. CIRP Ann. 2022, 71, 365–368. [Google Scholar] [CrossRef]
- Wu, G.; Li, G.; Pan, W.; Raja, I.; Wang, X.; Ding, S. A State-of-Art Review on Chatter and Geometric Errors in Thin-Wall Machining Processes. J. Manuf. Process. 2021, 68, 454–480. [Google Scholar] [CrossRef]
- Zhu, L.; Liu, C. Recent Progress of Chatter Prediction, Detection and Suppression in Milling. Mech. Syst. Signal Process. 2020, 143, 106840. [Google Scholar] [CrossRef]
- Chen, Y.; Ma, S.; Kong, J.; Huang, W. Study on the Surface Grain State, Residual Stress and Their Influence on the Deformation of Thin-Walled Parts under Ultra-Precision Cutting. Int. J. Mod. Phys. B 2020, 34, 2050272. [Google Scholar] [CrossRef]
- Wang, B.; Liu, Z.; Cai, Y.; Luo, X.; Ma, H.; Song, Q.; Xiong, Z. Advancements in Material Removal Mechanism and Surface Integrity of High Speed Metal Cutting: A Review. Int. J. Mach. Tools Manuf. 2021, 166, 103744. [Google Scholar] [CrossRef]
- Sulitka, M.; Falta, J.; Stejskal, M.; Kociánová, B. Integrated Force Interaction Simulation Model for Milling Strategy Optimization of Thin-Walled Blisk Blade Machining. Procedia CIRP 2021, 102, 174–179. [Google Scholar] [CrossRef]
- Duan, Z.; Li, C.; Ding, W.; Zhang, Y.; Yang, M.; Gao, T.; Cao, H.; Xu, X.; Wang, D.; Mao, C.; et al. Milling Force Model for Aviation Aluminum Alloy: Academic Insight and Perspective Analysis. Chin. J. Mech. Eng. 2021, 34, 18. [Google Scholar] [CrossRef]
- Fuh, K.-H.; Hwang, R.-M. A Predicted Milling Force Model for High-Speed End Milling Operation. Int. J. Mach. Tools Manuf. 1997, 37, 969–979. [Google Scholar] [CrossRef]
- Wright, P.K.; Trent, E.M. Metal Cutting, 4th ed.; Butterworth–Heinemann: Oxford, UK, 2000; ISBN 9780750670692. [Google Scholar]
- van Luttervelt, C.A.; Childs, T.H.C.; Jawahir, I.S.; Klocke, F.; Venuvinod, P.K.; Altintas, Y.; Armarego, E.; Dornfeld, D.; Grabec, I.; Leopold, J.; et al. Present Situation and Future Trends in Modelling of Machining Operations Progress Report of the CIRP Working Group ‘Modelling of Machining Operations’. CIRP Ann. 1998, 47, 587–626. [Google Scholar] [CrossRef]
- Merchant, M.E. Twentieth Century Evolution of Machining in the United States—An Interpretative Review. Sadhana 2003, 28, 867–874. [Google Scholar] [CrossRef]
- Astakhov, V.P. An Opening Historical Note. Int. J. Mach. Mach. Mater. 2006, 1, 3. [Google Scholar] [CrossRef]
- Yu, Y.; Huang, L.X.; Wang, D.D. Cutter Force Experiment and Chips Analysis of End Milling Cutter in Milling Aluminium Alloy. Tool Eng. 2015, 2, 20–23. [Google Scholar]
- Armarego, E.J.A.; Wang, J. Prediction of Forces, Torque and Power in Face Milling Operations. In Advanced Manufacturing Systems and Technology. International Centre for Mechanical Sciences; Kuljanic, E., Ed.; Springer: Berlin/Heidelberg, Germany, 1996; pp. 97–105. ISBN 978-3-211-82808-3. [Google Scholar]
- Tang, J.; Deng, C.; Chen, X.; Zhai, H. Analysis and Optimization of Milling Deformations of TC4 Alloy Thin-Walled Parts Based on Finite Element Simulations. Machines 2023, 11, 628. [Google Scholar] [CrossRef]
- Dikshit, M.K.; Puri, A.B.; Maity, A. Experimental Study of Cutting Forces in Ball End Milling of Al2014-T6 Using Response Surface Methodology. Procedia Mater. Sci. 2014, 6, 612–622. [Google Scholar] [CrossRef]
- Hailong, M.; Aijun, T.; Shubo, X.; Tong, L. Finite Element Simulation of Bending Thin-Walled Parts and Optimization of Cutting Parameters. Metals 2023, 13, 115. [Google Scholar] [CrossRef]
- Tang, K.Y.; Zhou, L.H.; Song, L. Investigation of the Milling Performance about 7050-T7451 Aluminum Alloy Based on Orthogonal Experiment. Appl. Mech. Mater. 2011, 121–126, 1431–1435. [Google Scholar] [CrossRef]
- Wojciechowski, S.; Maruda, R.W.; Krolczyk, G.M.; Niesłony, P. Application of Signal to Noise Ratio and Grey Relational Analysis to Minimize Forces and Vibrations during Precise Ball End Milling. Precis. Eng. 2018, 51, 582–596. [Google Scholar] [CrossRef]
- Abele, E.; Dietz, S.; Schiffler, A. Analysis of Cutting Force during Milling with Regards to the Dependency on the Penetration Angle. Prod. Eng. 2009, 3, 483–487. [Google Scholar] [CrossRef]
- Feng, H.-Y.; Su, N. A Mechanistic Cutting Force Model for 3D Ball-End Milling. J. Manuf. Sci. Eng. 2001, 123, 23–29. [Google Scholar] [CrossRef]
- Cao, Q.; Xue, D.; Zhao, J.; Li, Y. A Cutting Force Model Considering Influence of Radius of Curvature for Sculptured Surface Machining. Int. J. Adv. Manuf. Technol. 2011, 54, 821–835. [Google Scholar] [CrossRef]
- Ozturk, E.; Ozkirimli, O.; Gibbons, T.; Saibi, M.; Turner, S. Prediction of Effect of Helix Angle on Cutting Force Coefficients for Design of New Tools. CIRP Ann. 2016, 65, 125–128. [Google Scholar] [CrossRef]
- Burek, J.; Plodzien, M.; Zylka, L.; Sulkowicz, P. High-Performance End Milling of Aluminum Alloy: Influence of Different Serrated Cutting Edge Tool Shapes on the Cutting Force. Adv. Prod. Eng. Manag. 2019, 14, 494–506. [Google Scholar] [CrossRef]
- Altintas, Y.; Engin, S. Generalized Modeling of Mechanics and Dynamics of Milling Cutters. CIRP Ann. 2001, 50, 25–30. [Google Scholar] [CrossRef]
- Engin, S.; Altintas, Y. Mechanics and Dynamics of General Milling Cutters. Int. J. Mach. Tools Manuf. 2001, 41, 2213–2231. [Google Scholar] [CrossRef]
- Li, C.; Duan, C.; Chang, B. Instantaneous Cutting Force Model Considering the Material Structural Characteristics and Dynamic Variations in the Entry and Exit Angles during End Milling of the Aluminum Honeycomb Core. Mech. Syst. Signal Process. 2022, 181, 109456. [Google Scholar] [CrossRef]
- Eksioglu, M.C. Mechanics and Dynamics of Thin Wall Machining. Master’s Thesis, University of British Columbia, Vancouver, BC, Canada, 2011. [Google Scholar]
- Kiran, K.; Kayacan, M.C. Cutting Force Modeling and Accurate Measurement in Milling of Flexible Workpieces. Mech. Syst. Signal Process. 2019, 133, 106284. [Google Scholar] [CrossRef]
- Mann, B.P.; Edes, B.T.; Easley, S.J.; Young, K.A.; Ma, K. Chatter Vibration and Surface Location Error Prediction for Helical End Mills. Int. J. Mach. Tools Manuf. 2008, 48, 350–361. [Google Scholar] [CrossRef]
- Eksioglu, C.; Kilic, Z.M.; Altintas, Y. Discrete-Time Prediction of Chatter Stability, Cutting Forces, and Surface Location Errors in Flexible Milling Systems. J. Manuf. Sci. Eng. 2012, 134, 061006. [Google Scholar] [CrossRef]
- Yang, Y.; Zhang, W.-H.; Wan, M. Effect of Cutter Runout on Process Geometry and Forces in Peripheral Milling of Curved Surfaces with Variable Curvature. Int. J. Mach. Tools Manuf. 2011, 51, 420–427. [Google Scholar] [CrossRef]
- Wang, S.B.; Geng, L.; Zhang, Y.F.; Liu, K.; Ng, T.E. Cutting Force Prediction for Five-Axis Ball-End Milling Considering Cutter Vibrations and Run-Out. Int. J. Mech. Sci. 2015, 96–97, 206–215. [Google Scholar] [CrossRef]
- Matsumura, T.; Tamura, S. Cutting Force Model in Milling with Cutter Runout. Procedia CIRP 2017, 58, 566–571. [Google Scholar] [CrossRef]
- Wu, G.; Li, G.; Pan, W.; Wang, X.; Ding, S. A Prediction Model for the Milling of Thin-Wall Parts Considering Thermal-Mechanical Coupling and Tool Wear. Int. J. Adv. Manuf. Technol. 2020, 107, 4645–4659. [Google Scholar] [CrossRef]
- Lim, E.M.; Menq, C.-H. The Prediction of Dimensional Error for Sculptured Surface Productions Using the Ball-End Milling Process. Part 2: Surface Generation Model and Experimental Verification. Int. J. Mach. Tools Manuf. 1995, 35, 1171–1185. [Google Scholar] [CrossRef]
- Azeem, A.; Feng, H.-Y.; Wang, L. Simplified and Efficient Calibration of a Mechanistic Cutting Force Model for Ball-End Milling. Int. J. Mach. Tools Manuf. 2004, 44, 291–298. [Google Scholar] [CrossRef]
- Lamikiz, A.; López de Lacalle, L.N.; Sánchez, J.A.; Salgado, M.A. Cutting Force Estimation in Sculptured Surface Milling. Int. J. Mach. Tools Manuf. 2004, 44, 1511–1526. [Google Scholar] [CrossRef]
- Budak, E.; Altintas¸, Y.; Armarego, E.J.A. Prediction of Milling Force Coefficients from Orthogonal Cutting Data. J. Manuf. Sci. Eng. 1996, 118, 216–224. [Google Scholar] [CrossRef]
- Altintas, Y. Manufacturing Automation, 2nd ed.; Cambridge University Press: Cambridge, UK, 2012; ISBN 9781107001480. [Google Scholar]
- Budak, E. Analytical Models for High Performance Milling. Part I: Cutting Forces, Structural Deformations and Tolerance Integrity. Int. J. Mach. Tools Manuf. 2006, 46, 1478–1488. [Google Scholar] [CrossRef]
- Lee, P.; Altintaş, Y. Prediction of Ball-End Milling Forces from Orthogonal Cutting Data. Int. J. Mach. Tools Manuf. 1996, 36, 1059–1072. [Google Scholar] [CrossRef]
- Altintaş, Y.; Lee, P. A General Mechanics and Dynamics Model for Helical End Mills. CIRP Ann. 1996, 45, 59–64. [Google Scholar] [CrossRef]
- Zheng, C.M.; Junz Wang, J.-J. Estimation of In-Process Cutting Constants in Ball-End Milling. Proc. Inst. Mech. Eng. Part B J. Eng. Manuf. 2003, 217, 45–56. [Google Scholar] [CrossRef]
- Dikshit, M.K.; Puri, A.B.; Maity, A. Analysis of Cutting Force Coefficients in High-Speed Ball End Milling at Varying Rotational Speeds. Mach. Sci. Technol. 2017, 21, 416–435. [Google Scholar] [CrossRef]
- Lazoglu, I.; Liang, S.Y. Modeling of Ball-End Milling Forces with Cutter Axis Inclination. J. Manuf. Sci. Eng. 2000, 122, 3–11. [Google Scholar] [CrossRef]
- Lai, W.-H. Modeling of Cutting Forces in End Milling Operations. Tamkang J. Sci. Eng. 2000, 3, 15–22. [Google Scholar]
- Wan, M.; Zhang, W.H.; Tan, G.; Qin, G.H. An In-Depth Analysis of the Synchronization between the Measured and Predicted Cutting Forces for Developing Instantaneous Milling Force Model. Int. J. Mach. Tools Manuf. 2007, 47, 2018–2030. [Google Scholar] [CrossRef]
- Ratchev, S.; Liu, S.; Huang, W.; Becker, A.A. A Flexible Force Model for End Milling of Low-Rigidity Parts. J. Mater. Process. Technol. 2004, 153–154, 134–138. [Google Scholar] [CrossRef]
- Altintas, Y. Modeling Approaches and Software for Predicting the Performance of Milling Operations at MAL-UBC. Mach. Sci. Technol. 2000, 4, 445–478. [Google Scholar] [CrossRef]
- Tsai, M.Y.; Chang, S.Y.; Hung, J.P.; Wang, C.C. Investigation of Milling Cutting Forces and Cutting Coefficient for Aluminum 6060-T6. Comput. Electr. Eng. 2016, 51, 320–330. [Google Scholar] [CrossRef]
- Yun, W.-S.; Cho, D.-W. An Improved Method for the Determination of 3D Cutting Force Coefficients and Runout Parameters in End Milling. Int. J. Adv. Manuf. Technol. 2000, 16, 851–858. [Google Scholar] [CrossRef]
- Wang, M.; Gao, L.; Zheng, Y. An Examination of the Fundamental Mechanics of Cutting Force Coefficients. Int. J. Mach. Tools Manuf. 2014, 78, 1–7. [Google Scholar] [CrossRef]
- Wang, J.-J.J.; Zheng, C.M. Identification of Shearing and Ploughing Cutting Constants from Average Forces in Ball-End Milling. Int. J. Mach. Tools Manuf. 2002, 42, 695–705. [Google Scholar] [CrossRef]
- Hoon Ko, J.; Cho, D.-W. 3D Ball-End Milling Force Model Using Instantaneous Cutting Force Coefficients. J. Manuf. Sci. Eng. 2005, 127, 1–12. [Google Scholar] [CrossRef]
- Kline, W.A.; DeVor, R.E. The Effect of Runout on Cutting Geometry and Forces in End Milling. Int. J. Mach. Tool Des. Res. 1983, 23, 123–140. [Google Scholar] [CrossRef]
- Gradišek, J.; Kalveram, M.; Weinert, K. Mechanistic Identification of Specific Force Coefficients for a General End Mill. Int. J. Mach. Tools Manuf. 2004, 44, 401–414. [Google Scholar] [CrossRef]
- Wan, M.; Ma, Y.C.; Feng, J.; Zhang, W.H. Study of Static and Dynamic Ploughing Mechanisms by Establishing Generalized Model with Static Milling Forces. Int. J. Mech. Sci. 2016, 114, 120–131. [Google Scholar] [CrossRef]
- Shin, Y.C.; Waters, A.J. A New Procedure to Determine Instantaneous Cutting Force Coefficients for Machining Force Prediction. Int. J. Mach. Tools Manuf. 1997, 37, 1337–1351. [Google Scholar] [CrossRef]
- Rubeo, M.A.; Schmitz, T.L. Mechanistic Force Model Coefficients: A Comparison of Linear Regression and Nonlinear Optimization. Precis. Eng. 2016, 45, 311–321. [Google Scholar] [CrossRef]
- Elbestawi, M.A.; Sagherian, R. Dynamic Modeling for the Prediction of Surface Errors in the Milling of Thin-Walled Sections. J. Mater. Process. Technol. 1991, 25, 215–228. [Google Scholar] [CrossRef]
- Wan, M.; Zhang, W.H.; Qin, G.H.; Wang, Z.P. Strategies for Error Prediction and Error Control in Peripheral Milling of Thin-Walled Workpiece. Int. J. Mach. Tools Manuf. 2008, 48, 1366–1374. [Google Scholar] [CrossRef]
- Dotcheva, M.; Millward, H.; Lewis, A. The Evaluation of Cutting-Force Coefficients Using Surface Error Measurements. J. Mater. Process. Technol. 2008, 196, 42–51. [Google Scholar] [CrossRef]
- Gang, L. Study on Deformation of Titanium Thin-Walled Part in Milling Process. J. Mater. Process. Technol. 2009, 209, 2788–2793. [Google Scholar] [CrossRef]
- Budak, E.; Altintas, Y. Modeling and Avoidance of Static Form Errors in Peripheral Milling of Plates. Int. J. Mach. Tools Manuf. 1995, 35, 459–476. [Google Scholar] [CrossRef]
- Tsai, J.-S.; Liao, C.-L. Finite-Element Modeling of Static Surface Errors in the Peripheral Milling of Thin-Walled Workpieces. J. Mater. Process. Technol. 1999, 94, 235–246. [Google Scholar] [CrossRef]
- Li, W.; Wang, L.; Yu, G. Force-Induced Deformation Prediction and Flexible Error Compensation Strategy in Flank Milling of Thin-Walled Parts. J. Mater. Process. Technol. 2021, 297, 117258. [Google Scholar] [CrossRef]
- Wan, M.; Zhang, W.H. Calculations of Chip Thickness and Cutting Forces in Flexible End Milling. Int. J. Adv. Manuf. Technol. 2006, 29, 637–647. [Google Scholar] [CrossRef]
- Li, Z.L.; Tuysuz, O.; Zhu, L.M.; Altintas, Y. Surface Form Error Prediction in Five-Axis Flank Milling of Thin-Walled Parts. Int. J. Mach. Tools Manuf. 2018, 128, 21–32. [Google Scholar] [CrossRef]
- Dun, Y.; Zhu, L.; Wang, S. Investigation on Milling Force of Thin-Walled Workpiece Considering Dynamic Characteristics of Workpiece. J. Mech. Sci. Technol. 2019, 33, 4061–4079. [Google Scholar] [CrossRef]
- Fussell, B.K.; Jerard, R.B.; Hemmett, J.G. Robust Feedrate Selection for 3-Axis NC Machining Using Discrete Models. J. Manuf. Sci. Eng. 2001, 123, 214–224. [Google Scholar] [CrossRef]
- Kim, G.M.; Kim, B.H.; Chu, C.N. Estimation of Cutter Deflection and Form Error in Ball-End Milling Processes. Int. J. Mach. Tools Manuf. 2003, 43, 917–924. [Google Scholar] [CrossRef]
- Yang, C.; Yu, R.; Jiang, S. A Cyclic Calibration Method of Milling Force Coefficients Considering Elastic Tool Deformation. Machines 2023, 11, 821. [Google Scholar] [CrossRef]
- Wan, M.; Zhang, W.H.; Tan, G.; Qin, G.H. Systematic Simulation Procedure of Peripheral Milling Process of Thin-Walled Workpiece. J. Mater. Process. Technol. 2008, 197, 122–131. [Google Scholar] [CrossRef]
- Qi, H.; Tian, Y.; Zhang, D. Machining Forces Prediction for Peripheral Milling of Low-Rigidity Component with Curved Geometry. Int. J. Adv. Manuf. Technol. 2013, 64, 1599–1610. [Google Scholar] [CrossRef]
- Li, J.; Kilic, Z.M.; Altintas, Y. General Cutting Dynamics Model for Five-Axis Ball-End Milling Operations. J. Manuf. Sci. Eng. 2020, 142, 121003. [Google Scholar] [CrossRef]
- Fontaine, M.; Moufki, A.; Devillez, A.; Dudzinski, D. Modelling of Cutting Forces in Ball-End Milling with Tool-Surface Inclination. Part I: Predictive Force Model and Experimental Validation. J. Mater. Process. Technol. 2007, 189, 73–84. [Google Scholar] [CrossRef]
- Fontaine, M.; Devillez, A.; Moufki, A.; Dudzinski, D. Modelling of Cutting Forces in Ball-End Milling with Tool-Surface Inclination. Part II. Influence of Cutting Conditions, Run-out, Ploughing and Inclination Angle. J. Mater. Process. Technol. 2007, 189, 85–96. [Google Scholar] [CrossRef]
- Bhattacharyya, A.; Schueller, J.K.; Mann, B.P.; Ziegert, J.C.; Schmitz, T.L.; Taylor, F.J.; Fitz-Coy, N.G. A Closed Form Mechanistic Cutting Force Model for Helical Peripheral Milling of Ductile Metallic Alloys. Int. J. Mach. Tools Manuf. 2010, 50, 538–551. [Google Scholar] [CrossRef]
- Feng, H.-Y.; Menq, C.-H. The Prediction of Cutting Forces in the Ball-End Milling Process—I. Model Formulation and Model Building Procedure. Int. J. Mach. Tools Manuf. 1994, 34, 697–710. [Google Scholar] [CrossRef]
- Feng, H.-Y.; Menq, C.-H. The Prediction of Cutting Forces in the Ball-End Milling Process—II. Cut Geometry Analysis and Model Verification. Int. J. Mach. Tools Manuf. 1994, 34, 711–719. [Google Scholar] [CrossRef]
- Tai, C.-C.; Fuh, K.-H. A Predictive Force Model in Ball-End Milling Including Eccentricity Effects. Int. J. Mach. Tools Manuf. 1994, 34, 959–979. [Google Scholar] [CrossRef]
- Wan, M.; Zhang, W.H.; Dang, J.W.; Yang, Y. New Procedures for Calibration of Instantaneous Cutting Force Coefficients and Cutter Runout Parameters in Peripheral Milling. Int. J. Mach. Tools Manuf. 2009, 49, 1144–1151. [Google Scholar] [CrossRef]
- Wojciechowski, S. The Estimation of Cutting Forces and Specific Force Coefficients during Finishing Ball End Milling of Inclined Surfaces. Int. J. Mach. Tools Manuf. 2015, 89, 110–123. [Google Scholar] [CrossRef]
- Chen, D.; Zhang, X.; Xie, Y.; Ding, H. Precise Estimation of Cutting Force Coefficients and Cutter Runout in Milling Using Differential Evolution Algorithm. Procedia CIRP 2018, 77, 283–286. [Google Scholar] [CrossRef]
- Xie, M.; Yu, X.; Bao, W.; Liu, C.; Xia, M. Side-Milling-Force Model Considering Tool Runout and Workpiece Deformation. Electronics 2023, 12, 968. [Google Scholar] [CrossRef]
- Lazoglu, I. Sculpture Surface Machining: A Generalized Model of Ball-End Milling Force System. Int. J. Mach. Tools Manuf. 2003, 43, 453–462. [Google Scholar] [CrossRef]
- Teti, R.; Jemielniak, K.; O’Donnell, G.; Dornfeld, D. Advanced Monitoring of Machining Operations. CIRP Ann. Manuf. Technol. 2010, 59, 717–739. [Google Scholar] [CrossRef]
- Nouri, M.; Fussell, B.K. Real-Time Peak Force Control in CNC Milling. In Proceedings of the 2016 International Symposium on Flexible Automation (ISFA), Cleveland, OH, USA, 1–3 August 2016; IEEE: Piscataway, NJ, USA; pp. 255–262. [Google Scholar]
- Altintas, Y. In-Process Detection of Tool Breakages Using Time Series Monitoring of Cutting Forces. Int. J. Mach. Tools Manuf. 1988, 28, 157–172. [Google Scholar] [CrossRef]
- Altintas, Y.; Yellowley, I. In-Process Detection of Tool Failure in Milling Using Cutting Force Models. J. Eng. Ind. 1989, 111, 149–157. [Google Scholar] [CrossRef]
- Wang, J.; Li, Y.; Zhao, R.; Gao, R.X. Physics Guided Neural Network for Machining Tool Wear Prediction. J. Manuf. Syst. 2020, 57, 298–310. [Google Scholar] [CrossRef]
- Liu, D.; Luo, M.; Urbikain Pelayo, G.; Trejo, D.O.; Zhang, D. Position-Oriented Process Monitoring in Milling of Thin-Walled Parts. J. Manuf. Syst. 2021, 60, 360–372. [Google Scholar] [CrossRef]
- Pittalà, G.M.; Rizzuti, S. An Investigation of the Effect of Tool Wear on Cutting Force Coefficients for Solid End Mills. Procedia CIRP 2023, 117, 444–449. [Google Scholar] [CrossRef]
- Sun, Y.; Sun, J.; Li, J.; Li, W.; Feng, B. Modeling of Cutting Force under the Tool Flank Wear Effect in End Milling Ti6Al4V with Solid Carbide Tool. Int. J. Adv. Manuf. Technol. 2013, 69, 2545–2553. [Google Scholar] [CrossRef]
- Teitenberg, T.M.; Bayoumi, A.E.; Yucesan, G. Tool Wear Modeling through an Analytic Mechanistic Model of Milling Processes. Wear 1992, 154, 287–304. [Google Scholar] [CrossRef]
- Zhang, S.; Li, J.F.; Wang, Y.W. Tool Life and Cutting Forces in End Milling Inconel 718 under Dry and Minimum Quantity Cooling Lubrication Cutting Conditions. J. Clean. Prod. 2012, 32, 81–87. [Google Scholar] [CrossRef]
- Li, H.Z.; Zeng, H.; Chen, X.Q. An Experimental Study of Tool Wear and Cutting Force Variation in the End Milling of Inconel 718 with Coated Carbide Inserts. J. Mater. Process. Technol. 2006, 180, 296–304. [Google Scholar] [CrossRef]
- Budak, E. Improving Productivity and Part Quality in Milling of Titanium Based Impellers by Chatter Suppression and Force Control. CIRP Ann. 2000, 49, 31–36. [Google Scholar] [CrossRef]
- Dongming, G.; Fei, R.; Yuwen, S. An Approach to Modeling Cutting Forces in Five-Axis Ball-End Milling of Curved Geometries Based on Tool Motion Analysis. J. Manuf. Sci. Eng. 2010, 132, 0410041–0410048. [Google Scholar] [CrossRef]
- Tuysuz, O.; Altintas, Y.; Feng, H.-Y. Prediction of Cutting Forces in Three and Five-Axis Ball-End Milling with Tool Indentation Effect. Int. J. Mach. Tools Manuf. 2013, 66, 66–81. [Google Scholar] [CrossRef]
- Ferry, W.B.; Altintas, Y. Virtual Five-Axis Flank Milling of Jet Engine Impellers—Part I: Mechanics of Five-Axis Flank Milling. J. Manuf. Sci. Eng. 2008, 130, 011005. [Google Scholar] [CrossRef]
- Lazoglu, I.; Boz, Y.; Erdim, H. Five-Axis Milling Mechanics for Complex Free Form Surfaces. CIRP Ann. 2011, 60, 117–120. [Google Scholar] [CrossRef]
- Ma, H.; Liu, W.; Zhou, X.; Niu, Q.; Kong, C. High Efficiency Calculation of Cutter-Workpiece Engagement in Five-Axis Milling Using Distance Fields and Envelope Theory. J. Manuf. Process. 2021, 68, 1430–1447. [Google Scholar] [CrossRef]
- Huang, T.; Zhang, X.-M.; Ding, H. Tool Orientation Optimization for Reduction of Vibration and Deformation in Ball-End Milling of Thin-Walled Impeller Blades. Procedia CIRP 2017, 58, 210–215. [Google Scholar] [CrossRef]
- Habibi, M.; Tuysuz, O.; Altintas, Y. Modification of Tool Orientation and Position to Compensate Tool and Part Deflections in Five-Axis Ball End Milling Operations. J. Manuf. Sci. Eng. 2019, 141, 031004. [Google Scholar] [CrossRef]
- Wang, D.; Ren, J.; Tian, W. A Method for the Prediction of Cutting Force for 5-Axis Ball-End Milling of Workpieces with Curved Surfaces. Int. J. Adv. Manuf. Technol. 2020, 107, 2023–2039. [Google Scholar] [CrossRef]
- Song, Q.; Liu, Z.; Ju, G.; Wan, Y. A Generalized Cutting Force Model for Five-Axis Milling Processes. Proc. Inst. Mech. Eng. Part B J. Eng. Manuf. 2019, 233, 3–17. [Google Scholar] [CrossRef]
- Duan, X.; Peng, F.; Zhu, Z.; Jiang, G. Cutting Edge Element Modeling-Based Cutter-Workpiece Engagement Determination and Cutting Force Prediction in Five-Axis Milling. Int. J. Adv. Manuf. Technol. 2019, 102, 421–430. [Google Scholar] [CrossRef]
- Li, X.; Gong, Y.; Zhao, J. Surface Profile and Milling Force Prediction for Milling Thin-Walled Workpiece Based on Equivalent 3D Undeformed Chip Thickness Model. Int. J. Adv. Manuf. Technol. 2022, 122, 977–991. [Google Scholar] [CrossRef]
- WANG, L.; SI, H.; GU, L. Prediction of Cutting Forces in Flank Milling of Parts with Non-Developable Ruled Surfaces. Chin. J. Aeronaut. 2019, 32, 1788–1796. [Google Scholar] [CrossRef]
- Zhu, Z.; Yan, R.; Peng, F.; Duan, X.; Zhou, L.; Song, K.; Guo, C. Parametric Chip Thickness Model Based Cutting Forces Estimation Considering Cutter Runout of Five-Axis General End Milling. Int. J. Mach. Tools Manuf. 2016, 101, 35–51. [Google Scholar] [CrossRef]
- Sun, C.; Altintas, Y. Chatter Free Tool Orientations in 5-Axis Ball-End Milling. Int. J. Mach. Tools Manuf. 2016, 106, 89–97. [Google Scholar] [CrossRef]
- Klocke, F.; Kratz, S.; Veselovac, D. Position-Oriented Process Monitoring in Freeform Milling. CIRP J. Manuf. Sci. Technol. 2008, 1, 103–107. [Google Scholar] [CrossRef]
- Li, Z.L.; Wang, X.Z.; Zhu, L.M. Arc-Surface Intersection Method to Calculate Cutter-Workpiece Engagements for Generic Cutter in Five-Axis Milling. Comput. -Aided Des. 2016, 73, 1–10. [Google Scholar] [CrossRef]
- Altintas, Y. Virtual High Performance Machining. Procedia CIRP 2016, 46, 372–378. [Google Scholar] [CrossRef]
- Habibi, M.; Kilic, Z.M.; Altintas, Y. Minimizing Flute Engagement to Adjust Tool Orientation for Reducing Surface Errors in Five-Axis Ball End Milling Operations. J. Manuf. Sci. Eng. 2021, 143, 021009. [Google Scholar] [CrossRef]
- Ghorbani, M.; Movahhedy, M.R. An Analytical Model for Cutter-Workpiece Engagement Calculation in Ball-End Finish Milling of Doubly Curved Surfaces. Int. J. Adv. Manuf. Technol. 2019, 102, 1635–1657. [Google Scholar] [CrossRef]
- Li, Z.L.; Niu, J.B.; Wang, X.Z.; Zhu, L.M. Mechanistic Modeling of Five-Axis Machining with a General End Mill Considering Cutter Runout. Int. J. Mach. Tools Manuf. 2015, 96, 67–79. [Google Scholar] [CrossRef]
- Zhu, Z.; Wu, J.; Yan, R.; Peng, F.; Tang, X. Cutting Force Prediction Considering Tool Path Curvature and Torsion Based on Screw Theory. Int. J. Adv. Manuf. Technol. 2021, 114, 1601–1621. [Google Scholar] [CrossRef]
- Zhu, R.; Kapoor, S.G.; DeVor, R.E. Mechanistic Modeling of the Ball End Milling Process for Multi-Axis Machining of Free-Form Surfaces. J. Manuf. Sci. Eng. 2001, 123, 369–379. [Google Scholar] [CrossRef]
- Ratchev, S.; Liu, S.; Huang, W.; Becker, A.A. An Advanced FEA Based Force Induced Error Compensation Strategy in Milling. Int. J. Mach. Tools Manuf. 2006, 46, 542–551. [Google Scholar] [CrossRef]
- Ratchev, S.; Huang, W.; Liu, S.; Becker, A.A. Modelling and Simulation Environment for Machining of Low-Rigidity Components. J. Mater. Process. Technol. 2004, 153–154, 67–73. [Google Scholar] [CrossRef]
- Li, B.Z.; Jiang, X.H.; Jing, H.J.; Zuo, X.Y. High-Speed Milling Characteristics and the Residual Stresses Control Methods Analysis of Thin-Walled Parts. Adv. Mater. Res. 2011, 223, 456–463. [Google Scholar] [CrossRef]
- Huang, X.; Sun, J.; Li, J. Finite Element Simulation and Experimental Investigation on the Residual Stress-Related Monolithic Component Deformation. Int. J. Adv. Manuf. Technol. 2015, 77, 1035–1041. [Google Scholar] [CrossRef]
- Zhang, Z.; Zhang, Z.; Zhang, D.; Luo, M. Milling Distortion Prediction for Thin-Walled Component Based on the Average MIRS in Specimen Machining. Int. J. Adv. Manuf. Technol. 2020, 111, 3379–3392. [Google Scholar] [CrossRef]
- Delport, L.D.; Conradie, P.J.T.; Oosthuizen, G.A. Suitable Clamping Method for Milling of Thin-Walled Ti6Al4V Components. Procedia Manuf. 2017, 8, 338–344. [Google Scholar] [CrossRef]
- Ge, M.J.; Sun, J.; Li, J.F. Study on Processing Property of Thin-Walled Titanium Alloy Component with Paraffin Reinforcement. Adv. Mater. Res. 2011, 325, 321–326. [Google Scholar] [CrossRef]
- Bi, Y.B.; Cheng, Q.L.; Dong, H.Y.; Ke, Y.L. Machining Distortion Prediction of Aerospace Monolithic Components. J. Zhejiang Univ. Sci. A 2009, 10, 661–668. [Google Scholar] [CrossRef]
- Armarego, E.J.A.; Deshpande, N.P. Computerized End-Milling Force Predictions with Cutting Models Allowing for Eccentricity and Cutter Deflections. CIRP Ann. 1991, 40, 25–29. [Google Scholar] [CrossRef]
- Larue, A.; Altintas, Y. Simulation of Flank Milling Processes. Int. J. Mach. Tools Manuf. 2005, 45, 549–559. [Google Scholar] [CrossRef]
- Gonzalo, O.; Jauregi, H.; Uriarte, L.G.; López De Lacalle, L.N. Prediction of Specific Force Coefficients from a FEM Cutting Model. Int. J. Adv. Manuf. Technol. 2009, 43, 348–356. [Google Scholar] [CrossRef]
- Ratchev, S.; Govender, E.; Nikov, S.; Phuah, K.; Tsiklos, G. Force and Deflection Modelling in Milling of Low-Rigidity Complex Parts. J. Mater. Process. Technol. 2003, 143–144, 796–801. [Google Scholar] [CrossRef]
- Yan, Q.; Luo, M.; Tang, K. Multi-Axis Variable Depth-of-Cut Machining of Thin-Walled Workpieces Based on the Workpiece Deflection Constraint. Comput. -Aided Des. 2018, 100, 14–29. [Google Scholar] [CrossRef]
- Huang, Y.; Zhang, X.; Xiong, Y. Finite Element Analysis of Machining Thin-Wall Parts: Error Prediction and Stability Analysis. In Finite Element Analysis-Applications in Mechanical Engineering; InTech Open: London, UK, 2012. [Google Scholar]
- Jiang, X.; Kong, X.; He, S.; Wu, K. Modeling the Superposition of Residual Stresses Induced by Cutting Force and Heat during the Milling of Thin-Walled Parts. J. Manuf. Process. 2021, 68, 356–370. [Google Scholar] [CrossRef]
- Wang, Z.; Zhou, J.; Ren, J.; Shu, A. Predicting Surface Residual Stress for Multi-Axis Milling of Ti-6Al-4V Titanium Alloy in Combined Simulation and Experiments. Materials 2022, 15, 6471. [Google Scholar] [CrossRef] [PubMed]
- Arnaud, L.; Gonzalo, O.; Seguy, S.; Jauregi, H.; Peigné, G. Simulation of Low Rigidity Part Machining Applied to Thin-Walled Structures. Int. J. Adv. Manuf. Technol. 2011, 54, 479–488. [Google Scholar] [CrossRef]
- Kersting, P.; Biermann, D. Simulation Concept for Predicting Workpiece Vibrations in Five-Axis Milling. Mach. Sci. Technol. 2009, 13, 196–209. [Google Scholar] [CrossRef]
- Yue, C.; Li, M.; Zhang, M.; Liu, X.; Liang, S.Y. The Modified Constitutive Model Considering Strain-Temperature Coupling and Dynamic Recrystallization Effective for FEM Simulation of Milling Process. Int. J. Adv. Manuf. Technol. 2022, 119, 1217–1232. [Google Scholar] [CrossRef]
- Tan, Z.; Wang, Y.; Xu, K. Stress Deformation Simulation for Optimizing Milling Thin-Walled Ti-6Al-4 V Titanium Alloy Parts. Int. J. Interact. Des. Manuf. 2023, 18, 265–273. [Google Scholar] [CrossRef]
- Ge, G.; Du, Z.; Yang, J. Rapid Prediction and Compensation Method of Cutting Force-Induced Error for Thin-Walled Workpiece. Int. J. Adv. Manuf. Technol. 2020, 106, 5453–5462. [Google Scholar] [CrossRef]
- Wang, J.; Quan, L.; Tang, K. A Prediction Method Based on the Voxel Model and the Finite Cell Method for Cutting Force-Induced Deformation in the Five-Axis Milling Process. Comput. Methods Appl. Mech. Eng. 2020, 367, 113110. [Google Scholar] [CrossRef]
- Bolar, G. 3D Finite Element Method Simulations on the Influence of Tool Helix Angle in Thin-Wall Milling Process. Jordan J. Mech. Ind. Eng. 2022, 16, 283–289. [Google Scholar]
- Liu, H.; Wang, C.; Han, L.; Wang, S.; Liu, K.; Wang, Y. The Influence of Ice-Based Fixture on Suppressing Machining-Induced Deformation of Cantilever Thin-Walled Parts: A Novel and Green Fixture. Int. J. Adv. Manuf. Technol. 2021, 117, 329–341. [Google Scholar] [CrossRef]
- Liu, G.; Dang, J.; Li, C.; Chen, M. Parametric Study on the Tool Inclination Angle for Side Milling Thin-Walled Workpiece Edges Based on Finite Element Simulation. Proc. Inst. Mech. Eng. Part B J. Eng. Manuf. 2020, 234, 439–452. [Google Scholar] [CrossRef]
- Wang, L.-Y.; Huang, H.-H.; West, R.W.; Li, H.-J.; Du, J.-T. A Model of Deformation of Thin-Wall Surface Parts during Milling Machining Process. J. Central South Univ. 2018, 25, 1107–1115. [Google Scholar] [CrossRef]
- Bolar, G.; Joshi, S.N. Three-Dimensional Numerical Modeling, Simulation and Experimental Validation of Milling of a Thin-Wall Component. Proc. Inst. Mech. Eng. Part B J. Eng. Manuf. 2017, 231, 792–804. [Google Scholar] [CrossRef]
- Zhang, W.; He, F.; Wu, T.; Du, C.; Liu, H. 3D Numerical Simulation on Thermal-Stress Distribution of Hardened Steels Workpiece Assembled with Different Hardness. Int. J. Interact. Des. Manuf. 2017, 11, 559–568. [Google Scholar] [CrossRef]
- Si-meng, L.; Xiao-dong, S.; Xiao-Bo, G.; Dou, W. Simulation of the Deformation Caused by the Machining Cutting Force on Thin-Walled Deep Cavity Parts. Int. J. Adv. Manuf. Technol. 2017, 92, 3503–3517. [Google Scholar] [CrossRef]
- Joshi, S.N.; Bolar, G. Three-Dimensional Finite Element Based Numerical Simulation of Machining of Thin-Wall Components with Varying Wall Constraints. J. Inst. Eng. (India) Ser. C 2017, 98, 343–352. [Google Scholar] [CrossRef]
- Izamshah, R.A.R.; Mo, J.P.T.; Ding, S. Finite Element Analysis of Machining Thin-Wall Parts. Key Eng. Mater. 2011, 458, 283–288. [Google Scholar] [CrossRef]
- Rai, J.K.; Xirouchakis, P. Finite Element Method Based Machining Simulation Environment for Analyzing Part Errors Induced during Milling of Thin-Walled Components. Int. J. Mach. Tools Manuf. 2008, 48, 629–643. [Google Scholar] [CrossRef]
- Ioannou, P.; Baldi, S. Robust Adaptive Control. In The Control Systems Handbook; Levine, W., Ed.; CRC Press: Boca Raton, FL, USA, 2018; pp. 370–382. [Google Scholar]
- Denkena, B.; Flöter, F. Adaptive Cutting Force Control on a Milling Machine with Hybrid Axis Configuration. Procedia CIRP 2012, 4, 109–114. [Google Scholar] [CrossRef]
- Richards, N.D.; Fussell, B.K.; Jerard, R.B. Efficient NC Machining Using Off-Line Optimized Feedrates and On-Line Adaptive Control. In Proceedings of the ASME 2002 International Mechanical Engineering Congress and Exposition, New Orleans, LA, USA, 17–22 November 2002; Manufacturing Engineering. ASMEDC: Washington, DC, USA; pp. 181–191. [Google Scholar]
- Ma, C.C.H.; Altintas, Y. Direct Adaptive Cutting Force Control of Milling Processes. Automatica 1990, 26, 899–902. [Google Scholar] [CrossRef]
- Altintaş, Y. Direct Adaptive Control of End Milling Process. Int. J. Mach. Tools Manuf. 1994, 34, 461–472. [Google Scholar] [CrossRef]
- Fussell, B.K.; Srinivasan, K. Model Reference Adaptive Control of Force in End Milling Operations. In Proceedings of the 1988 American Control Conference, Atlanta, GA, USA, 17 June 1988; IEEE: Piscataway, NJ, USA; Volume 88 Pt 1–3, pp. 1189–1194. [Google Scholar]
- Rober, S.J.; Shin, Y.C.; Nwokah, O.D.I. A Digital Robust Controller for Cutting Force Control in the End Milling Process. J. Dyn. Syst. Meas. Control. 1997, 119, 146–152. [Google Scholar] [CrossRef]
- Rober, S.J.; Shin, Y.C. Control of Cutting Force for End Milling Processes Using an Extended Model Reference Adaptive Control Scheme. J. Manuf. Sci. Eng. 1996, 118, 339–347. [Google Scholar] [CrossRef]
- Altintas, Y.; Aslan, D. Integration of Virtual and On-Line Machining Process Control and Monitoring. CIRP Ann. 2017, 66, 349–352. [Google Scholar] [CrossRef]
- Kim, M.K.; Cho, M.W.; Kim, K. Application of the Fuzzy Control Strategy to Adaptive Force Control of Non-Minimum Phase End Milling Operations. Int. J. Mach. Tools Manuf. 1994, 34, 677–696. [Google Scholar] [CrossRef]
- Savkovik, B.; Kovac, P.; Dudic, B.; Gregus, M.; Rodic, D.; Strbac, B.; Ducic, N. Comparative Characteristics of Ductile Iron and Austempered Ductile Iron Modeled by Neural Network. Materials 2019, 12, 2864. [Google Scholar] [CrossRef]
- Tarng, Y.S.; Hwang, S.T. Adaptive Learning Control of Milling Operations. Mechatronics 1995, 5, 937–948. [Google Scholar] [CrossRef]
- Zuperl, U.; Cus, F.; Reibenschuh, M. Modeling and Adaptive Force Control of Milling by Using Artificial Techniques. J. Intell. Manuf. 2012, 23, 1805–1815. [Google Scholar] [CrossRef]
- Haber, R.; Alique, J.; Ros, S.; Peres, C.R. Fuzzy Supervisory Control of End Milling Process. Inf. Sci. 1996, 89, 95–106. [Google Scholar] [CrossRef]
- Phan, K.B.; Ha, H.T.; Hoang, S.V. Eliminating the Effect of Uncertainties of Cutting Forces by Fuzzy Controller for Robots in Milling Process. Appl. Sci. 2020, 10, 1685. [Google Scholar] [CrossRef]
- Haber, R.E.; Haber, R.H.; Alique, A.; Ros, S. Hierarchical Fuzzy Control of the Milling Process with a Self-Tuning Algorithm. In Proceedings of the 2000 IEEE International Symposium on Intelligent Control; Held Jointly with the 8th IEEE Mediterranean Conference on Control and Automation, Rio Patras, Greece, 17–19 July 2000; pp. 115–120. [Google Scholar]
- Xu, C.; Shin, Y.C. An Adaptive Fuzzy Controller for Constant Cutting Force in End-Milling Processes. J. Manuf. Sci. Eng. 2008, 130, 0310011–03100110. [Google Scholar] [CrossRef]
- Milfelner, M.; Kopac, J.; Cus, F.; Zuperl, U. Genetic Equation for the Cutting Force in Ball-End Milling. J. Mater. Process. Technol. 2005, 164–165, 1554–1560. [Google Scholar] [CrossRef]
- Palanisamy, P.; Rajendran, I.; Shanmugasundaram, S. Optimization of Machining Parameters Using Genetic Algorithm and Experimental Validation for End-Milling Operations. Int. J. Adv. Manuf. Technol. 2007, 32, 644–655. [Google Scholar] [CrossRef]
- Dikshit, M.K.; Puri, A.B.; Maity, A.; Banerjee, A.J. Analysis of Cutting Forces and Optimization of Cutting Parameters in High Speed Ball-End Milling Using Response Surface Methodology and Genetic Algorithm. Procedia Mater. Sci. 2014, 5, 1623–1632. [Google Scholar] [CrossRef]
- Tandon, V.; El-Mounayri, H. A novel artificial neural networks force model for end milling. Int. J. Adv. Manuf. Technol. 2002, 18, 693–700. [Google Scholar] [CrossRef]
- Zuperl, U.; Cus, F. Tool Cutting Force Modeling in Ball-End Milling Using Multilevel Perceptron. J. Mater. Process. Technol. 2004, 153–154, 268–275. [Google Scholar] [CrossRef]
- Zuperl, U.; Cus, F.; Reibenschuh, M. Neural Control Strategy of Constant Cutting Force System in End Milling. Robot. Comput. Integr. Manuf. 2011, 27, 485–493. [Google Scholar] [CrossRef]
- Vaishnav, S.; Agarwal, A.; Desai, K.A. Machine Learning-Based Instantaneous Cutting Force Model for End Milling Operation. J. Intell. Manuf. 2020, 31, 1353–1366. [Google Scholar] [CrossRef]
- Su, S.; Zhao, G.; Xiao, W.; Yang, Y.; Cao, X. An Image-Based Approach to Predict Instantaneous Cutting Forces Using Convolutional Neural Networks in End Milling Operation. Int. J. Adv. Manuf. Technol. 2021, 115, 1657–1669. [Google Scholar] [CrossRef]
- Tao, F.; Zhang, H.; Liu, A.; Nee, A.Y.C. Digital Twin in Industry: State-of-the-Art. IEEE Trans. Ind. Inform. 2019, 15, 2405–2415. [Google Scholar] [CrossRef]
- Glaessgen, E.H.; Stargel, D.S. The Digital Twin Paradigm for Future NASA and U.S. Air Force Vehicles. In Proceedings of the Collection of Technical Papers—53rd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference, Honolulu, HI, USA, 23–26 April 2012. [Google Scholar]
- Zhu, Z.; Xi, X.; Xu, X.; Cai, Y. Digital Twin-Driven Machining Process for Thin-Walled Part Manufacturing. J. Manuf. Syst. 2021, 59, 453–466. [Google Scholar] [CrossRef]
- Grieves, M. Digital Twin: Manufacturing Excellence through Virtual Factory Replication. Available online: https://www.3ds.com/fileadmin/PRODUCTS-SERVICES/DELMIA/PDF/Whitepaper/DELMIA-APRISO-Digital-Twin-Whitepaper.pdf (accessed on 7 April 2023).
- Tong, X.; Liu, Q.; Pi, S.; Xiao, Y. Real-Time Machining Data Application and Service Based on IMT Digital Twin. J. Intell. Manuf. 2020, 31, 1113–1132. [Google Scholar] [CrossRef]
- Chinesta, F. Manufacturing Empowered by Physics-Aware Digital Twins. Available online: https://www.mesic2023.es/static/upload/ow138/events/ev469/Site/files/Plenary-Lecture%233.pdf (accessed on 30 July 2023).
- Zhang, C.; Zhou, G.; Xu, Q.; Wei, Z.; Han, C.; Wang, Z. A Digital Twin Defined Autonomous Milling Process towards the Online Optimal Control of Milling Deformation for Thin-Walled Parts. Int. J. Adv. Manuf. Technol. 2023, 124, 2847–2861. [Google Scholar] [CrossRef]
- Zheng, C.M.; Zhang, L.; Kang, Y.-H.; Zhan, Y.; Xu, Y. In-Process Identification of Milling Parameters Based on Digital Twin Driven Intelligent Algorithm. Int. J. Adv. Manuf. Technol. 2022, 121, 6021–6033. [Google Scholar] [CrossRef]
- Schwenzer, M.; Stemmler, S.; Ay, M.; Rüppel, A.K.; Bergs, T.; Abel, D. Model Predictive Force Control in Milling Based on an Ensemble Kalman Filter. J. Intell. Manuf. 2022, 33, 1907–1919. [Google Scholar] [CrossRef]
- Hänel, A.; Schnellhardt, T.; Wenkler, E.; Nestler, A.; Brosius, A.; Corinth, C.; Fay, A.; Ihlenfeldt, S. The Development of a Digital Twin for Machining Processes for the Application in Aerospace Industry. Procedia CIRP 2020, 93, 1399–1404. [Google Scholar] [CrossRef]
- Tong, X.; Liu, Q.; Zhou, Y.; Sun, P. A Digital Twin-Driven Cutting Force Adaptive Control Approach for Milling Process. J. Intell. Manuf. 2023. [Google Scholar] [CrossRef]
- Möhring, H.-C.; Wiederkehr, P.; Erkorkmaz, K.; Kakinuma, Y. Self-Optimizing Machining Systems. CIRP Ann. 2020, 69, 740–763. [Google Scholar] [CrossRef]
- Ward, R.; Sun, C.; Dominguez-Caballero, J.; Ojo, S.; Ayvar-Soberanis, S.; Curtis, D.; Ozturk, E. Machining Digital Twin Using Real-Time Model-Based Simulations and Lookahead Function for Closed Loop Machining Control. Int. J. Adv. Manuf. Technol. 2021, 117, 3615–3629. [Google Scholar] [CrossRef]
- Liu, S.; Bao, J.; Zheng, P. A Review of Digital Twin-Driven Machining: From Digitization to Intellectualization. J. Manuf. Syst. 2023, 67, 361–378. [Google Scholar] [CrossRef]
- Abed, M.; Gameros, A.; Mohammad, A.; Axinte, D. Swift Feedback and Immediate Error Control Using a Lightweight Simulation Approach—A Case Study of the Digital-Twin-in-the-Loop for Machining Thin-Wall Structures. J. Manuf. Syst. 2023, 71, 309–322. [Google Scholar] [CrossRef]
- Rozza, G. Fundamentals of Reduced Basis Method for Problems Governed by Parametrized PDEs and Applications. In CISM International Centre for Mechanical Sciences, Courses and Lectures; Springer International Publishing: Manhattan, NY, USA, 2014; Volume 554, pp. 153–227. [Google Scholar]
- Benner, P.; Gugercin, S.; Willcox, K. A Survey of Projection-Based Model Reduction Methods for Parametric Dynamical Systems. SIAM Rev. 2015, 57, 483–531. [Google Scholar] [CrossRef]
- Chinesta, F.; Huerta, A.; Rozza, G.; Willcox, K. Model Reduction Methods. In Encyclopedia of Computational Mechanics, 2nd ed.; Wiley: Hoboken, NJ, USA, 2017; pp. 1–36. [Google Scholar]
- De Bartolomeis, A.; Newman, S.T.; Shokrani, A. High-Speed Milling Inconel 718 Using Electrostatic Minimum Quantity Lubrication (EMQL). Procedia CIRP 2021, 101, 354–357. [Google Scholar] [CrossRef]
- Wang, F.; Wang, Y. Effect of Cryogenic Cooling on Deformation of Milled Thin-Walled Titanium Alloy Parts. Int. J. Adv. Manuf. Technol. 2022, 122, 3683–3692. [Google Scholar] [CrossRef]
- Su, J.-C.; Young, K.A.; Ma, K.; Srivatsa, S.; Morehouse, J.B.; Liang, S.Y. Modeling of Residual Stresses in Milling. Int. J. Adv. Manuf. Technol. 2013, 65, 717–733. [Google Scholar] [CrossRef]
- Jiang, X.; Kong, X.; Zhang, Z.; Wu, Z.; Ding, Z.; Guo, M. Modeling the Effects of Undeformed Chip Volume (UCV) on Residual Stresses during the Milling of Curved Thin-Walled Parts. Int. J. Mech. Sci. 2020, 167, 105162. [Google Scholar] [CrossRef]
Reference | Workpiece Material | Tool Type | Input Parameters | Cutting Force Prediction Model | ||||
---|---|---|---|---|---|---|---|---|
Feed Rate, fz (mm/tooth) | Axial Depth of Cut, ap (mm) | Radial Depth of Cut, ae (mm) | Cutting Speed, νc (m/min) | Tool Diameter, d (mm) | ||||
[6] | 2024-T351 aluminum alloy | Custom made solid carbide flat end-mills | 0.02 | 8 | 0.3125 | N/S | 4 | |
0.04 | 12 | 0.625 | 8 | |||||
0.06 | 24 | 1.25 | 12 | |||||
[40] | Al2014-T6 aluminum alloy | TiAlN coated (monolayer) solid carbide ball-end mill | 0.02 | 0.2 | 0.1 | 75 | 10 | ; ; |
0.07 | 0.6 | 0.3 | 100 | |||||
0.12 | 1.0 | 0.5 | 125 | |||||
0.17 | 1.4 | 0.7 | 150 | |||||
0.22 | 1.8 | 0.9 | 175 | |||||
[41] | Ti-6Al-4V alloy | YG8 carbide tool | 0.08 | 3 | 1.6 | 140 | 10 | |
[42] | 7050-T7451 aluminum alloy | K10 cemented carbide | 0.10 | 1 | 8 | 1005 | 32 | |
0.12 | 2 | 12 | 1206 | |||||
0.14 | 3 | 16 | 1407 | |||||
0.16 | 4 | 20 | 1608 | |||||
[43] | 55NiCrMoV6 steel | tungsten carbide ball-end mill | 0.05 | 0.3 | N/S | 200 | 10 |
Reference | NN Type | Input Layer Neurons | Hidden Layer Neurons | Output Layer Neurons | Training Data Set | Training Algorithm |
---|---|---|---|---|---|---|
[198] | FFNN | ap, ae, fz, n, d, z, γ, α | 1–6 | maxF, meanF, minF | Experimental | BP |
[199] | FFNN | cutting fluid (yes/no), machined material type and HB, d, type of insert, vc, fz, ap, ae, flank wear | 3, 6 | Fx, Fy, Fz | Experimental | BP |
[200] | FFNN | fz, vc, ap, ae, d, tool geometry, machined material type and HB | 3, 5, 7 | Fx, Fy, Fz (peak and average) | Experimental | BP |
[201] | FFNN | ap, ae, fz, θi | 10, 20, 50, 100 | Fx, Fy (instantaneous) | Mechanistic force model | BP |
[202] | CNN | CFI, fz, n, z, i, Kte, Kre, Kae, Ktc, Krc, Kac | - | Fx, Fy, Fz (instantaneous) | Mechanistic force model | BP |
Analyzed Feature | Small Series Production | Large Series Production |
---|---|---|
Parts’ diversity | Wide variety of parts, with varied geometries | Reduced diversity of parts |
Cutting force prediction method | Statistical methods, since they allow the lowest costs; average cutting forces | Adaptive control, because its costs are amortized over time; instantaneous cutting forces |
Quality and productivity issues | The cutting forces are not constant; very large fluctuations occur when tool wear increases and built-up edges appear. Therefore, an average cutting force value lower than the one calculated will be used, leading to productivity losses. | Adaptive control models track the instantaneous values of cutting force, which makes the system response prompt and productivity maximum. |
Pursued objectives in the optimization process | Quality of parts is the main objective, while the production cost is the second. | The objective function is productivity within the required quality limits. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Radu, P.; Schnakovszky, C. A Review of Proposed Models for Cutting Force Prediction in Milling Parts with Low Rigidity. Machines 2024, 12, 140. https://doi.org/10.3390/machines12020140
Radu P, Schnakovszky C. A Review of Proposed Models for Cutting Force Prediction in Milling Parts with Low Rigidity. Machines. 2024; 12(2):140. https://doi.org/10.3390/machines12020140
Chicago/Turabian StyleRadu, Petrica, and Carol Schnakovszky. 2024. "A Review of Proposed Models for Cutting Force Prediction in Milling Parts with Low Rigidity" Machines 12, no. 2: 140. https://doi.org/10.3390/machines12020140
APA StyleRadu, P., & Schnakovszky, C. (2024). A Review of Proposed Models for Cutting Force Prediction in Milling Parts with Low Rigidity. Machines, 12(2), 140. https://doi.org/10.3390/machines12020140