
Citation: He, C.; Zhang, J.; Lin, C. An

Analysis of the Kinematical

Characteristics of an Eccentric

Curve-Face Gear Pair with

Compound Motion. Machines 2024, 12,

162. https://doi.org/10.3390/

machines12030162

Received: 18 January 2024

Revised: 15 February 2024

Accepted: 19 February 2024

Published: 27 February 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

machines

Article

An Analysis of rhe Kinematical Characteristics of an Eccentric
Curve-Face Gear Pair with Compound Motion
Chunjiang He 1,*, Jinxu Zhang 1 and Chao Lin 2

1 School of Mechanical and Power Engineering, Chongqing University of Science and Technology,
Chongqing 401331, China; 2022203018@cqust.edu.cn

2 State Key Laboratory of Mechanical Transmission for Advanced Equipment, Chongqing University,
Chongqing 400044, China; linchao@cqu.edu.cn

* Correspondence: chunjianghe@cqust.edu.cn

Abstract: An atypical face gear pair with complex transmission motion can be used in intermittent
reciprocating mechanisms with more precise transmission and a much higher capacity than conven-
tional mechanisms, such as cams and linkages. In this study, we derive a mathematical equation for
the complex tooth surface of this gear pair. We indicate the change in root cutting, top sharpening
and the effective width of the tooth surface with different parameters. Additionally, we derive the
governing equation for the kinematical characteristics of this eccentric curve-face gear pair with a
rigid–flexible coupling system, revealing the continuous intermittent contact principle of this gear
type with different parameters. Boundary conditions for the gear pair are proposed, demonstrating
that the vibration of the gear pair is more obvious, even at a low velocity. In addition, the critical
velocity, which mostly ranges from 300 rpm to 400 rpm, is affected by the stiffness of the frames
and the parameters of the tooth surfaces. The interval space and interval time of the intermittent
contact system are ∆d ≤ 0.3 mm and ∆t ≤ 5.6 × 10−4 s, with visible surface sliding on the contact
area. It is shown that the contact points are firstly concentrated at the outer part of the tooth surface
and that the meshing will break off at the first tooth with the minimum inner radius RGi−min. These
theoretical results, which have been verified experimentally, provide theoretical support for further
analysis and the better application of this unconventional gear pair.

Keywords: compound motion; intermittent meshing; critical velocity; parameter pattern

1. Introduction

As a compound-motion gear pair, an eccentric curve-face gear pair has the advantages
of both gear pair and cam mechanisms with high capability. To some extent, it can be
used as a replacement for cam, rod and variable gear mechanisms in, for example, impact
drilling, variable pumps, continuous variable transmission and so on. In order to achieve
reciprocating motion and rotation simultaneously, the two output shafts of the gear pair
must be combined via two parts: a flexible axis for movement and a rigid axis for rotation.
Thus, a spring is necessary to hold the axial force, limit the response displacement and reset
the position of the moving gear quickly, which is quite different from a normal gear system.

The stiffness of the spring is much lower than the other frame of the gear system. Thus,
many research works have only focused on the natural frequency and forced vibration of
the spring. Nirala and Michalczyk focused on the natural frequencies of a compression
spring using the FEM method, showing that the natural frequency of a helical compres-
sion spring will reduce in the transverse mode but increase in both the compression and
torsional modes [1,2]. Gu and Yang investigated helical springs subjected to axial loads
under different dynamic conditions and described the relationships between the design
parameters and the overall mechanical performances of helical springs [3,4]. Hamza and
Renno established the mathematical formulas of springs, which are angular and axial
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deformations and velocities, with a much smaller and faster FE method [5,6]. Further
research on springs with a rigid part has been performed by Zhou, Pawar and Gu and
others. In detail, Zhou presented an enhanced flexible dynamic model for a cam profile
with a spring, like a valve train with clearance and multi-directional deformations, and
verified it by experiment [7]. Pawar and Gu developed a transient non-linear model for the
natural frequencies and dynamic responses of a spring, with consideration of the material,
internal vibration and coil collision [8,9]. Baran presented the analysis of cylindrical springs
with different geometric parameters, making it possible to estimate the suitability of a
given spring [10]. These studies indicate that the combined application of a spring and
rigid cam is feasible, indicating that the response of the spring is affected by the geometric
parameters, operating velocity and so on.

An eccentric curve-face gear pair is developed from a conventional gear pair, but
the transmission pattern and kinematic characteristics of it are very different from those
of conventional pairs because the coupling system is combined with the flexible spring
and rigid frame. In the current context, this compound-motion gear pair has only been
proposed for a few years, with few scholars focused on it, such as Chao Lin, Dawei Liu and
so on. These results indicate that the transmission method for this gear pair can be similar
to the method for a conventional gear pair [11–14]. According to the complicated and heavy
geometrical models required during the establishing process of the tooth surface, Maksat
developed a novel mathematical model with non-linear equations that were reduced
more than those used for the conventional method, making the tooth contact analysis
much easier [15,16]. Shaabidov and Xiao investigated the dynamic performance and
reliability of a gearbox with time-varying velocity, and variations in the material, strength
and size of the abrasive particles, obtaining the mapping rules of the gear pair [17,18].
Jasem and Xie focused on the gear mesh stiffness to validate their proposed gear dynamic
model, indicating that the wave face kinematic reducer does not require fulfillment of
the conditions for the equality of the center distances [19,20]. Wang and Lo conducted
static and dynamic analyses of a spur gear pair with linear tip relief and longitudinal
crowning, revealing that the gear dynamic model is effective and advanced for general gear
systems, a narrow-faced gear, a wide-faced gear and a gear with tooth profile errors [21,22].
He and Zhou established the time-varying mesh stiffness affected by gear eccentricity
and non-involute parameters, showing the dynamic difference between conventional
and unconventional gear pairs [23,24]. Yu and He established a gear dynamic model
to investigate the system–structure coupling dynamic analysis by combining the mesh
stiffness and the time-varying pressure angle, explaining the comprehensive and strong
influence of dynamic characteristics caused by the parameters of the tooth surface and
structure [25,26].

According to the previous research, we found that the transmission characteristics of
an eccentric curve-face gear pair will be influenced by the flexible spring, rotating velocity
and parameters of the gear structure. In addition, Spitas found that the dynamic contact
situation of the gear pair will result in intermittent contact with multiple DOF and variable
torque, and they proposed a simulation method for the tooth contact loss and contact
reversal with different parameters [27]. Marjanovic investigated the friction coefficient
between the sliding velocity and contact force, indicating that the coefficient has a variable
value [28]. These results suggest a reference basis for an eccentric curve-face gear with a
variable radius and multiple motions.

In this study, we derive a mathematical equation for the unconventional tooth surface
of an eccentric curve-face gear pair. Additionally, a mathematical model for contact points
on the engaged tooth surface is constructed, indicating that the transmission process of
this gear pair involves continuously intermittent collision rather than rolling. Further, the
governing equation for the response of this rigid–flexible coupling system is presented. The
further discussion about this kinematic response model with different parameters shows
that the critical velocity of the gear pair is much lower, and the kinematic displacement is
more obvious, than those of the normal face gear pair. These results, which are verified by
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experiment, provide theoretical support for the further analysis and practical application
of this compound-motion gear pair.

2. Transmission Model of Eccentric Curve-Face Gear Pair
2.1. Equation of Engagement Tooth Surface with Complex Motion

Similarly to a conventional gear pair with a fixed rotating axis, the engaged tooth
surface of an eccentric curve-face gear pair can be established using the novel mathematical
method and localized contact method [15,29]. Figure 1 shows the fabricating process of an
eccentric curve-face gear pair with the same hypothetical shaping tool.
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Figure 1. Engaged tooth surface of eccentric curve-face gear. (a) Conjugate meshing of the three 
gears; (b) relationship between non-circular gear and shaping tool. 
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Figure 1. Engaged tooth surface of eccentric curve-face gear. (a) Conjugate meshing of the three gears;
(b) relationship between non-circular gear and shaping tool.

As demonstrated in Figure 1, O1-X1Y1Z1 and O′
1-X′

1Y′
1Z′

1 are the coordinates of an
eccentric curve-face gear with fixed axis Z1 and movable axis Z′

1. O2-X2Y2Z2 and O′
2-X′

2Y′
2Z′

2
are the coordinates of the shaping tool with axis Z2 fixed and axis Z′

2 movable. Fixed
O3-X3Y3Z3 and movable O′

3-X′
3Y′

3Z′
3 are the coordinates of the non-circular gear. θ1 and

R(θ1) are the rotating angle and variable radius of the target eccentric curve-face gear,
rn(θ1) is the variable radius of the non-circular gear at θ1, E(θ1) is the undulating height of
the pitch surface on the curve-face gear, θ2 and θ3 are the responding angles of the shaping
tool and the non-circular gear to θ1, Ln(θ1) is the distance between O2 and O3, and L(θ1)
is the distance between O1 and O3 with a constant vertical part LV . Both the undulating
times n and eccentricity times N are set as 1 in Figure 1.
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According to Figure 1a, the time-varying L(θ1) with
→

L(θ1) =
→

R(θ1) +
→
LV can also be

written as
→

L(θ1) =
→

E(θ1) +
→

R(θ1) +
→

rn(θ1). During the generating process, the shaping tool
undergoes purl rolling with both the eccentric curve-face gear and the non-circular gear
at the same point P. Therefore, the time-varying transformation matrices from movable
O′

2-X′
2Y′

2Z′
2 to movable O′

3-X′
3Y′

3Z′
3 are proposed as follows:

MO2O′
2
=


cos θ2 − sin θ2 0 0
sin θ2 cos θ2 0 0

0 0 1 0
0 0 0 1

 and MO3O2 =


1 0 0 Ln(θ1) cos(θ3 − δ)
0 1 0 Ln(θ1) sin(θ3 − δ)
0 0 1 0
0 0 0 1


MO′

3O3
=


cos θ3 sin θ3 0 0
− sin θ3 cos θ3 0 0

0 0 1 0
0 0 0 1



where Ln(θ1) =

√[
Ln(θ1)

2 + r2 − 2Ln(θ1)r sin δ
]
, δ = arccos

[ (
Ln(θ1)

2+rn(θ1)
2−r2

)
(2Ln(θ1)rn(θ1))

]
,

θ2 = π/2 + δ − θ3 − λ and µ = arc tan[rn(θ1)/rn(θ1)
′].

Similarly, the transformation matrix MO′
1O′

3
from movable O′

1-X′
1Y′

1Z′
1 to movable

O′
3-X′

3Y′
3Z′

3 can be analytically presented as

MO′
1O′

3
=


− sin(θ3) sin(θ1) cos(θ3) sin(θ1) cos(θ1) −R(θ1) cos(θ1)
− sin(θ3) cos(θ1) cos(θ3) cos(θ1) − sin(θ1) R(θ1) sin(θ1)

− cos(θ3) − sin(θ3) 0 E(θ1)
0 0 0 1


Therefore, the tooth surface of the generated curve-face gear can be deduced as

→
RP(θ1) = MO′

1O′
3
× MO′

3O3
× MO3O2 × MO2O′

2
×

→
rP(θ1)

=



 − sin δ · sin(θ1) ·
√
[rn(θ1)]

2 + r2 − 2r · rn(θ1) · sin λ

− cos(θ1) · rbs+Ln(θ1)R(θ1)·cos(λ+θ3−θos−θs−δ)
i13·cos(λ+θ3−θo2−θs)

rbs sin(θ2) · [sin(λ + θ3 − θos − θs − δ) + (θ2) · cos(λ + θ3 − θos − θs)]


 − sin δ · cos(θ1) ·

√
[rn(θ1)]

2 + r2 − 2r · rn(θ1) · sin λ

+ sin(θ1) · rbs+Ln(θ1)R(θ1)·cos(λ+θ3−θos−θs−δ)
i13·cos(λ+θ3−θos−θs)

−rbs cos(θ2) · [sin(λ + θ3 − θos − θs − δ) + (θ2) · cos(λ + θ3 − θos − θs)]


[

E(θ1)− cos δ ·
√
[rn(θ1)]

2 + r2 − 2r · rn(θ1) · sin λ

−rbs[sin(λ + θ3 − θos − θs − δ) + θs · cos(λ + θ3 − θos − θs − δ)]

]

1



(1)

where rbs, θs and θos are the radius, expansion angle and starting angle of the tooth profile
of the cylindrical shaper tool; i13 is the transmission ratio of the eccentric curve-face gear
and the non-circular gear with i13 = [rn(θ1)]/[RP(θ1)]at point P.
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The mathematical equation for the tooth surface of the paired non-circular gear can be
proposed using the same method as in Equation (1):

→
rn(θ1) = MO′

3O3
× MO3O2 × MO2O′

2
×

→
rP(θ1)

=



[
rbs

[
cos(θos + θs + θ3 − θ2)
−(θos + θs) · sin(θos + θs + θ3 − θ2)

]
+ Ln(θ1) · cos(θ2 − δ)

]
[
−rbs

[
cos(θos + θs + θ3 − θ2)
+(θos + θs) · sin(θos + θs + θ3 − θ2)

]
+ Ln(θ1) · cos(θ2 − δ)

]
us

1


(2)

where us is the width of the non-circular gear.

2.2. Effective Surface with Eccentric Pitch Curve

Taking the limitations of root cutting and top sharpening into account, the surface
of the eccentric curve-face gear cannot be designed without restriction. The positions
and normal vectors on the tooth surfaces of the three gears are always equal at the

same meshing point P, which can be demonstrated as
→

RP(θP) =
→

rn(θP) =
→

r(θP) and
→

VP(θP) =
→

Vn(θP) =
→

V(θP) in Figure 2.
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As shown in Figure 2, Σ1, Σ2 and Σ3 are the tooth surfaces of the eccentric curve-face
gear, non-circular gear and shaping tool, respectively. L1 and L2 are the contact lines of the
shaping tool with the eccentric curve-face gear and non-circular gear.

The shaping tool, which is shown in Figure 1, is a cylindrical gear required for a good

contact situation. Therefore, the radius
→

r(θP) and vector
→

V(θP) on the movable O′
2-X′

2Y′
2Z′

2
of the shaping tool are constant:

→
r(θP) =


rbs[cos(θos + θs) + θs · sin(θos + θs)]
rbs[sin(θos + θs)− θs · cos(θos + θs)]

us
1

 (3)

→
V(θP) =

 cos(θos + θs)
− sin(θos + θs)

0

 (4)

Substituting Equations (1)–(4) into the relationship equations
→

RP(θP) =
→

rn(θP) =
→

r(θP)

and
→

VP(θP) =
→

Vn(θP) =
→

V(θP), the root cutting and top sharpening results can be obtained.
The theoretical tooth surface can be divided into three parts: the inner part with root
cutting, the outer part with top sharpening and the effective generated part. In addition,
the appearance of the root cutting and top sharpening will decrease the thickness of the
tooth and increase the variation in the surface curvature. Therefore, it is necessary to
analyze the variable effective tooth width for further application of this gear pair. Table 1
shows the values of different parameters of the eccentric curve-face gear pair. Substituting
these different values into the relationship Equations (1)–(4), the variable effective tooth
width can be shown as per Figures 3–5.

Table 1. Variable parameters of eccentric curve-face gear pair.

Parameter Range Parameter Range

Base adius of eccentric
curve-face gear R(θ1) (mm) 70–72 Eccentricity times N 1, 2, 3

Width d1 of eccentric curve-face
gear (mm) 8–20 Eccentricity distance

dN (mm) 5–10

Undulating times n 2, 3, 4 Range of height E(θ1)
(mm) 6–12

Tooth number Z of shaping tool 18, 20, 22 Modulus m 1, 1.25, 1.5

Radius r of shaping tool (mm) 18–44 Width d2 of shaping
tool (mm) 8–20
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When the pitch radius increases from 70 mm to 72 mm, the generated effective tooth
width WG increases first with decreased root cutting and then decreases with increas-
ing top sharpening. Specifically, there is a constant value that is obtained between the
minimum-top-sharpening and no-root-cutting scenarios with the theoretical pitch curve set as
RTi +

RT0−RTi−WC−WS
2 ≤ R(θ) ≤ RTo − RT0−RTi−WC−WS

2 .
Figure 4 illustrates the cutting height of the eccentric curve-face gear with different

eccentricity times N = 1, 2, 3. This indicates that the eccentricity times N only affect the
variable times of the cutting height but not the values. Figure 5 shows that the effective
width varies with different eccentricity distance dN , modulus m and width d2 of the non-
circular gear. In detail, the eccentricity distance dN has a positive effect on the width and
a negative effect on the modulus. When the width is d2 ≥ d1, it has no influence on d1,
the undulating times n or the range of height E(θ1). Therefore, the design width of the
effective tooth surface should be set as a constant value with WT−max < WG−min for further
manufacturing and application.

3. Kinematic Characteristics of Rigid–Flexible Coupling Gear System

In order to achieve rotation and translation simultaneously, the axis of the eccentric
curve-face gear is fixed with the axis of the paired non-circular movable gear. The engage-
ment of this gear pair is complex and prone to sliding, making the contact point offset. The
spring is necessary to counteract the radial sliding force and ensure that the non-circular
gear resets quickly.
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3.1. Response Equation of Rigid–Flexible Coupling System

The spring on the non-circular gear shows much less stiffness than the frame of a
conventional gear pair, so it will cause a more obvious kinematic response; it cannot hold
the relative displacement of the engaged tooth surface with too large a radial force. During
the meshing process of this eccentric curve-face gear pair, the axis of the non-circular gear
is usually fixed in the Z1 direction, described as rP(θP) + E(θP) = LV (if necessary, it can
also be movable both in the Z1 and Z3 directions simultaneously). Therefore, the kinematic
response of this rigid–flexible coupling system is mainly manifested as the displacement
characteristics of a non-circular gear in the Z3 direction, as shown in Figure 6.
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As illustrated in Figure 6, M1 is the constant driving torque, FT and FN are tangential
and normal contact forces at the point P. α, and ρ represents the offset angles between
FT and FN in the horizontal and vertical planes. υ is the offset angle between FTn and FN ,
which can be obtained using the parameters in Figure 1b. FTnis the response tangential
force on the non-circular gear.

The eccentricity times and order of the non-circular gear in Figure 6 are set as N = 1
and n3 = 2. The response characteristics of this rigid–flexible coupling system are mainly
reflected in the response displacement DZ(t) of the non-circular gear and force FZ(t) of the
spring. M, CZ and KZ are the rigid mass, damping coefficient and stiffness of this coupling
system. During the meshing process of the gear pair, the relationship of these forces can be
expressed as 

FT(t) · RP(θP) = M1
θP = ω1t

α = arccos
[
[RI(θP)]

2·[RP(θP)]
2−[dN(θP)]

2

2·RP(θP)·RI(θP)

]
FZ(t) = FT(t) · sin α

FN(t) =
FT(t)·cos α

cos ρ

FTn(t) = FN(t) · sin υ

(5)

Therefore, the response forces on the non-circular gear are variable in both the tan-
gential and axial directions. The axial component force FZ(t) causes the displacement of
the non-circular gear, and the tangential force FTn(t) causes the time-varying rotational
acceleration of the non-circular gear. In addition, the axial force FZ(t) is carried by the
spring, so the movement of the coupling system must involve intermittent responses due
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to the intermittent hysteresis characteristics and lower frequency of the spring compared to
other rigid frames. The governing equation for the free vibration SZ(t) of the non-circular
gear in this coupling system is given with the deformation of the rigid parts ignored.

M ·
· ·

SZ(t) + CZ
·

·SZ(t) +KZ · SZ(t)− KZ · RZ(0)− CZ ·
·

RZ(0) = 0
FZ(0) = (LS − RZ(0)) · KZ
SZ(0) = DZ(tk)− DZ(tk−1)

·
SZ(t) =

∂SZ(t)
dt· ·

SZ(t) =
∂2SZ(t)

dt2

(6)

where RZ(0) is the initial length of the spring at the kth surface collision. LS is the initial
length of the spring.

The parameters of this eccentric curve-face gear pair are periodic, so FZ(t) and DZ(t)
are periodic; this cannot be described directly. Based on the Fourier series, SZ(t) can be
presented as

SZ(t) =
a0

2
+

∞

∑
j=0

(aj cos(njωt) + bj sin(njωt)) (7)

where aj, bj are the jth coefficients and are shown as aj = 2
∫ T

0 DZ(t) cos(njωjt)dt/T,

bj = 2
∫ T

0 DZ(t) sin(njωjt)dt/T, a0 = 2
∫ T

0 DZ(t)dt/T.
Additionally, the solution for the jth sub-equation of Equation (7) can be given as

Saj(t) =
aj/Ky√

(1−(ω · nj/ωn)
2)

2
+(

2τω·nj
ωn )

2
cos(ωt · nj − ϕj)

Sbj(t) =
bj/Ky√

(1−(ω · nj/ωn)
2)

2
+(

2τω·nj
ωn )

2
sin(ωt · nj − ϕj)

ϕj = tan−1
(

2τω · nj/ωn · (1 −
(

ω·nj
ωn

)2
)

) (8)

where τ is the damping coefficient with τ = CZ/
(
2
√

KZ M
)
, ωn is the natural frequency

with ωn =
√

KZ/M, and ϕj is the phase angle of the jth sub-equation.
Therefore, the total response equation SZ(t) of this coupling system is

SZ(t) =
a0

2KZ
+

∞

∑
n=1

(
aj/KZ√(

1 − (ω · nj/ωn)
2
)2

+ (
2τω·nj

ωn
)

2
cos(ωt · nj − ϕj) +

bj/KZ√(
1 − (ω · nj/ωn)

2
)2

+ (
2ωτ·nj

ωn
)

2
sin(ωt · nj − ϕj)) (9)

Substituting Equation (9) into Equation (6), the free vibration responses of this coupling
system between any two adjacent collisions (k − 1)th and the kth collision can be obtained.
The free response values of this rigid–flexible coupling system with different parameters,
i.e., velocity ω, stiffness KZ, initial force FZ(0) and displacement DZ(0), are proposed as
shown in Figures 7–10.

Figure 7 shows the free vibration of this rigid–flexible coupling system with single
contact. Visibly, the change in response values is not completely proportional to the stiffness;
with tiny increases in stiffness, the response displacement and required time will decrease
more significantly. However, the stronger the spring, the more difficult the installation.
The stiffness KZ of the spring should be set to an appropriate value for good installability
and transmission performance. Figure 8 shows that the rotational velocity ω only affects
the response value, which is also positive in respect of the vibration value. The maximum
width dG of the eccentric curve-face gear in this paper is 20 mm, and the two marked initial
response displacements are 11.9 mm with ω = 6 r/s and 23.8 mm with ω = 8 r/s. This
shows that the response with ω = 8 r/s is greater than the maximum tooth width and the
increase in the generated width is beneficial for a higher critical velocity, so the operating
velocity of this gear pair should be limited.
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Figures 7–9 show the vibration values caused by a single kth collision. It is impossible
for this to occur during the gear meshing process because of the numbers of intensive
collisions, but the free vibration of any single collision will be covered by the further
collisions, as illustrated in Figure 10. With meshing, the single value will be included
in the superposition values that result from numerous collisions, exhibiting a consistent
fluctuation rather than significant periodic changes with the eccentricity distance.

3.2. Interval-Separated Transmission Characteristics

Figures 8–10 show the free response characteristics of any (k − 1)th collision, which
appear at the separating time during any two adjacent collisions. The non-circular gear
and the eccentric curve-face gear rotate at constant velocities during the separation time.
Therefore, the kth contact results from the following three situations: 1, the kth contact point
on the eccentric curve-face gear catches up with it on the non-circular gear; 2, the kth contact
point is created by the first spring-back collision of the coupling system; 3, the kth contact
point is created by the exact fit of the respective theoretical meshing points, as shown in
Figure 11.

As demonstrated in Figure 11a,b, the governing equation for the kth contact point is
presented only by the contact between two rigid tooth surfaces with no embedding area,
which no longer satisfies the pure meshing of the pitch curves as a normal gear pair. The pitch
curves in situation 1 are detached, as are those in situation 2. Therefore, the relative sliding
velocity v31 is obvious and there must be conspicuous surface sliding in situations 1 and 2.

According to the mathematical Equations (6)–(9) and the response characteristics in
Figures 7–10 with different variable parameters, the responses of the spring system vary
with time and position. In addition, the continuous collision transmission can be divided
into the three situations in Figure 11. Therefore, there should be a critical angular velocity,
with the sliding distance not exceeding the width of the tooth (described as RZ(t) < dG)
and the opposite tooth surface of the (n + 1)th tooth not meshing (shown as ∆(t) > 0) for
this compound-motion gear pair to ensure a continuous meshing process. As shown in
Figure 6, the width dG and thickness HG of the tooth are changeable with different radii
R(θ1). For good manufacturing performance, dG should be set as constant d. Thus, the
boundary conditions for the correct meshing of this gear pair can be presented as follows: Rn

Z(t) ≤ d∫ ∆t
0

[
rP(θ

n
3 + ω3t)

]
dt =

∫ ∆t
0 [RP(θ1 + ω1t)]dt∫ ∆t

0

[
rP(θ

n
3 − θn+1

os − θn+1
s + ω3t)

]
dt ≤ Hn+1

G +
∫ ∆t

0 [RP(θ1 + ω1t)]dt

 (10)

where superscript n is the tooth number; ∆t is the interval time between the (n + 1)th and
nth collision.
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The interval time ∆t of the two adjacent collisions can be proposed by
→

RP(θP) =
→

rn(θP)

without
→

VP(θP) =
→

Vn(θP), because of the relative displacement of this gear pair. The
rotation angles θ1 in matrices MO3O3′, MO3O2 and MO2O2′should be updated to θ1 + ω1∆t
with θ′2 = θ2 + ω2∆t, θ′3 = θ3 + ω3∆t. Substituting Equations (1) and (2) and RZ(t) into
the above positional relationship equation, the (n + 1)th meshing point Pn+1 on the tooth
surface of the curve-face gear with interval time ∆t can be constructed as
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→
Rn+1(θP + ω1∆t) =

=



 − sin(δ′) · sin(θP + ω1∆t) ·
√
[rn(θP + ω1∆t)]2 + r2 − 2r · rn(θP + ω1∆t) · sin λ′

cos(θP + ω1∆t) · rbs+Ln(θP+ω1∆t)·R(θP+ω1∆t)·cos(λ′+θ3+−θos−θ′s−δ′)
i13·cos(λ′+θ′3−θo2−θ′s)

−rbs · sin(θ′2)[sin(λ′ + θ′3 − θos − θ′s − δ′) + (θ′2) · cos(λ′ + θ′3 − θos − θ′s)]


 − sin(δ′) · cos(θP + ω1∆t) ·

√
[rn(θP + ω1∆t)]2 + r2 − 2r · rn(θP + ω1∆t) · sin λ′

+ sin(θP + ω1∆t) · rbs+Ln(θP+ω1∆t)·R(θP+ω1∆t)·cos(λ′+θ3−θos−θ′s−δ)
i13·cos(λ+θ′3−θos−θ′s)

−rbs · cos(θ′2)[sin(λ′ + θ′3 − θos − θ′s − δ′) + (θ′2) · cos(λ′ + θ3 − θ′os − θ′s)]


[

E(θP + ω1∆t)− cos(δ′) ·
√
[rn(θP + ω1∆t)]2 + r2 − 2r · rn(θP + ω1∆t) · sin λ′

−rbs[sin(λ′ + θ′3 − θos − θ′s − δ′) + (θ′s) · cos(λ′ + θ′3 − θos − θ′s − δ′)]

]

1



(11)

where δ′, λ′, θ′s, u′
s are the corresponding parameters of the curve-face gear at point Pn+1.

The decomposition of point Pn+1 on the non-circular gear can be obtained using the
same method as Equation (11).

→
rn+1(θP + ω1∆t) =

=



[
rbs

[
cos(θos + θ′s + θ′3 − θ′2)
−(θos + θ′s) · sin(θos + θ′s + θ′3 − θ′2)

]
+ Ln(θP + ∆t) · cos(θ′2 − δ′)

]
[
−rbs

[
cos(θos + θ′s + θ′3 − θ′2)
+(θos + θ′s) · sin(θos + θ′s + θ′3 − θ′2)

]
+ Ln(θP + ∆t) · cos(θ′2 − δ′)

]
u′

s
1


(12)

The interval time ∆t is derived as

→
Rn+1(θP + ω1∆t) =

→
rn+1(θP + ω1∆t) (13)

The normal vector
→

Vn+1(θP + ω1∆t) of FT at meshing point Pn+1 on the curve-face
gear can be given as

→
Rn+1(θP + ω1∆t) ·

→
Vn+1(θP + ω1∆t) = 0 (14)

Therefore, by combining Equations (11)–(14), the position and normal vector of the
(n + 1)th contact point are solved. Additionally, the initial value of FT , FN , FZ, α, υ, ρ and
DZ(0) at point Pn+1 are proposed. Figure 12a indicates the change in contact points on the
same tooth surface from root to top with the parameters in Table 1. Figure 12b demonstrates
the numbers of contacts on the tooth surface in a whole meshing cycle of the eccentric
curve-face gear pair.

Figure 12a shows the displacement of the contact point with different rotational
velocities on the same tooth surface. The initial contact points of these three situations are
coincident at the same theoretical positions. With velocity increases, the contact point will
be closer to the outer part and the contact points become much denser. This shows that
the contact point will move outward in the width direction firstly and quickly, followed
by a rapid and dense movement in the height direction until disengagement. The contact
numbers in Figure 12b were obtained with ω = 1.5r/s, demonstrating that the eccentricity
time N affects the numbers of contact points by increasing the initial force FZ(0). Specifically,
with radius RP(θP) decreasing, the response distance becomes closer to the outer part and
the contact numbers decreases. The meshing will break off with too large a response
displacement SZ(t) ≥ dG at the minimum radius RG−min firstly with the increase in
velocity. According to Equation (13), the values of the interval space and interval time
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should be ∆d ≤ 0.3 mm and ∆t ≤ 5.6 × 10−4 s, with the maximum height of the eccentric
curve-face gear set as H(θP) = 12 mm, ultimately exhibiting dense contact points and
obvious surface sliding on the contact area.
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4. Experiments

According to the previous theoretical analysis, the transmission characteristics of the
compound-motion eccentric curve-face gear can be expressed as a large number of inter-
mittent contact points on the tooth surface and tiny intermittent response displacements
between the two tooth surfaces of the gear pair. For the verification of these theoret-
ical results, we performed two experiments: (1) surface engagement with pre-coating;
(2) vibration detection of the non-circular gear.

Experiment 1 was focused on the verification of intermittent contact points and surface
sliding on the tooth surface. During meshing, the paint at the contact points is removed and
the tooth surface is exposed, while the paint with the pre-coating in the non-contact areas
still remains, as shown in the red zone (detected displacement and torque are provided as
Supplementary Materials). Experiment 2 was focused on the existence of tiny displacements.
To reduce the installation complexity, there was some common equipment between the two
experiments: for example, the load, the torque sensor, the drive motor, fixed blocks, etc.
The main differences were the displacement sensor and light spring, which were added to
obtain significant displacements in experiment 2. The spring in experiment 1 was strong to
limit the response displacements for a good contact situation. The differences between the
two experiments are indicated by a yellow border for experiment 2 and a blue border for
experiment 1, as shown in Figure 13.
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Based on the previous theoretical results, the critical rotating velocity of this exper-
iment was limited to n = 380 r/min. The loads of the two experiments were 30 N · m,
40 N · m and 50 N · m. The stiffnesses of the springs were 28 N/mm and 35 N/mm for
experiment 1 and 20 N/mm and 15 N/mm for experiment 2. The rotating velocities of the
drive motor were divided into two groups: 100 rpm, 240 rpm, 350 rpm for experiment 1
and 50 rpm, 100 rpm, 150 rpm for experiment 2. The displacement sensor was an LK-H050.
The further parameters of the experimental eccentric curve-face gear were set as in Table 2.

Table 2. Experimental parameters of eccentric curve-face gear.

Parameter Value Parameter Value

Minimum base radius RP(θP) (mm) 60 Eccentricity times N 1
Undulating times n 4 Eccentricity distance dN (mm) 7

Tooth number Z of shaping tool 18 Range of height E(θ1) (mm) 8
Width d2 of shaping tool (mm) 20 Modulus m (mm) 4

The comparison between the theoretical results and experimental results are presented
in Figure 14.
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Figure 14a shows the comparison of response values between the theoretical and
experimental results, restricted by the response rate of the detection system and the environ-
mental vibration; most detected tiny displacement values were covered by environmental
vibration, causing the frequencies of the effective experimental values to be much lower
than those of the theoretical values. However, the ranges of these two values are the same
and the concentration range of the theoretical values also corresponds to the range of
measured values. The teeth, which are numbered 1–10 in Figure 14b, represent a half-cycle
of the eccentric curve-face gear. The tooth marked 1 is the 1st tooth at the minimum radius
RGi−min, and the maximum radius RGi−max appears at the 10th tooth. Figure 14b indicates
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that the contact areas on these tooth surfaces are concentrated on the outer part and the
surface sliding is obvious from teeth 1 to 10 in the whole transmission process. Both the
smooth areas between the obvious sliding lines and the varying wear at the outer part of
the tooth surface indicate that free vibration of this coupling system exists. Further, the
detected vibration values prove that the free vibration response cannot be completed with
one reciprocating cycle before the next contact collision occurs, which is consistent with
situations 1 and 2 in Figure 11.

5. Conclusions

In this study, we compared the conjugated tooth surfaces of an eccentric curve-face
gear pair with those of a non-circular gear. We found that the effective surface and kinematic
characteristics of this gear pair are different from those of a normal face gear pair. In detail,
all the parameters, such as eccentricity time N, eccentricity distance dN , modulus m and
pitch radius R(θ1), affect the effective width of the generated tooth. Figures 3–5, which are
presented in Section 2, show that reducing the inner radius RGi will increase the area of
the root cutting and that increasing the outer radius RGo will increase the width of the top
sharpening, which is consistent with the previous research in Refs. [11,12]. The minimum
effective tooth width WG−min appeared at minimum radius R(θ1), as shown by the 1st
tooth in Figures 5 and 6 with θ1 = 0; the same result was found for the variable width in
Ref. [30].

Due to the existence of eccentricity distance dN , a non-circular gear undergoes both
rotational and radial motion concurrently. Therefore, the kinematic characteristics (response
displacement, contact points and critical velocity) of this gear pair are different from those
of a conventional gear pair, and they are mostly affected by the stiffness of the rigid–flexible
coupling system. When the stiffness of the spring increases, the interval time ∆t and
displacement SZ(t) decrease obviously, and the critical velocity ncv and collision number
increase with more dense collision points, but there is no effect on the width and height of
the tooth surface; the same results were obtained in Refs. [12,13,30].

The results in this paper indicate that the contact points of this gear pair are inter-
mittent, with many tiny intervals, as proposed in Ref. [27]. The motion of a non-circular
gear between any two adjacent collisions is combined with constant rotation and axial free
intermittent vibration; the interval time ∆t is very small and is not equal to the time on
any other collision point. There is also obvious surface sliding, which is caused by the
combined force of contact forces FT and FTn, similar to Ref. [28]. Specifically, the theoretical
analysis in this paper demonstrates that the intermittent contact response value of the gear
pair is given by the interval space ∆d ≤ 0.3 mm and interval time ∆t ≤ 5.6 × 10−4 s; also,
the critical velocity should be ncv ≤ 380 r/min.

In conclusion, we established mathematical models for the tooth surface and kinemati-
cal characteristics of an eccentric curve-face gear pair, performed experiments with different
parameters and compared the results with theoretical analysis, verifying the correctness of
the theoretical analysis for a complex tooth surface with compound motion.

In the future, our mechanical design work will focus on a more compact, more concise,
lighter and higher-efficiency domain. We will continue studying the prediction of tooth
contact characteristics with compound transmission, considering different parameters
(width, eccentric displacement, undulating times, modulus, etc.), based on the developed
intermittent collision model. We also plan to establish a high-precision and scalable manu-
facturing method for the complex tooth surfaces of this gear type. We hope the results can
be utilized to simplify the design of complex transmission mechanisms.



Machines 2024, 12, 162 17 of 18

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/machines12030162/s1, Table S1: detected displacement; Table S2:
detected torque.

Author Contributions: Methodology, C.H. and J.Z.; software, C.H. and C.L.; formal analysis, C.H.;
investigation, C.H. and J.Z.; writing—original draft preparation, C.H. and J.Z.; writing—review and
editing, C.L. All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by the Postdoctoral Research Project, grant number 202300054; the
Science Fund Project of Chongqing University of Science and Technology, grant number ckrc2021006;
and the Science and Research Program of Chongqing Municipal Education Commission, grant
number KJQN202101514.

Data Availability Statement: Data available on request due to restrictions.

Acknowledgments: The authors would like to thank the Postdoctoral Research Project, the Science
Fund Project of Chongqing University of Science and Technology and the Science and Research
Program of Chongqing Municipal Education Commission for their financial support in this research.

Conflicts of Interest: The authors declare no conflicts of interest.

References
1. Nirala, A.; Kumar, N.; Singh, D.B.; Singh, A.K.; Sharma, S.K.; Yadav, J.K.; Prasad, H.; Chandan, S.; Shrivastava, A.K. Simulation

analysis of composite helical spring for compression, torsional and transverse mode. Mater. Today-Proc. 2020, 28, 2263–2267.
[CrossRef]

2. Michalczyk, K. Natural transverse vibrations of helical springs in sections covered with elastic coatings. Bull. Pol. Acad. Sci.-Tech.
Sci. 2018, 65, 949–959. [CrossRef]

3. Gu, Z.W.; Hou, X.N.; Ye, J.Q. Design and analysis method of nonlinear helical springs using a combining technique: Finite
element analysis, constrained Latin hypercube sampling and genetic programming. Proc. Inst. Mech. Eng. Part C-J. Mech. Eng. Sci.
2021, 235, 5917–5930. [CrossRef]

4. Yang, C.J.; Zhang, W.H.; Ren, G.X.; Liu, X.Y. Modeling and dynamics analysis of helical spring under compression using a curved
beam element with consideration on contact between its coils. Meccanica 2014, 49, 907–917. [CrossRef]

5. Hamza, A.; Ayadi, S.; Hadj-Taieb, E. Propagation of strain waves in cylindrical helical springs. J. Vib. Control 2015, 21, 1914–1929.
[CrossRef]

6. Renno, J.M.; Mace, B.R. Vibration modelling of helical springs with non-uniform ends. J. Sound Vib. 2012, 331, 2809–2823.
[CrossRef]

7. Zhou, C.J.; Hu, B.; Chen, S.Y.; He, L.P. An enhanced flexible dynamic model and experimental verification for a valve train with
clearance and multi-directional deformations. J. Sound Vib. 2017, 410, 249–268. [CrossRef]

8. Pawar, H.B.; Desale, D.D. Optimization of Three Wheeler Front Suspension Coil Spring. Procedia Manuf. 2018, 20, 428–433.
[CrossRef]

9. Gu, Z.W.; Hou, X.N.; Keating, E.; Ye, J.Q. Non-linear finite element model for dynamic analysis of high-speed valve train and coil
collisions. Int. J. Mech. Sci. 2020, 173, 105476. [CrossRef]

10. Baran, R.; Michalczyk, K.; Warzecha, M. Experimental Analysis of Transverse Distribution Stiffness of Helical Compression
Springs. Acta Mech. Autom. 2023, 17, 95–103. [CrossRef]

11. Lin, C.; Liu, Y. Characteristic analysis and application of composite motion curve-face gear pair. J. Braz. Soc. Mech. Sci. Eng. 2016,
38, 1797–1804. [CrossRef]

12. Lin, C.; Liu, Y.; Gu, S.J. Analysis of nonlinear twisting vibration characteristics of orthogonal curve-face gear drive. J. Braz. Soc.
Mech. Sci. Eng. 2015, 37, 1499–1505. [CrossRef]

13. He, C.J.; Lin, C. Analysis of loaded characteristics of helical curve-face gear. Mech. Mach. Theory 2017, 115, 267–282. [CrossRef]
14. Liu, D.W.; Ren, T.Z.; Jin, X. Geometrical model and tooth analysis of undulating face gear. Mech. Mach. Theory 2015, 86, 140–155.

[CrossRef]
15. Temirkhan, M.; Bin, T.H.; Spitas, V.; Spitas, C. Parametric design of straight bevel gears based on a new tooth contact analysis

model. Arch. Appl. Mech. 2023, 93, 4181–4196. [CrossRef]
16. Temirkhan, M.; Spitas, C.; Wei, D.M. A computationally robust solution to the contact problem of two rotating gear surfaces in

space. Meccanica 2023, 58, 2455–2466. [CrossRef]
17. Shaabidov, S.A.; Irgashev, B.A. Computational Procedure of a Gearing Module of Spur Gear Transmissions on Wear Resistance of

Gearwheel Teeth. J. Frict. Wear 2019, 40, 431–436. [CrossRef]
18. Xiao, Z.M.; Cao, J.X.; Yu, Y.X. Mathematical Modeling and Dynamic Analysis of Planetary Gears System with Time-Varying

Parameters. Math. Probl. Eng. 2020, 2020, 3185624. Available online: https://www.hindawi.com/journals/mpe/2020/3185624/
(accessed on 16 March 2020). [CrossRef]

https://www.mdpi.com/article/10.3390/machines12030162/s1
https://www.mdpi.com/article/10.3390/machines12030162/s1
https://doi.org/10.1016/j.matpr.2020.04.558
https://doi.org/10.1515/bpasts-2017-0102
https://doi.org/10.1177/09544062211010210
https://doi.org/10.1007/s11012-013-9837-1
https://doi.org/10.1177/1077546313503878
https://doi.org/10.1016/j.jsv.2012.01.036
https://doi.org/10.1016/j.jsv.2017.08.016
https://doi.org/10.1016/j.promfg.2018.02.062
https://doi.org/10.1016/j.ijmecsci.2020.105476
https://doi.org/10.2478/ama-2023-0011
https://doi.org/10.1007/s40430-015-0432-3
https://doi.org/10.1007/s40430-014-0296-y
https://doi.org/10.1016/j.mechmachtheory.2017.05.014
https://doi.org/10.1016/j.mechmachtheory.2014.12.004
https://doi.org/10.1007/s00419-023-02488-z
https://doi.org/10.1007/s11012-023-01738-2
https://doi.org/10.3103/S1068366619050155
https://www.hindawi.com/journals/mpe/2020/3185624/
https://doi.org/10.1155/2020/3185624


Machines 2024, 12, 162 18 of 18

19. Jasem, M.A.; Krauinsh, P.Y. Introduction of a wave face kinematic reducer in pumping technologies for the extraction of
high-viscous oil in extreme conditions. Bull. Tomsk. Polytech. Univ.-Geo Assets Eng. 2022, 333, 45–53.

20. Xie, C.Y.; Yu, W. Gear dynamic modelling based on the concept of dynamic mesh stiffness: Theoretical study and experimental
verification. J. Mech. Sci. Technol. 2022, 36, 4953–4965. [CrossRef]

21. Wang, Q.B.; Ma, H.B.; Kong, X.G. A distributed dynamic mesh model of a helical gear pair with tooth profile errors. J. Central
South Univ. 2018, 25, 287–303. [CrossRef]

22. Wang, Z.G.; Lo, C.C.; Chen, Y.C. Comparison and Verification of Dynamic Simulations and Experiments for a Modified Spur Gear
Pair. Machines 2022, 10, 191. [CrossRef]

23. He, Z.Y.; Lin, T.J.; Chen, C.J. Mathematical models and dynamic contact analysis of involute/noninvolute beveloid gears. J.
Vibroeng. 2014, 16, 2946–2961.

24. He, X.Z.; Zhou, X.Q.; Xue, Z.; Hou, Y.X.; Liu, Q.; Wang, R.Q. Effects of gear eccentricity on time-varying mesh stiffness and
dynamic behavior of a two-stage gear system. J. Mech. Sci. Technol. 2019, 33, 1019–1032. [CrossRef]

25. Yu, X.; Sun, Y.Y.; Li, H.G.; Wu, S.J. Nonlinear characteristics of gear pair considering fractal surface dynamic contact as internal
excitation. Int. J. Non-Linear Mech. 2022, 143, 104027. [CrossRef]

26. He, C.Y.; Chen, Z.G.; Zhai, W.M.; Jiang, J.Z.; Wang, K.Y. A spatial dynamics model for heavy-haul electric locomotives considering
the dynamic coupling effect of gear transmissions. Proc. Inst. Mech. Eng. Part F-J. Rail Rapid Transit 2019, 233, 961–973. [CrossRef]

27. Spitas, C.; Spitas, V. Coupled multi-DOF dynamic contact analysis model for the simulation of intermittent gear tooth contacts,
impacts and rattling considering backlash and variable torque. Proc. Inst. Mech. Eng. Part C-J. Mech. Eng. Sci. 2016, 230, 1022–1047.
[CrossRef]

28. Marjanovic, N.; Ivkovic, B.; Blagojevic, M.; Stojanovic, B. Experimental determination of friction coefficient at gear drives. J. Balk.
Tribol. Assoc. 2010, 16, 517–526.

29. Litvin, F.L. Gear Geometry and Applied Theory, 2nd ed.; Cambridge University: New York, NY, USA, 2004. [CrossRef]
30. Lin, C.; Wu, X.Y. Calculation and Characteristic Analysis of Tooth Width of Eccentric Helical Curve-Face Gear. Iran. J. Sci.

Technol.-Trans. Mech. Eng. 2019, 43, 781–797. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1007/s12206-022-0909-9
https://doi.org/10.1007/s11771-018-3737-4
https://doi.org/10.3390/machines10030191
https://doi.org/10.1007/s12206-019-0203-7
https://doi.org/10.1016/j.ijnonlinmec.2022.104027
https://doi.org/10.1177/0954409718823138
https://doi.org/10.1177/0954406215596696
https://doi.org/10.1017/CBO9780511547126
https://doi.org/10.1007/s40997-018-0239-9

	Introduction 
	Transmission Model of Eccentric Curve-Face Gear Pair 
	Equation of Engagement Tooth Surface with Complex Motion 
	Effective Surface with Eccentric Pitch Curve 

	Kinematic Characteristics of Rigid–Flexible Coupling Gear System 
	Response Equation of Rigid–Flexible Coupling System 
	Interval-Separated Transmission Characteristics 

	Experiments 
	Conclusions 
	References

