A Walking Trajectory Tracking Control Based on Uncertainties Estimation for a Drilling Robot for Rockburst Prevention
Abstract
:1. Introduction
- (1)
- A coupled model is presented to analyze walking characteristics for the WECS, in which combing a walking motion model and an electrohydraulic control model to decompose the walking trajectory tracking control law, thereby improving the tracking control efficiency of the WECS.
- (2)
- Model uncertainties and external disturbances are observed by a state observer for the WECS based on an improved radial basis function. Additionally, a proper selection of the saturation function could reduce the chattering phenomenon and enhance the tracking capability of the WECS.
- (3)
- Compared with other existing control approaches, the presented control scheme for the WECS has a better performance in both walking longitudinal and lateral trajectory tracking control, which reduces the walking trajectory tracking average absolute error.
2. Walking Electrohydraulic Control System Analysis
2.1. Walking Process Description and Analysis
2.2. Walking Model Analysis
2.3. Mathematical Model of the Valve-Controlled Motor
3. Design of Walking Trajectory Tracking Control Strategy
3.1. Design of the State Observer Based on Improved RBF Neural Network
3.2. Design of the Walking Longitudinal Trajectory Tracking Controller
3.3. Design of the Walking Lateral Trajectory Tracking Controller
3.4. The Proposed Walking Trajectory Tracking Control Strategy
4. Results and Discussion
4.1. Main Parameters
4.2. Simulation Results and Analysis
4.2.1. Walking Longitudinal Trajectory Tracking and Analysis
4.2.2. Walking Lateral Trajectory Tracking Performance and Analysis
4.3. Experimental Results and Analysis
4.3.1. Experimental Platform of the WECS
4.3.2. Walking Longitudinal Trajectory Tracking Performance Verification
4.3.3. Walking Lateral Trajectory Tracking Performance Verification
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Wu, S.-K.; Zhang, J.-W.; Song, Z.-X.; Fan, W.-B.; Zhang, Y.; Dong, X.-K.; Zhang, Y.-J.; Kan, B.-H.; Chen, Z.-S.; Zhang, J.-T. Review of the development status of rock burst disaster prevention system in China. J. Cent. South Univ. 2023, 30, 3763–3789. [Google Scholar] [CrossRef]
- He, X.-Q.; Zhou, C.; Song, D.-Z.; Li, Z.-L.; Cao, A.-Y.; He, S.-Q.; Khan, M. Mechanism and monitoring and early warning technology for rockburst in coal mines. Int. J. Miner. Metall. Mater. 2021, 28, 1097–1111. [Google Scholar] [CrossRef]
- Ma, N.; Zhang, W.; Li, J.; Lian, X.; Ren, J. Analysis and evaluation of essential factors for rock burst mechanism. J. Min. Sci. Technol. 2021, 6, 651–658. [Google Scholar]
- Si, L.; Wang, Z.; Li, J.; Wei, D.; Zhao, S. A novel positioning method of anti-punching drilling robot based on the fusion of multi-IMUs and visual image. ISA Trans. 2023, 137, 730–746. [Google Scholar] [CrossRef] [PubMed]
- Yuan, L. Risk identification, monitoring and early warning of typical coal mine dynamic disasters during the 13th Five-Year Plan period. J. Min. Sci. Technol. 2021, 6, 1–8. [Google Scholar]
- Borrell, A.M.; Puig, V.; Sename, O. Fixed-structure parameter-dependent state feedback controller: A scaled autonomous vehicle path-tracking application. Control Eng. Pract. 2024, 147, 105911. [Google Scholar] [CrossRef]
- Sun, J.; Yao, J.; Jia, Y.; Yao, F.; Shi, W. Nonlinear model predictive control for trajectory-planning and tracking based on tilting technology to achieve vehicle obstacle avoidance. Veh. Syst. Dyn. 2024, 1–21. [Google Scholar] [CrossRef]
- Shao, X.; Fan, Y.; Shao, J.; Sun, G. Improved active disturbance rejection control with the optimization algorithm for the leg joint control of a hydraulic quadruped robot. Meas. Control 2023, 56, 1359–1376. [Google Scholar] [CrossRef]
- Gao, B.; Guan, H.; Shen, W.; Ye, Y. Application of the gray wolf optimization algorithm in active disturbance rejection control parameter tuning of an electro-hydraulic servo unit. Machines 2022, 10, 599. [Google Scholar] [CrossRef]
- Yang, W.; Ding, S.; Ding, C. Fast Supertwisting Sliding Mode Control With Antipeaking Extended State Observer for Path-Tracking of Unmanned Agricultural Vehicles. IEEE Trans. Ind. Electron. 2024, 1–10. [Google Scholar] [CrossRef]
- Iqbal, J.; Ullah, M.I.; Khan, A.A.; Irfan, M. Towards sophisticated control of robotic manipulators: An experimental study on a pseudo-industrial arm. Stroj. Vestn.-J. Mech. Eng. 2015, 61, 465–470. [Google Scholar] [CrossRef]
- Guo, K.; Li, M.; Shi, W.; Pan, Y. Adaptive tracking control of hydraulic systems with improved parameter convergence. IEEE Trans. Ind. Electron. 2021, 69, 7140–7150. [Google Scholar] [CrossRef]
- Gao, Q. Nonlinear adaptive control with asymmetric pressure difference compensation of a hydraulic pressure servo system using two high speed on/off valves. Machines 2022, 10, 66. [Google Scholar] [CrossRef]
- Shen, W.; Wang, J. An integral terminal sliding mode control scheme for speed control system using a double-variable hydraulic transformer. ISA Trans. 2022, 124, 386–394. [Google Scholar] [CrossRef] [PubMed]
- Anjum, M.B.; Khan, Q.; Ullah, S.; Hafeez, G.; Fida, A.; Iqbal, J.; Albogamy, F.R. Maximum power extraction from a standalone photo voltaic system via neuro-adaptive arbitrary order sliding mode control strategy with high gain differentiation. Appl. Sci. 2022, 12, 2773. [Google Scholar] [CrossRef]
- Khan, M.F.; ul Islam, R.; Iqbal, J. Control strategies for robotic manipulators. In Proceedings of the 2012 International Conference of Robotics and Artificial Intelligence, Rawalpindi, Pakistan, 22–23 October 2012; IEEE: Piscataway, NJ, USA, 2012; pp. 26–33. [Google Scholar]
- Lee, H.; Utkin, V.I. Chattering suppression methods in sliding mode control systems. Annu. Rev. Control 2007, 31, 179–188. [Google Scholar] [CrossRef]
- Wan, Z.; Fu, Y.; Liu, C.; Yue, L. Sliding Mode Control Based on High Gain Observer for Electro-Hydraulic Servo System. J. Electr. Comput. Eng. 2023, 2023, 7932117. [Google Scholar] [CrossRef]
- Nguyen, M.H.; Dao, H.V.; Ahn, K.K. Extended sliding mode observer-based high-accuracy motion control for uncertain electro-hydraulic systems. Int. J. Robust Nonlinear Control 2023, 33, 1351–1370. [Google Scholar] [CrossRef]
- Wang, Y.; Zhao, J.; Ding, H.; Zhang, H. Output feedback control of electro-hydraulic asymmetric cylinder system with disturbances rejection. J. Frankl. Inst. 2021, 358, 1839–1859. [Google Scholar] [CrossRef]
- Hu, C.; Chen, Y.; Wang, J. Fuzzy observer-based transitional path-tracking control for autonomous vehicles. IEEE Trans. Intell. Transp. Syst. 2020, 22, 3078–3088. [Google Scholar] [CrossRef]
- Hu, Y.; Wang, H. Robust tracking control for vehicle electronic throttle using adaptive dynamic sliding mode and extended state observer. Mech. Syst. Signal Process. 2020, 135, 106375. [Google Scholar] [CrossRef]
- Xiaodong, J.; Yuanyuan, Q.; Shichen, F.; Minjun, Z.; Miao, W. Path tracking of mining boom road-header using SVD-Unscented Kalman Filtering. J. Min. Sci. Technol. 2022, 7, 354–363. [Google Scholar]
- Taghavifar, H.; Shojaei, K. Adaptive robust control algorithm for enhanced path-tracking performance of automated driving in critical scenarios. Soft Comput. 2023, 27, 8841–8854. [Google Scholar] [CrossRef]
- Xi, R.-D.; Ma, T.-N.; Xiao, X.; Yang, Z.-X. Design and implementation of an adaptive neural network observer–based backstepping sliding mode controller for robot manipulators. Trans. Inst. Meas. Control 2024, 46, 1093–1104. [Google Scholar] [CrossRef]
- Jo, A.; Lee, H.; Seo, D.; Yi, K. Model-reference adaptive sliding mode control of longitudinal speed tracking for autonomous vehicles. Proc. Inst. Mech. Eng. Part D J. Automob. Eng. 2023, 237, 493–515. [Google Scholar] [CrossRef]
- Zhang, Z.; Guo, Y.; Gong, D.; Zhu, S. Hybrid extended state observer-based integral sliding mode control of the propulsion for a hydraulic roofbolter. Control Eng. Pract. 2022, 126, 105260. [Google Scholar] [CrossRef]
- Zang, W.; Zhang, Q.; Shen, G.; Fu, Y. Extended sliding mode observer based robust adaptive backstepping controller for electro-hydraulic servo system: Theory and experiment. Mechatronics 2022, 85, 102841. [Google Scholar] [CrossRef]
- Yang, X.; Yao, J.; Deng, W. Output feedback adaptive super-twisting sliding mode control of hydraulic systems with disturbance compensation. ISA Trans. 2021, 109, 175–185. [Google Scholar] [CrossRef] [PubMed]
- Yao, Z.; Liang, X.; Zhao, Q.; Yao, J. Adaptive disturbance observer-based control of hydraulic systems with asymptotic stability. Appl. Math. Model. 2022, 105, 226–242. [Google Scholar] [CrossRef]
- Razmjooei, H.; Palli, G.; Nazari, M. Disturbance observer-based nonlinear feedback control for position tracking of electro-hydraulic systems in a finite time. Eur. J. Control 2022, 67, 100659. [Google Scholar] [CrossRef]
- Truong, H.V.A.; Nam, S.; Kim, S.; Kim, Y.; Chung, W.K. Backstepping-Sliding-Mode-Based Neural Network Control for Electro-Hydraulic Actuator Subject to Completely Unknown System Dynamics. IEEE Trans. Autom. Sci. Eng. 2023, 1–15. [Google Scholar] [CrossRef]
- Palli, G.; Strano, S.; Terzo, M. A novel adaptive-gain technique for high-order sliding-mode observers with application to electro-hydraulic systems. Mech. Syst. Signal Process. 2020, 144, 106875. [Google Scholar] [CrossRef]
- Xiong, G.-M.; Lu, H.; Guo, K.-H.; CHEN, H.-Y. Research on trajectory prediction of tracked vehicles based on real time slip estimation. Acta Armamentarii 2017, 38, 600. [Google Scholar]
- Lu, J.; Zhang, D.; Huang, G.; Li, X.; Gao, H.; Yin, G. Effects of loading rate on the compound dynamic disaster in deep underground coal mine under true triaxial stress. Int. J. Rock Mech. Min. Sci. 2020, 134, 104453. [Google Scholar] [CrossRef]
- Gu, J.; Shen, C.; Zhang, C.; Wu, H.; Wei, D.; Si, L.; Wang, Z. Electrohydraulic proportional position and pressure loading control utilizing a state perception and processing method. ISA Trans. 2023, 143, 647–665. [Google Scholar] [CrossRef]
- Lin, S.-C.; Chen, Y.-Y. RBF-network-based sliding mode control. In Proceedings of the IEEE International Conference on Systems, Man and Cybernetics, San Antonio, TX, USA, 2–5 October 1994; IEEE: Piscataway, NJ, USA, 1994; pp. 1957–1961. [Google Scholar]
Parameters | Characteristics | Values |
---|---|---|
Kq | Flow gain | 1.5 × 10−10 m3/(s∙MPa) |
Kc | Flow–pressure gain | 4.6 × 10−5 m3/(s∙MPa) |
Jm | Inertia moment | 1.28 Kg/m2 |
Dm | Motor displacement | 1.6 × 10−4 m3/rad |
Bm | Viscous damping coefficient | 0.353 N·m·s/rad |
Gm | Torsional stiffness | 1.2 N·m/rad |
Jm | Inertia moment | 1.28 Kg/m2 |
ρ | Hydraulic oil density | 900 Kg/m3 |
βe | bulk modulus | 1.7 × 109 Pa |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gu, J.; He, S.; Dai, J.; Wei, D.; Yan, H.; Tan, C.; Wang, Z.; Si, L. A Walking Trajectory Tracking Control Based on Uncertainties Estimation for a Drilling Robot for Rockburst Prevention. Machines 2024, 12, 298. https://doi.org/10.3390/machines12050298
Gu J, He S, Dai J, Wei D, Yan H, Tan C, Wang Z, Si L. A Walking Trajectory Tracking Control Based on Uncertainties Estimation for a Drilling Robot for Rockburst Prevention. Machines. 2024; 12(5):298. https://doi.org/10.3390/machines12050298
Chicago/Turabian StyleGu, Jinheng, Shicheng He, Jianbo Dai, Dong Wei, Haifeng Yan, Chao Tan, Zhongbin Wang, and Lei Si. 2024. "A Walking Trajectory Tracking Control Based on Uncertainties Estimation for a Drilling Robot for Rockburst Prevention" Machines 12, no. 5: 298. https://doi.org/10.3390/machines12050298
APA StyleGu, J., He, S., Dai, J., Wei, D., Yan, H., Tan, C., Wang, Z., & Si, L. (2024). A Walking Trajectory Tracking Control Based on Uncertainties Estimation for a Drilling Robot for Rockburst Prevention. Machines, 12(5), 298. https://doi.org/10.3390/machines12050298