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Abstract: The dynamic scheduling problem (DSP) in unreliable flexible manufacturing systems
(UFMSs) with concurrency, conflicts, resource sharing, and sequential operations is a complex
optimization problem that requires the use of efficient solution methodologies. The effectiveness
of scheduling UFMSs relies on the quality of equipment maintenance. Currently, UFMSs with
consistently large queues of parts awaiting service employ a repair-after-failure approach as a
standard maintenance procedure. This method may require unexpected resources, incur costs,
consume time, and potentially disrupt the operations of other UFMSs, either partially or fully. This
study suggests using a predictive maintenance (PdM) strategy that utilizes the Internet of Things
(IoT) to predict and avoid early mechanical equipment failures before they happen in UFMSs,
thereby reducing unplanned downtime and enhancing reliability. Therefore, the objective of this
paper is to construct timed Petri net (TPN) models using the IoT for the PdM configuration of
mechanical equipment in the dynamic scheduling problem of UFMSs. This necessitates that users
represent the specific problem using TPNs. The process of PN modeling requires the utilization of
domain knowledge pertaining to the target problems as well as to machine information. However,
it is important to note that the modeling rules for PNs are straightforward and limited in number.
Consequently, the TPN model is applied to generate and formulate mixed-integer linear programming
(MILP) instances accurately. This is done to identify the optimal production cycle time, which may be
implemented in real-life scenarios. Several UFMS instances are used to demonstrate the applications
and effectiveness of the proposed method. The computational results demonstrate that the proposed
method shows superior solution quality, effectively solves instances for a total of 10 parts and
6 machines, and achieves a solution in a reasonable CPU time.

Keywords: flexible manufacturing systems; Petri net; Internet of Things; predictive maintenance;
reliability; scheduling

1. Introduction

Flexible manufacturing systems (FMSs) are computer-controlled systems that can
automatically execute a variety of activities based on predetermined process plans. The
FMS includes a restricted number of resources, including machines, robots, automated
guided vehicles (AGVs), and buffers, which are shared by multiple production processes
within the system [1]. In an FMS, raw components are simultaneously processed in a
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predefined sequence to efficiently use constrained system resources and enhance overall
system performance [2].

There are two major issues involved with the operation of an FMS: structural (design)
issues and operational issues. The number of machine tools of each kind, the size of the
material handling system, and the capacity of the buffers are FMS design considerations.
FMS operational issues involve problems with planning, scheduling, and control. The
decision of which parts should be sequentially machined and the assignment of pallets and
fixtures to part kinds are planning issues. Given the selected part mix, the FMS scheduling
problem involves deciding the optimal input order for components and the optimal order
at each machine. The FMS control problems include observing the system to ensure that
requirements and deadlines are met as well as addressing deadlock problems [3]. Real-
world FMSs can be subject to unexpected uncertainties, including operator errors, machine
malfunctions, and uncertain part processing times. Subsequently, the FMS encounters
difficulties dealing with modifications in the manufacturing plans or orders. Hence, in
order to enhance the promptness and adaptability of FMSs in dealing with uncertainties,
it is imperative to optimize production scheduling, which is referred to as the dynamic
scheduling problem (DSP). This entails adjusting the production scheduling strategies of
FMSs based on the current production status in order to effectively adapt to the dynamic
environment. Several combinatorial optimization problems (COPs) are NP-hard, and
no solutions to these problems have been presented [4]. In the fields of manufacturing,
agriculture, transportation, medical services, and sciences, combinatorial optimization can
be used to minimize costs or maximize the impact of different systems. Optimization plays
a crucial role in obtaining sustainable development objectives [5,6]. The era of big data has
increased the significance of optimization studies, which extract important information
from data using optimization methods [7–9]. Thus, this study has been considered one
of the most significant subjects. If the feasible area is bounded, “integer programming”
(IP) can be used to formulate combinatorial optimization problems [10]. This method is
known as “integer linear programming” (ILP) if the objective function and all constraints
of the COP are stated as linear equations. By combining integer and real variables in
the mixed formulation, a greater number of COPs can be generated in comparison with
simple IPs [11]; this is known as “mixed-integer programming” (MIP). When only linear
constraints and objective functions are involved, therefore, MIP problems are referred to as
“mixed-integer linear programming” (MILP) problems [12]. The FMS scheduling problem is
a complicated optimization problem that is defined as NP-hard [13–16]. It is not feasible to
find an exact solution to an FMS scheduling problem within an acceptable amount of time,
even for instances of small size [16]. The optimal solution necessitates an exponential time
frame. Hence, the solution to this NP-hard problem needs the utilization of metaheuristic
methods. Researchers in the field of FMS scheduling have proposed several metaheuristic
approaches, including the genetic algorithm (GA) [14–18], the ant colony optimization
algorithm (ACO) [18,19], particle swarm optimization (PSO) [18,20], simulated annealing
(SA) [21,22], Tabu Search (TS) [23,24], etc.

At present, simulation software is widely used for scheduling in several industries
to guarantee the effective running of manufacturing processes, both technically and eco-
nomically. Gholami and Zandieh [25] integrate the simulation and the genetic algorithm
to minimize makespan and mean tardiness in flexible job-shop scheduling with machine
stochastic breakdowns. Pergher et al. [26] combine simulation with the flexible and interac-
tive tradeoff compensatory approach in job-shop production systems to determine the best
combination of due order release, date assignment, and shop dispatching rules. Different
combinations are assessed based on production quantity, total cost, total throughput time,
and tardiness. Thenarasu et al. [27] integrate the simulation and the multi-criteria decision-
making approaches to the model and evaluate flow time, makespan, and tardiness-based
measures in partial flexible job-shop scheduling with both static and dynamic job arrivals.
The open-source program Lekin is used to analyze and simulate the impact of dispatching
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rules on the makespan time in the flexible job-shop system [28]. The software also identifies
the most efficient manufacturing process layout that minimizes production time [29].

Petri nets (PNs) are effective modeling and simulation tools for LP, ILP, and MILP prob-
lems because PNs contain mathematical expressions indicated as linear equations [30,31].
The work in [32] presented a method for constructing MILP based on PN models for com-
binatorial optimization problems involving “traveling salesman problems” and a “simple
resource assignment problem”. Tuncel and Bayhan [33] provided a comprehensive study
of scheduling challenges in which they highlighted the integration of Petri nets with other
approaches and addressed both theoretical developments and practical experiences. Ex-
isting approaches have been divided into four categories: (1) Petri net-based simulations
connected with “heuristic dispatching rules” for the control and scheduling of manufactur-
ing systems; (2) generative scheduling methods in which Petri nets are applied to develop
schedules in terms of the transition firing sequences through the “reachability graph”; (3) a
special Petri net class model employed to construct the planning and scheduling problem
as a mathematical model; and (4) Petri net modeling approach providing a basis for the
search procedure of metaheuristic methods to find the near-optimal “resource allocation”
and the “event-driven schedule” in terms of the Petri net model firing sequences of the
transitions. Wu et al. [34,35] constructed a Petri net model to represent wafer produc-
tion processes in cluster tools requiring wafer revisitation. They proposed a systematic
approach for evaluating their effectiveness, which leads to the derivation of optimality
requirements for three-wafer period scheduling. Qiao et al. [36,37] constructed a model to
represent wafer production processes using a “timed Petri net” to optimize their schedule.
Analytical expressions can be used to determine whether the systems are schedulable. They
also provided a simple implementation method for the obtained schedule. Using PNs,
Zhou et al. [38] modeled and evaluated an FMS cell. They used “top-down refinement”,
“system decomposition”, and “modular composition ideas” to obtain the structure and
preservation of essential system characteristics, such as “liveness”, “boundedness/safety”,
and “reversibility”, which ensure the system’s “stability”, “deadlock-free”, and “cyclic
manner”. A reduction approach was applied to transform the timed PN to an equivalent
time-marked graph. Then, the typical method for determining cycle time for the marked
graphs was implemented. In addition, Zhou et al. [39] developed PN models for FMS by
scheduling the modeled FMS based on the firing sequences of the PN model from the initial
marking to the final one. Using a class of timed PNs, they applied a branch-and-bound
approach to determine the optimal schedule for the FMS. Artigues and Roubellat [40]
proposed a PN model in the context of a generic approach for “on-line” scheduling in a job
shop environment with various setup times and resources based on a detailed definition of
essential states, decisions, and events for “on-line” and “off-line” scheduling. They used
an “acyclic directed graph” to illustrate a set of static scheduling problem solutions. Mejia
and Odrey [41] introduced Beam A* Search, a PN-based algorithm (BAS). This approach
systematically increases segments of a PN “reachability graph” in order to identify a sched-
ule that is close to optimal. Their proposed technique was evaluated by applying it on
various FMS scheduling problems. Zhang et al. [42] modeled the assembly processes of
the “flexible assembly system” using timed Petri nets (TPNs). A scheduling model was
developed for the FAS, and a dynamic programming method was used to determine a
viable allocation of processes to machines and to optimize the time to completion for either
a “single product” or a “batch of products”. In their study, Kim et al. [43] introduced a new
scheduling approach for production systems that relies on the TPN model and a “reactive
fast graph search” approach. The main objectives of this method are to minimize the
maximum completion time (makespan) and the overall tardiness. In order to accomplish
the objectives, they proposed a new search algorithm that integrates the “RTA*” with a
“rule-based supervisor”. Lee and Lee [44] developed heuristic functions for the A* method
based on T-timed PNs for the purpose of optimizing the FMS scheduling problem by
reducing the makespan. In addition, they developed enhanced versions of these heuristic
functions, which obtained an initial near-optimal solution faster. Wang and Wang [45]
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investigated the FMS scheduling problem based on a PN with the objective of minimizing
the makespan. Combining a “dynamic search window” with a “best-first algorithm” and
“backtracking search”, they proposed a hybrid heuristic search method for the scheduling
problem. Kammoun et al. [46] developed a mathematical model that uses the properties of
decomposed TPNs to address the FMS scheduling problem. The model aims to determine
the optimal firing sequence of TPN transitions and minimize the total processing time.
Moreover, a genetic algorithm was presented to find effective solutions for large-scale
scheduling problems. With the objective of finding an optimal transition sequence that
minimizes firing time, the authors of [47] proposed a new “admissible heuristic function”
for scheduling FMSs utilizing P-timed PNs. Using the structural symmetry of a PN model
of an FMS to make a partial reachability graph reduces the state explosion problem as much
as possible. The estimate function is applied to each generated marking to calculate the cost
of firing the transition sequence. PNs’ ability to describe multiple states concisely, capture
priority relations and structural connections, and model “deadlocks”, “conflicts”, “buffer
sizes”, and “multi-resource constraints” are the primary advantages of implementing PNs
in the FMS scheduling issue compared with alternative approaches. This will assist system
analysts in modeling complicated, integrated scheduling issues [45]. Most researchers who
studied the scheduling problem in industrial systems used the “reachability tree”. It is
well known that the size of a “reachability tree” increases exponentially as the size of a
PN increases. This makes it rather challenging to evaluate PN models with a significant
number of places and transitions.

Several organizations are depending on a single maintenance approach to guarantee
the optimal efficiency of their resources. Regrettably, only a small number of individuals
take into account the expenses incurred by ignoring the monitoring of asset deterioration
during the early phases of defect formation. Maintenance can be categorized into three
distinct types: corrective maintenance (CM), preventive maintenance (PM), and predic-
tive maintenance (PdM). PM and CM primarily revolve around the age of the asset and
adhering to a regular maintenance schedule. However, their drawback lies in the fact
that they address resource repairs only when they have reached an advanced degree of
deterioration. Frequently, these resources experience failures during the intervals between
inspections, resulting in escalated repair expenses and significant hazards to human safety.
Many companies mistakenly believe that a strategy that combines breakdown maintenance
and the life of the resource is enough to accurately anticipate resource failure. Frequently,
they neglect significant faults that result in severe malfunction and necessitate the replace-
ment of resources rather than their repair, resulting in additional expenses. During CM,
maintenance workers promptly commence work upon the occurrence of a problem. The
objective of CM is to expedite the restoration of systems to their normal functioning state.
CM does not involve a scheduled program for normal maintenance. Maintenance can
take place only when there is an existing problem. The cost of repairs may be marginally
higher, but it is significantly more affordable than the expense of routinely employing staff
to maintain equipment. The equipment is repaired promptly; however, this approach can
have adverse consequences in the event of a catastrophic occurrence. PdM is an improved
approach to performing maintenance activities. It involves using test results and trends
to anticipate or identify issues with a component of equipment. These methods employ
noninvasive testing procedures to quantify and calculate trends in equipment performance.
Some examples include vibration analysis, infrared analysis, thermography, ultrasound,
and various other techniques.

The IoT enables the connection of physical things, enabling them to communicate
information via the Internet. This capability has the potential to facilitate the collection
of large volumes of data, which may be a strong asset for the success of businesses and
future predictions [48,49]. At present in the field of maintenance, the use of embedded
hardware consisting of sensors and other intelligent equipment controlled by the IoT is
changing industrial and manufacturing operations [50,51]. The utilization of IoT in the
predictive maintenance approach can be highly effective in this context. It involves directly
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monitoring equipment by continuously capturing real-time data on key stress-related
variables, such as noise level, temperature, vibration, pressure, power consumption, and
other interconnected devices [52]. This allows users to gain visibility into the performance
of their assets and discover valuable insights. It also enables the detection of anomalies,
the identification of patterns, and the recognition of warning signals that may indicate an
imminent failure [52,53].

As mentioned in the literature, repairing UFMS equipment is a standard procedure
because the equipment often fails without any prior communication to the maintenance
team. As a result, the detection of faults and the subsequent unplanned maintenance can
disrupt the current operations of the remaining UFMSs, either fully or partially. In order to
enhance the use, availability, and reliability of equipment and minimize the costs associated
with equipment maintenance, it is crucial for the maintenance team to have access to
real-time condition-based data. This allows for efficient repairs and minimizes downtime,
unnecessary inspections, maintenance time, and undue pressure on the maintenance
team [54,55]. Motivated by the issues mentioned previously, this study identifies a lack of
adoption of current PdM systems for this type of equipment. This is caused by variations in
mechanical characteristics among various equipment and the absence of historical or real-
time performance data. Therefore, the main contribution of this paper is to develop TPN
models for the dynamic scheduling problem of UFMSs with concurrency, conflicts, resource
sharing, and sequential operations. Subsequently, the proposed TPN model is utilized to
generate the MILP in order to determine the optimal production cycle time, which can
be implemented in real-life situations. Additionally, the paper proposes the utilization of
the IoT for the PdM configuration to prevent early mechanical equipment malfunctions
in UFMSs and avoid interruptions in the scheduled operations of other UFMSs. Finally,
several cases of UFMSs are used to demonstrate the practical applications and effectiveness
of the proposed approach.

The rest of the paper is organized as follows: Section 2 introduces timed Petri net
synthesis and the estimation of resource failure time using the Internet of Things. Section 3
describes a statement and MILP model based on TPN to address the dynamic scheduling
problem in unreliable flexible manufacturing systems with concurrency, conflicts, resource
sharing, and sequential operations constraints. Section 4 demonstrates the practical use
and effectiveness of the developed MILP model through the use of instances. Section 5
presents a brief summary and outlines the future research endeavors of the study.

2. Preliminaries
2.1. Timed Petri Nets Synthesis

Petri nets are a mathematical modeling tool that involves symbols such as place,
transition, arc, and token, as depicted in Figure 1. The original PN did not indicate any
time aspect. Timed Petri nets (TPNs) are created by including time in the PN to evaluate
performance associated with time. TPNs are formally defined as a six-tuple N = (P, T, F, W,
h(T), M) where:

1. P = PA ∪ PR: represents a non-empty finite set of model places, where PA = ∪i∈|m|{pi},
m > 0 and PR = ∪i∈k{pmk}, k > 0 represent sets of model operation and resource places,
respectively;

2. T = ∪j∈|T|{tj}: represents a non-empty finite set of model transitions, P ∩ T = ∅, and
P ∪ T ̸= ∅;

3. F ⊆ (P × T) ∪ (T × P): represents flow relations and is denoted by arcs connecting
places to transitions (P × T) or from transitions to places (T × P);

4. W: (P × T) ∪ (T × P) → IN: is the weight-to-arc affectation function, where IN = {0, 1,
2, . . .}.

5. h(tj) ∈ h(T): denotes the static time that is assigned to tj, tj ∈ T;
6. •pi(pi

•): represents the input transitions (and corresponding output) of the place pi;
7. •tj(tj

•): represents the input places (and corresponding output) of the transition tj;
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8. M: P → IN denotes the function of the marking, which allocates to pi ∈ P a number
of tokens, the initial marking is denoted by Mo, and place marking is represented by
M(pi);

9. M[tj〉: represents that at marking M, the transition tj can be fired.
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It is essential to note that marking M enables the transition tj to be fired if
M(pi) ≥ W(pi, tj), tj ∈ pi

•. When the transition tj ∈ T is enabled at marking M, the marking
M can be modified from M to a new marking M′, designated as M[ t⟩ M′ and expressed
as follows:

M′(pi) =


M(pi) + W

(
pi, tj

)
if pi ∈ •tj ∖ tj

•

M(pi)− W
(
tj, pi

)
if pi ∈ tj

• ∖ •tj
M(pi) + W

(
tj, pi

)
− W

(
pi, tj

)
if pi ∈ tj

• ∩ •tj
M(pi) otherwise

 (1)

To represent the synthesis of the TPN model, consider Figure 2, which consists
of three places and two transitions. The transition t1 is enabled at the initial marking
Mo = p1 + 0p2 + 0p3, i.e., Mo[t1〉. At Mo, the transition t1 fires after two time slices (t.s). It
selects a token from p1 and deposits one token into p2. Then, it creates a new marking
M1 = 0p1 + p2+ 0p3 and expresses it as Mo[t1〉 M1. Similarly, at M1, the transition t2 is en-
abled and can be fired with a delay of 4 t.s to create a succeeding marking, which can be
expressed as M1[t2〉 M2 with M2 = p1 + 0p2 + p3.
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There are typically three types of places for PN models of FMSs: the set of idle places,
the set of operation places, and the set of resource places. The number of tokens in the
corresponding operation place at the initial marking indicates the maximum number of
jobs that can be processed concurrently for a certain job type. In this study, an idle place
is referred to as a sink place. The sink place is free of output transitions. A token at an
initial operation place denotes a raw job that is ready for processing, while a token in a
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sink place indicates a finished job. In an FMS, resource places represent the resources (such
as machines and robots). At the initial marking, the tokens in a resource place reflect the
available resource units. The operation places, which are initially unmarked, represent the
procedures that must be completed for the jobs in the production sequences. On the basis
of timed PNs, each transition is associated with a time delay that indicates the time that
is required to perform the appropriate operation. When the token’s time delay finishes, it
becomes available at an operation place.

In order to demonstrate the modeling of TPNs, consider an FMS, presented in Figure 3,
that is composed of two machines m = 1, 2, operating two different jobs i = 1, 2, in a
sequential manner; one robot, r1 (material-handling equipment); and a load/unload station.
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Figure 3. An example of an FMS.

Table 1 displays the sequence of job-production operations, the duration of each
operation, and the machine that can be used for each operation. As shown in Table 1, each
job involves a set of operations. For instance, job 1 contains two operations that sequentially
require m1 and m2. Thus, job 1 can be completed sequentially using machines m1 and m2
with corresponding processing times of 4 and 6, respectively.

Table 1. Scheduling data of an FMS shown in Figure 3.

Job Operation Time Machine

1
1 4 1
2 6 2

2
1 8 2
2 10 1

Figure 4 illustrates the TPN model for this system, and the description of places and
transitions in the TPN model is given in Table 2.

Table 2. Description of places and transitions of the TPN model shown in Figure 4.

Places Description

p11 Process 1 for part 1
p12 Process 2 for part 1
p21 Process 1 for part 2
p22 Process 2 for part 2
pm1 Machine 1 is available
pm2 Machine 2 is available
t11 End process 1 of part 1
t12 End process 2 of part 1
t21 End process 1 of part 2
t22 End process 2 of part 2
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2.2. Estimation of Resource Failure Time Using IoT

In the context of FMSs, the term “resource failure” denotes an issue characterized by
temporal uncertainty. In case of a “resource failure”, it is necessary to establish a “recovery
subnet” with the ability to fix the problem [56]. The resource possesses the characteristic of
reusability. This section aims to provide formal definitions for the purpose of estimating
the occurrence of faults in an FMS using the IoT. It is assumed that the system contains
sensors for the purpose of detecting the occurrence of resource breakdowns. The sensors
facilitate the transmission of data to the Internet. Consequently, the gathered data can be
accessed from any geographical point across the world. After the transmission of data to
the Internet, a computer system will initiate the process of downloading and then utilize
the acquired data to identify and rectify any cases of malfunction or failure. Hence, in
the case of a failure of any given resource, online operations can persist by utilizing the
availability of other resources. The value obtained from the sensors serves as a “set point”
or “threshold value” to aid the system in determining its self-regulation strategy. Figure 5
illustrates the flowchart and architecture of the developed systems.
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Consider a TPN denoted by N, where N is defined as N = (P, T, F, W, h(T), Mo). Let
NIoT be an estimation resource of the pi failure time and recovery net based on IoT, denoted
as NIoT = ({pmi, pSij, pDT, pRT, pX, pPC, pRmi}, {tImi, tfmi, ttmi, tDT, tRT, tX, tPC}, FIoT), where
MIoTo indicates the initial markings of NIoT, MIoTo(pi) ≥ 0. FIoT = {(tImi, pSij), (pSij, tDT),



Machines 2024, 12, 192 9 of 26

(tDT, pDT), (pDT, tRT), (tRT, pRT), (pRT, tX), (tX, pX), (pX, tPC), (tPC, pPC), (pPC, tfmi), (pmi, tfmi),
(tfmi, pRmi), (pRmi, trmi), (trmi, pmi)}, where pSij represents the sensor’s system for resource pi
failure sensing, pDT indicates the “data capture with wireless shield”, and pRT denotes the
router. The data collected by the pSij sensors are transmitted to the Internet, specifically
to the servers of Xively (expressed as pX), which is a platform specifically developed for
the IoT. The data that have been gathered can be accessed and observed through the PC-
LabVIEW program, which is denoted as pPC. The transitions tImi, tfmi, trmi, tDT, tRT, tX, and
tPC represent various types of transitions within the system. Specifically, these transitions
correspond to the resource input sensors data pmi, the resource failure time pmi, the resource
recovery of the resource pmi, the data capture, the router, the Xively, and the PC/lab view,
respectively. An unreliable net is formed when the TPN (N, Mo) is joined with the estimating
resource failure net (NIoT, MIoTo), as shown in Figure 6. This combination is denoted by
the formula (NS, MSo) = (NIoT, MIoTo) ∥ (N, Mo), where ∥ indicates the combination of (NIoT,
MIoTo) and (N, Mo).
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Algorithm 1 illustrates the steps of synthesizing a network for estimating resource
failure and recovery using the IoT. Algorithm 1 has the capability to rapidly identify
changes in sensors through the monitoring function software integrated into the resource
failure monitoring system. When an important malfunction happens in any machine within
the system, there is a substantial increase in the amplitude of the sensors. The software will
issue a notification in the event of a substantial breakdown in the resource and when the
sensor data reach the predetermined threshold.

In order to demonstrate the synthesizing of an estimating resource failure time using
the IoT, reconsider the TPN presented in Figure 4. It has one unreliable resource, which
is pm1 (machine 1). The unreliable resource pm1, as illustrated in Figure 7, consists of
three sensors designed to identify tool failure: ps11 for the current sensor, ps13 for the
accelerometer sensor, and ps13 for the acoustic emission sensor. The data transmission
procedure to the Internet comprises multiple different phases.

During the initial phase, data readings from the sensors ps11, ps12, and ps13 are ob-
tained (via tImi) and subsequently transmitted to the “Wi-Fi wireless shield” represented
by tDT and pDT. Subsequently, the shield transmits the data to a wireless router, denoted
by tRT and pRT. Integration of objects into a communication network constitutes a funda-
mental component of the IoT. Fundamentally, it represents an innovative methodology in
which each entity is fully interconnected via the Internet infrastructure and participates
in immediate transfers. In practical terms, the IoT refers to the seamless connection of
equipment, sensors, and common household items via wired or wireless networks with
the Internet. The implementation of this methodology is viable, and its operation will
yield financial benefits due to the pervasive availability of the Internet. The integration
of this technology will enable seamless integration of sensors across various automation
applications, including residential and commercial settings. Therefore, a correlation be-
tween an object and a digital network can be established, facilitating the storage of the
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object’s data and their subsequent visualization in the physical environment. This study
presents a PC-LabVIEW-based system that has been designed to send Internet data to the
TPN. The data stored in the cloud are retrieved and sent to the TPN at tfmi for analysis and
transmission. This is performed using a PC that is equipped with LabVIEW, referred to as
the tPC and pPC. The TPN implements the OPC communication standard to implement the
execution of the PC-LabVIEW program for estimating resource pm1 failure time.

Algorithm 1: Synthesizing of estimating resource failure time and recovery net using the IoT.

Input: The TPN with N = (P, T, F, W, h(T), Mo);
Output: The TPN based on IoT (NS, MSo);

1. To the given TPN

1.1 Add places pDT, pRT, pX, pPC, pRmi;
1.2 Insert transitions tDT, tRT, tX, tPC;
1.3 Connect arcs (tDT, pDT), (pDT, tRT), (tRT, pRT), (pRT, tX), (tX, pX), (pX, tPC), (tPC, pPC);

2. for (1 ≤ |PR| ≤ k++), do/* for all unreliable places */

2.1 Insert an input transition tImk of place pmk;
2.2 Insert a failure transition tfmk of place pmk;

3. for (1 ≤ ψki ≤ i++), do/* ψki is the number of sensors in pk*/

3.1 Add a sensor place pSkj to pmk;
3.2 Connect an arc from tImk to pmk;
3.3 Connect an arc from pSkj to tDT;

4. end for
5. Connect arcs (pPC, tfmk), (pmk, tfmk), (tfmk, pRmi), (pRmi, pmk);
6. end for
7. Output: The net (NS, MSo);
8. End
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3. Problem Formulation
3.1. Problem Definition

This study concentrates on a specific type of FMS where the machine’s flexibility
allows it to perform a variety of tasks. The machine’s time taken to switch between modes
of operation is insignificant. The studied FMS is described as a compilation of multiple
job types with a predetermined and well-known processing sequence for all jobs inside
the machine set. In the FMS scheduling problem, there are n independent job types, Ω
independent machines, and Ψi operations. Indexes i,j represent job types, m denotes
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machines, and k,l indicate operations, where i,j = 1, 2, . . ., n; m = 1, 2, . . ., Ω; and k,l = 1, 2,
. . ., Ψi. Each job i has a predetermined sequence of Ψi operations, and each operation has
to be processed on a predetermined machine m denoted as Oi,k,m with processing time Di,k.
The following assumptions are considered:

1. n jobs of various types are initially inserted in the initial place.
2. The starting and finishing places of each job type are represented, respectively, by pi1

and pi, where i = 1, 2, . . ., n.
3. At time zero, all machines are available for job processing.
4. All jobs are available for processing at time zero.
5. Each job is processed based on its defined and known sequence through the machine set.
6. Due to PdM actions, machines could be unavailable for a period of time.
7. The processing time varies by job type.
8. Effective part processing (no rework allowed).
9. Each machine can process only one type of job at a time.
10. Each job must be completed without interruption.

The purpose is to find the optimal sequence of parts and minimize the overall time it
takes to complete them. Furthermore, our focus lies on implementing an efficient way to
construct the production system supervisor that is connected to the first TPN model.

3.2. MILP Formulation

PN time constraints are typically related to places or transitions. In this study, TPNs
are employed. The graphical models of TPNs are constructed from the logical sequence
of the modeled system. Therefore, they are simple to build, extend, and apply to pro-
duction system scheduling problems. In FMS, there are three major precedence relations
for part processing: operations are processed in accordance with specific sequences, op-
erations are processed in any sequence, or both relations are included in a part process
plan. Synchronization and concurrency principles are essential to the study of FMS, and
TPNs enable simple structures to describe these crucial concepts, as well as “conflicts”,
“non-determinism”, “timing information”, and “resource sharing environment”. In this
paper, the problem is FMS scheduling with PdM to minimize the total completion time.

3.2.1. Decision Variables

The FMS scheduling problem requires the assignment of machines to all jobs without
machine conflicts. Such a machine assignment involves job scheduling. To represent
the behavior of Petri nets, three types of decision variables are used. First, for all jobs,
ti,k denotes the transition for the operation k of a job i; the firing start and end times of
operation k for job i are represented as follows:

h
(

tStart
i,k

)
, h

(
tEnd
i,k

)
≥ 0 ∀i, k (2)

Second, the machine m assignment for each operation k of a job i is defined, which
provides the conditional information of the token for the transition ti,k to fire, as follows:

Xi,k,m ∈{0,1} ∀i,k,m (3)

where Xi,k,m = 1 indicates that the machine m is allocated to a transition ti,k, and Xi,k,m = 0 otherwise.
Third, to define the precedence relation of operations for a job i in the scheduled Petri

net, the following variables are defined:

Yi,k,l ∈{0,1} ∀i,k,l (4)

where Yi,k,l = 1 indicates that the operation l is processed after operation k for job i, and
Yi,k,l = 0 otherwise.
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Fourth, to address the machine conflict between jobs i and j, the following variables
are used to determine the utilization priority of shared machines:

Oi,k,m,j,l ∈{0,1} ∀i,j,k,l,m (5)

where Oi,k,m,j,l = 1 indicates that the operation l for job j is processed after operation k for
job i in machine m, and Oi,k,m,j,l = 0 otherwise.

Finally, to represent the maintenance activity for machine m, the following variables
are used:

Zi,k,m ∈{0,1} ∀i,k,m (6)

where Zi,k,m = 1 denotes that the maintenance activity is conducted before processing job i
in machine m, and Zi,k,m = 0 otherwise.

3.2.2. Constraints and Objective Function

The constraints and objective function for the FMS scheduling can be formulated by
extracting the required information from the timed PN model. To execute an operation k
for a job i, a machine m must be allocated to each operation defined by Ri, where Ri denotes
•ti,k ∩ PR, or the set of resource places associated with ti,k. M0 contains tokens representing
the available machines. To allocate the necessary machines to each job i, the following
constraints are used:

∑Ω

i=1 Xi,k,m ≤ 1 ∀i, k. (7)

As shown in Figure 8, the completion time of the operation k for each job i depends on
the processing time of operation k and the time to repair for corrective maintenance of the
assigned machine m and can be formulated as follows:

h
(

tEnd
i,k

)
≥ h

(
tStart
i,k

)
+ Di,k·Xi,k,m ∀i, k, m (8)

where Di,k is the processing time of operation k in the job i.
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Figure 9 illustrates the sequence of operations when operation k precedes operation l
for job i. The processing time of the first operation (k) is included in the firing time of the
end transition h

(
tEnd
i,k

)
. If there are two operations in series, as shown in Figure 8, then

the time interval between the firing completion of both the end transitions h
(

tEnd
i,k

)
and

h
(

tEnd
i,l

)
must be equal to or larger than the operation time of the second operation. By

testing the condition ti,k
• ∩ PA = •ti,l ∩ PA, the precedence relation can be obtained from

the timed PN model shown in Figure 9, where ti,k
• ∩ PA = •ti,l ∩ PA = pil. This constraint

can be represented as follows:

h
(

tEnd
i,l

)
− h

(
tEnd
i,k

)
≥ Di,l ∀i, k, l ti,k

• ∩ PA = •ti,l ∩ PA (9)
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Figure 9. Start and end of operations for job i (operations k and l).

In many cases, some operations in a job are not linked by precedence. This can be
modeled in TPN by utilizing the synchronization and mutual exclusion properties of PN,
as shown in Figure 10. In this case, the machine can start processing the selected operation
without precedence restriction, but both operations will be processed in a certain sequence
because the job entity is considered a shared job.
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Figure 10. Representation of two independent operations for the same job type.

By checking the condition ti,k
• ∩ PA = •ti,l ∩ PA, the precedence relation can be derived

from the TPN model. The precedence variable, Yi,k,l is introduced in (4) to prevent machine
conflicts, which can be formulated as

h
(

tEnd
i,l

)
− h

(
tEnd
i,k

)
+ H·(1 − Yi,k,l) ≥ Di,l ∀i, k, l, k ̸= l, ti,k

• ∩ PA = •ti,l ∩ PA (10)

h
(

tEnd
i,k

)
− h

(
tEnd
i,l

)
+ H·Yi,k,l ≥ Di,k ∀i, k, l, k ̸= l, ti,k

• ∩ PA = •ti,l ∩ PA (11)

Yi,k,l + Yi,l,k ≤ 1 ∀i, k, l, k < l, ti,k
• ∩ PA = •ti,l ∩ PA (12)

where H represents a sufficiently large number.
As shown in Figure 11, if the same machine m is allocated to both jobs i and j, there

cannot be any processing overlap. The precedence variable Oi,k,m,j,l is introduced in (5), to
prevent machine conflicts.
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If Oi,k,m,j,l = 1, Constraints (13) and (14) guarantee that job j cannot start before job i is
completed. Moreover, Constraints (15) and (16) are required to guarantee that the variables
Oi,k,m,j,l have the correct values: Oi,k,m,j,l or Oj,l,m,i,k should be either one or zero if jobs i and
j use the same machine m; otherwise, both variables must be zero.
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h
(

tEnd
j,l

)
− h

(
tEnd
i,k

)
+ H·

(
1 − Oi,k,m,j,l

)
≥ Dj,l ∀i, j, k, l,i ̸= j, Ri ∩ Rj ̸= ∅ (13)

h
(

tEnd
i,k

)
− h

(
tEnd

j,l

)
+ H·Oi,k,m,j,l ≥ Di,k ∀i, j, k, l,i ̸= j, Ri ∩ Rj ̸= ∅ (14)

Oi,k,m,j,l + Oj,l,m,i,k ≤ 1 ∀i, j, k, l,i < j, Ri ∩ Rj ̸= ∅ (15)

Xi,k,m + Xj,l,m − Oi,k,m,j,l − Oj,l,m,i,k ≤ 1 ∀i, j, k, l,i < j, Ri ∩ Rj ̸= ∅ (16)

Constraint (17) guarantees that the end firing time of a transition for any operation is
greater than the corresponding processing time.

h
(

tEnd
i,k

)
≥ Di,k ∀i, k (17)

In Figure 10, the shared resource is the job, while in Figure 9, the shared resource is
the machine. The proposed formulation restricts the use of shared resources to an optimal
sequence. As shown in Figure 12, consider that all FMS machines are available at time
0. Each machine m is subject to failure, and it is assumed that the time to failure can be
estimated using the IoT. To provide higher machine reliability, the age of a machine cannot
exceed a maintenance period [t f

m, tR
m], where t f

m and tR
m indicate the time to failure and

repair time on machine m, respectively. Therefore, Constraints (18) and (19) guarantee that
the completion time of job i on machine m must respect the estimated failure time and
repair time [t f

m, tR
m].

h
(

tEnd
i,k

)
− Zi,k,m·(t f

m + tR
m

)
≥ Di,k ∀i, k, m (18)

h
(

tEnd
i,k

)
− H·Zi,k,m ≤ t f

m ∀i, k, m (19)

Machines 2024, 12, x FOR PEER REVIEW 15 of 27 
 

 

estimated using the IoT. To provide higher machine reliability, the age of a machine can-
not exceed a maintenance period [𝑡 , 𝑡ோ ], where 𝑡   and 𝑡ோ  indicate the time to failure 
and repair time on machine m, respectively. Therefore, Constraints (18) and (19) guarantee 
that the completion time of job i on machine m must respect the estimated failure time and 
repair time [𝑡 , 𝑡ோ ]. ℎ൫𝑡,ாௗ൯  − 𝑍𝑖,𝑘,𝑚 ∙ (𝑡𝑚𝑓 + 𝑡𝑚𝑅 ) ≥  𝐷,     ∀i,k,m (19)

ℎ൫𝑡,ாௗ൯  − 𝐻 ∙ 𝑍𝑖,𝑘,𝑚 ≤  𝑡𝑚𝑓      ∀i,k,m 
(110

)

pik tik
pil til

Machine m

Job i

pRm

pDTtDT

Data capture  with 
wire less shield

Router

pRTtRT

Xive ly

pXtX

PC/Labview

pPCtPC
tIm

Sensors

pSij

 

Figure 12. Representation of maintenance period for machine in an FMS based on IoT. 
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In addition, Constraints (20)–(22) guarantee the non-negativity of the variables.

h
(

tStart
i,k

)
≥ 0 ∀i, k (20)

h
(

tEnd
i,k

)
≥ 0 ∀i, k (21)

Di,k ≥ 0 ∀i, k (22)

Finally, the objective function is to find the optimal firing sequence (denoted as δ) of
transitions according to the time intervals related to the completion time of firing h

(
tEnd
i,k

)
of the last transition, which corresponds to operation k for job i in the last machine m. Thus,
the objective function is defined as follows:



Machines 2024, 12, 192 15 of 26

Min

 max
i = 1, 2, . . . , Ω
k = 1, 2, . . . , Ψi

h
(

tEnd
i,k

)
 (23)

3.3. Validation of the MILP Formulation

This section illustrates the MILP formulation’s validity. In other words, it implies
that viable solutions to the formulation above relate to feasible schedules in the sense
that all jobs must be completed while meeting the precedence connection and conflict-free
constraint on shared jobs and machines.

Theorem 1. A viable schedule for the UFMS scheduling problem is constructed by a solution that
satisfies all of the constraints from (7) to (25).

Proof. In the MILP formulation, there are five main types of decision variables: h
(

tStart
i,k

)
and h

(
tEnd
i,k

)
are real variables, while Xi,k,m, Yi,k,l, and Oi,k,m,j,l are binary (integer) vari-

ables. Consider the ζ to be a viable solution. The ζ is guaranteed to meet the precedence
relationship by Constraint (24). The value of Xi,k,m in ζ indicates that operation k for job
i has been assigned to machine m. The value of Yi,k,l shows that operation l is processed
after operation k for job i. The value of Oi,k,m,j,l specifies the order of precedence between
operations k and l that use the shared machine m. Using the values of Xi,k,m, Yi,k,l, and
Oi,k,m,j,l, a scheduled timed PN can be constructed. □

Using the developed MILP formulation, the optimal solution for the UFMSs’ schedul-
ing problem is converted into a system controller to ensure that the resulting sequence is
executed. The final TPN model is reconstructed based on the optimal firing sequences and
the number of shared resources (machine tools) in the systems, as presented in Algorithm 2.

Algorithm 2: Controlled TPN model based on the optimal firing sequences

Input: A TPN-based IoT (NS, MSo);
Output: The optimal firing sequences δ and scheduling controllers for shared resources;

1. Create a MILP model based on the timed PN;
2. Solve the MILP model;
3. Compute the optimal firing sequences δ;
4. Generate copies of the shared places for an optimal firing sequence δ, i.e., the number of shared resource

copies = the number of end transitions in δ – the number of the shared machines in the model;
5. Generate the incidence matrix for the δ;
6. Design scheduling controllers for shared resources based on the above matrix.

Theorem 2. The controlled TPN model based on the optimal firing sequences is live.

Proof. It is necessary to demonstrate that all transitions in T in (N, Mo) are live. For all ti,k ∈ T;
if ∀pi,k ∈ •ti,k, M(pi,k) > 0, then ti,k can fire. Therefore, the controlled net (N, Mo) is live. □

3.4. Illustrative Example

Consider the FMS example presented in Figure 13 to demonstrate the modeling of
timed PNs. It consists of three machines (resources) (m1, m2, and m3) that can process four
kinds of parts (part 1, part 2, part 3, and part 4) in a sequential manner; two robots, r1 and
r2 (material handling equipment); and a load/unload station. Table 3 displays the sequence
of job-production operations, the duration of each operation, and the machine that can be
used for each operation. As shown in Table 3, each part involves a set of operations. For
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instance, part 1 contains three operations that sequentially require m1, m2, and m3. Thus,
part 1 can be completed sequentially using machines m1, m2, and m3 with corresponding
processing times of 3, 5, and 6, respectively.
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Table 3. Scheduling data of an FMS shown in Figure 13.

Part (Operation, Operation Time, Machine)

1 (1, 3, M1) (2, 5, M2) (3, 6, M3)
2 (1, 8, M3) (2, 4, M1) (3, 9, M2)
3 (1, 2, M1) (2, 7, M3) (3, 5, M1)
4 (1, 3, M1) (2, 2, M2) (3, 6, M2)

Figure 14 illustrates the timed PN model for this system, and the transitions of the
TPN model are given in Table 4. The parameters of machine maintenance are displayed in
Table 5.

Table 4. Description of places and transitions of the TPN model shown in Figure 13.

Places Description Transitions Description

p11 Process 1 for part 1 t11 End process 1 of part 1

p12 Process 2 for part 1 t12 End process 2 of part 1

p13 Process 3 for part 1 t13 End process 3 of part 1

p21 Process 1 for part 2 t21 End process 1 of part 2

p22 Process 2 for part 2 t22 End process 2 of part 2

p23 Process 3 for part 2 t23 End process 3 of part 2

p31 Process 1 for part 3 t31 End process 1 of part 3

p32 Process 2 for part 3 t32 End process 2 of part 3

t33 Process 3 for part 3 t33 End process 3 of part 3

p41 Process 1 for part 4 t41 End process 1 of part 4

p42 Process 2 for part 4 t42 End process 2 of part 4

p43 Process 3 for part 4 t43 End process 3 of part 4
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Table 4. Cont.

Places Description Transitions Description

pm1 Machine 1 is available tPM
B1 Start PdM on machine 1

pm2 Machine 2 is available tPM
B2 Start PdM on machine 2

pm3 Machine 3 is available tPM
B3 Start PdM on machine 3

pPM
1 PdM on machine 1 tPM

E1 End PdM on machine 1

pPM
2 PdM on machine 2 tPM

E2 End PdM on machine 2

pPM
3 PdM on machine 3 tPM

E3 End PdM on machine 3
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Table 5. PdM parameters for machines presented in Figure 13.

Parameter
Machine

1 2 3

t f
m (hr) Based on sensor system

tR
m (hr) 3 3 3

A portion of a mill dataset is used to assess the tool’s condition in a specific operational
setting, as conducted by [57]. Data gathering involves the sampling of data using three
different kinds of sensors: a “vibration sensor”, an “acoustic emission sensor”, and a
“current sensor”. Figure 14 illustrates that the system utilizes nine sensors to detect tool
failure. These sensors include the current sensors ps11, ps12, and ps13, which monitor
changes in both the direct current (DC) and alternating current (AC) spindle motors for
machines 1–3. Additionally, the system uses the accelerometer sensors ps21, ps22, and ps23,
which measure vibrations in the table and spindle for machines 1–3. Finally, the acoustic
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emission sensors ps31, ps32, and ps33 are used to measure how acoustic stress waves affect
the table and spindle. This helps find a tool break for machines 1–3. The sensors initially
collect the data and transmit it to the “Wi-Fi wireless shield”, the “wireless router”, Xively,
and ultimately to the PC/lab view. The data collected by the sensors and transmitted to
the Internet are illustrated in Figure 15. It allows for the analysis and visualization of the
data to detect possible patterns or significant occurrences. When the sensor data surpass a
certain threshold, the TPN model initiates the system’s response.
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With this example, the Lingo solver solves the MILP model derived from Figure 14.
Table 6 provides the optimal results. Figure 16 depicts Gantt charts for the results obtained
by the proposed MILP model.

Table 6. Optimal results for the illustrative example.

Job Operation Time Machine tStart
i,k tEnd

i,k

1
1 3 1 5 8
2 5 2 13 18
3 6 3 18 24

2
1 8 3 0 8
2 4 1 8 12
3 9 2 21 30

3
1 2 1 3 5
2 7 3 8 15
3 5 1 16 21

4
1 3 1 0 3
2 2 2 3 5
3 6 2 5 11
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The optimal sequence of start firing transitions is: t41, t21, t31, t42, t11, t43, t22, t32, t12, t33,
t13, t23. The controlled TPN model is designed and displayed in Figure 17 using Algorithm
2 and the optimal firing sequences achieved. Note that the arcs connecting the last place to
the first place are excluded in each sequential system and in the estimation resource failure
time networks, as depicted in Figure 17.
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4. Computational Experiments

To validate the effectiveness of the proposed optimal scheduling and modeling ap-
proach, MILP generation software was developed. This software was created using the
MATLAB-based GPenSIM tool [58]. The GPenSIM tool is particularly useful for modeling
target-scheduling problems and exporting Excel documents. The Lingo solver utilizes the
Petri net structure and tokens extracted from Excel documents as input data for the MILP
process, which is subsequently used to solve the problem. The developed methodology is
applied to systematically create MILP instances for the dynamic scheduling problem of
unreliable flexible manufacturing systems. The developed methodology necessitates that
users represent their desired problems using a Petri net. However, the modeling process is
easy, provided the users possess expertise in the specific problem domain and are familiar
with the fundamental concepts of Petri nets.

Case study 1: The system has two machines and three components. Parts 1, 2, and 3
were subjected to 3, 2, and 3 processes, respectively. The data related to this example are
depicted in Tables 7 and 8.

Table 7. Scheduling data of case study 1.

Part (Operation, Operation Time, Machine)

1 (1, 3, M1) (2, 5, M1) (3, 6, M2)
2 (1, 8, M1) (2, 4, M2) -

3 (1, 9, M2) (2, 2, M1) (3, 7, M2)

Table 8. PdM parameters for the machines presented in case study 1.

Parameter
Machine

1 2

t f
m (hr) Based on sensor system

tR
m (hr) 3 3

The inputs for the derived mathematical model are acquired from the TPN model, as
previously explained. The resultant model is solved using the Lingo solver to obtain the
optimal schedule. The minimal compilation time is 34 h. Figure 18 depicts Gantt charts for
the results obtained using the proposed MILP model. The optimal sequence of start firing
transitions is: t11, t31, t21, t32, t22, t12, t32, t13, t12. The controlled TPN model is displayed in
Figure 19 using Algorithm 2 and the optimal firing sequences achieved.
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Case study 2: The system has four machines and five components. Each component 
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Figure 18. The optimal schedule for case study 1.

Case study 2: The system has four machines and five components. Each component
is subjected to a series of four processes. The data related to this example are depicted in
Tables 9 and 10.

The minimal compilation time is 25 h. Figure 20 depicts Gantt charts for the results
obtained using the proposed MILP model. The optimal sequence of start firing transitions
is: t11, t51, t41, t21, t12, t42, t31, t43, t52, t22, t13, t53, t23, t32, t44, t14, t33, t54, t24, t34. The
controlled TPN model is displayed in Figure 21.
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Table 9. Scheduling data of case study 2.

Part (Operation, Operation Time, Machine)

1 (1, 2, M1) (2, 2, M3) (3, 2, M4) (4, 3, M2)
2 (1, 2, M1) (2, 2, M4) (3, 3, M3) (4, 4, M2)

3 (1, 5, M1) (2, 3, M2) (3, 3, M3) (4, 2, M4)
4 (1, 3, M3) (2, 2, M4) (3, 6, M2) (4, 3, M4)
5 (1, 3, M2) (2, 4, M3) (3, 5, M1) (4, 6, M4)

Table 10. PdM parameters for the machines presented in case study 2.

Parameter
Machine

1 2 3 4

t f
m (hr) Based on sensor system

tR
m (hr) 2 3 2 3
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minimize computational time. Despite the fact that most FMS scheduling problems are 
small, the proposed approach is applied to address larger problems. In order to validate 
the effectiveness of the proposed approach for more complex, dynamic scheduling prob-
lems with unreliable flexible manufacturing systems, it is implemented on a larger scale. 
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The proposed approach is applicable to problems of large scale. The number of
controllers will be augmented in proportion to the increase in shared resources, and the
final result of the developed mathematical model might require the use of heuristic methods
to minimize computational time. Despite the fact that most FMS scheduling problems are
small, the proposed approach is applied to address larger problems. In order to validate the
effectiveness of the proposed approach for more complex, dynamic scheduling problems
with unreliable flexible manufacturing systems, it is implemented on a larger scale.

Case study 3: The system consists of 10 different types of parts and 6 machines. Each
component is subjected to a series of five processes. The data related to this scenario are
depicted in Tables 11 and 12. Figure 22 depicts the optimal schedule for this problem. The
minimal cycle time is 64 units of time.

Table 11. Scheduling data of case study 3.

Part (Operation, Operation Time, Machine)

1 (1, 3, M1) (2, 5, M2) (3, 6, M3) (4, 7, M4) (5, 8, M5)
2 (1, 8, M3) (2, 4, M1) (3, 9, M2) (4, 6, M6) (5, 5, M6)
3 (1, 2, M1) (2, 7, M3) (3, 5, M1) (4, 4, M5) (5, 6, M4)
4 (1, 3, M1) (2, 2, M2) (3, 6, M2) (4, 3, M4) (5, 2, M5)
5 (1, 5, M6) (2, 4, M3) (3, 6, M1) (4, 7, M2) (5, 5, M5)
6 (1, 6, M5) (2, 1, M6) (3, 8, M6) (4, 9, M4) (5, 7, M5)
7 (1, 6, M1) (2, 5, M2) (3, 9, M3) (4, 8, M4) (5, 7, M6)
8 (1, 5, M5) (2, 4, M4) (3, 3, M3) (4, 4, M2) (5, 5, M1)
9 (1, 6, M6) (2, 7, M6) (3, 7, M4) (4, 6, M1) (5, 5, M5)
10 (1, 6, M4) (2, 5, M3) (3, 4, M2) (4, 5, M5) (5, 6, M6)

Table 13 illustrates the size and efficiency of the proposed approach across all of the
studies. It demonstrates that the proposed approach includes a greater number of variables
and constraints when the problem size is larger. Furthermore, the CPU processing time
undergoes a significant increase as the problem size is increased. Thus, the scheduling
problem is a complicated and NP-complete problem with a combinatorial structure.
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Table 12. PdM parameters for the machines presented in case study 3.

Parameter
Machine

1 2 3 4 5 6

t f
m (hr) Based on sensor system

tR
m (hr) 5 3 1 1 2 2
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Table 13. Performance of the developed model in all case studies.

Parameter
Case Study

1 2 3

No. of Parts 3 5 10
No. of Machines 2 4 6

CPU time (second) 2 8 5160

5. Conclusions

This paper presents a method for generating MILP models using timed Petri nets.
The method is designed to address the dynamic scheduling problems in UFMSs’ complex
industrial conditions. The objective is to construct TPN models using the IoT for the PdM
configuration of mechanical equipment in the dynamic scheduling problem of UFMSs to
determine the optimal production cycle time. The effectiveness of the proposed approach
is demonstrated through several computational instances. The main contributions of the
proposed method are as follows:

1. It can methodically build MILP instances based on TPN models for UFMSs under
complex operational conditions such as concurrency, conflicts, resource sharing, and
sequential processes, which can be applied in practical scenarios.

2. It provides a hybrid approach that integrates the TPN, the PdM configuration, and
the IoT to predict and prevent early mechanical equipment failures in UFMSs, thereby
avoiding disruptions to the scheduled operations of other UFMSs.

3. The optimal solution for the UFMS scheduling problem obtained from MILP can be
converted into a system controller to guarantee the execution of the resulting sequence.

The following is a list of the significant results of the proposed method:

1. The computational results are better in terms of the quality of the obtained solutions.
2. It enables faster, optimal decision-making in DSP and solves instances for up to

10 parts and 6 machines.
3. It is capable of handling all unreliable machines in the UFMSs, and it is perfectly

adequate to reach a solution in an acceptable CPU time.
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While the current optimization solvers, such as LINGO and high-performance comput-
ers, are capable of solving large-scale scheduling problems with significant CPU time, there
is a need for approximate approaches such as GA, ACO, PSO, SA, and TS to address these
scheduling problems. This will be the focus of future research in this field. Furthermore,
our objective is to expand our approach to address optimization issues that involve un-
certainty. Stochastic TPNs can be applied to address uncertainty and formulate stochastic
optimization problems based on PN models.
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