An Improved Fourier-Based Method for Path Generation of Planar Four-Bar Linkages without Prescribed Timing
Abstract
:1. Introduction
2. Planar Four-Bar Linkage Kinematic Formulation
2.1. Fourier Representation for Path Generation
2.2. Design Equations for the Input Dyad of Path Generation
2.3. Design Equations for Variables
3. Numerical Procedure to Obtain the Fourier Coefficients
3.1. For Path Generation with Prescribed Timing
3.2. For Path Generation without Prescribed Timing
- Generate points along the given path.
- Choose any two points ( and ) on the given path and note the intersection of their normal lines as point E.
- Calculate the distance between point E and the remaining points noted as on the given path.
- Check if the calculated distance satisfies the condition . If it does, then select point E as the crank center A. If not, re-select the combination of points and .
4. Synthesis Procedure for Path Generation of Planar Four-Bar Linkages
5. Applications and Discussions
5.1. Example 1: An Ellipse of 10 Points without Prescribed Timing
5.2. Example 2: A Teardrop Shape of 25 Points without Prescribed Timing
5.3. Example 3: A Complex Triple Loop Path of 90 Points without Prescribed Timing
6. Conclusions
- Fourier approximation is used instead of spline interpolation to better capture the curve of the given points, although it does not contain the given points. The synthesis solutions had improved accuracy compared to those using spline interpolation. In addition, as the foundation of this analytical synthesis is the Fourier series, using Fourier approximation, consistent with the foundation, simplifies the computational procedure at the programming level. It can be concluded that it is computationally efficient and accurate to generate points readily for the point-to-point combination method using Fourier approximation.
- Time parameters are assigned directly to the given points, avoiding complex calculations to find intersection points along the given path with the floating link of the auxiliary mechanism. The conditions proposed to find valid sets of point-to-point combinations whilst discarding combinations that lead to solutions with order defects before calculating design parameters. In addition, the accuracy evaluation process is simplified by the fact that the time parameters for the given points are known, thus eliminating the need to find the corresponding generated path point for the given points.
- The parameters obtained by the point-to-point combination method are used as the parameters of the input dyad, skipping the first set of design equations presented in Section 2.2 for faster calculation. Examples demonstrate that this method is highly effective in the synthesis process with competitive accuracy. The computation time is significantly reduced by one order of magnitude compared to that of solving two sets of design equations.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Torres-Moreno, J.L.; Cruz, N.C.; Álvarez, J.D.; Redondo, J.L.; Giménez-Fernandez, A. An Open-Source Tool for Path Synthesis of Four-Bar Mechanisms. Mech. Mach. Theory 2022, 169, 104604. [Google Scholar] [CrossRef]
- Kimbrell, J.T. Graphical Synthesis of a 4-Bar Mechanism. Mech. Mach. Theory 1984, 19, 45–49. [Google Scholar] [CrossRef]
- Suh, C.H.; Radcliffe, C.W. Synthesis of Plane Linkages with Use of the Displacement Matrix. J. Eng. Ind. 1967, 89, 206–214. [Google Scholar] [CrossRef]
- Sandor, G.N. A General Complex-Number Method for Plane Kinematic Synthesis with Applications. Ph.D. Thesis, Columbia University, New York, NY, USA, 1959. [Google Scholar]
- Varedi-Koulaei, S.; Rezagholizadeh, H. Synthesis of the Four-Bar Linkage as Path Generation by Choosing the Shape of the Connecting Rod. Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci. 2020, 234, 2643–2652. [Google Scholar] [CrossRef]
- Lin, W.; Hsiao, K. A New Differential Evolution Algorithm with a Combined Mutation Strategy for Optimum Synthesis of Path-Generating Four-Bar Mechanisms. Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci. 2017, 231, 2690–2705. [Google Scholar] [CrossRef]
- Mwangi, J.K.; Muvengei, O.M.; Oduori, M.F. Review of the Application of Genetic Algorithm and Precision Points in Optimisation of the Four-Bar Mechanism. In Proceedings of the Sustainable Research and Innovation Conference, Juja, Kenya, 2–4 May 2018. [Google Scholar]
- Lee, W.-T.; Russell, K. Developments in Quantitative Dimensional Synthesis (1970–Present): Four-Bar Path and Function Generation. Inverse Probl. Sci. Eng. 2018, 26, 1280–1304. [Google Scholar] [CrossRef]
- Sancibrian, R.; Sedano, A.; Sarabia, E.G.; Blanco, J.M. Hybridizing Differential Evolution and Local Search Optimization for Dimensional Synthesis of Linkages. Mech. Mach. Theory 2019, 140, 389–412. [Google Scholar] [CrossRef]
- Liu, W.; Sun, J.; Zhang, B.; Chu, J. Wavelet Feature Parameters Representations of Open Planar Curves. Appl. Math. Model. 2018, 57, 614–624. [Google Scholar] [CrossRef]
- Yu, H.; Tang, D.; Wang, Z. Study on a New Computer Path Synthesis Method of a Four-Bar Linkage. Mech. Mach. Theory 2007, 42, 383–392. [Google Scholar] [CrossRef]
- McGarva, J.; Mullineux, G. Harmonic Representation of Closed Curves. Appl. Math. Model. 1993, 17, 213–218. [Google Scholar] [CrossRef]
- McGarva, J.R. Rapid Search and Selection of Path Generating Mechanisms from a Library. Mech. Mach. Theory 1994, 29, 223–235. [Google Scholar] [CrossRef]
- Sun, J.; Chu, J. Fourier Series Representation of the Coupler Curves of Spatial Linkages. Appl. Math. Model. 2010, 34, 1396–1403. [Google Scholar] [CrossRef]
- Mullineux, G. Atlas of Spherical Four-Bar Mechanisms. Mech. Mach. Theory 2011, 46, 1811–1823. [Google Scholar] [CrossRef]
- Jianwei, S.; Jinkui, C.; Baoyu, S. A Unified Model of Harmonic Characteristic Parameter Method for Dimensional Synthesis of Linkage Mechanism. Appl. Math. Model. 2012, 36, 6001–6010. [Google Scholar] [CrossRef]
- Chang, Y.; Chang, J.-L.; Lee, J.-J. Atlas-Based Path Synthesis of Planar Four-Bar Linkages Using Elliptical Fourier Descriptors. In Advances in Mechanism and Machine Science; Okada, M., Ed.; Mechanisms and Machine Science; Springer Nature: Cham, Switzerland, 2024; Volume 149, pp. 198–207. ISBN 978-3-031-45708-1. [Google Scholar]
- Sun, J.; Wang, P.; Liu, W.; Chu, J.; Ren, L. Synthesis of Multiple Tasks of a Planar Six-Bar Mechanism by Wavelet Series. Inverse Probl. Sci. Eng. 2019, 27, 388–406. [Google Scholar] [CrossRef]
- Buśkiewicz, J.; Starosta, R.; Walczak, T. On the Application of the Curve Curvature in Path Synthesis. Mech. Mach. Theory 2009, 44, 1223–1239. [Google Scholar] [CrossRef]
- Buśkiewicz, J. Use of Shape Invariants in Optimal Synthesis of Geared Five-Bar Linkage. Mech. Mach. Theory 2010, 45, 273–290. [Google Scholar] [CrossRef]
- Wu, R.; Li, R.; Bai, S. A Fully Analytical Method for Coupler-Curve Synthesis of Planar Four-Bar Linkages. Mech. Mach. Theory 2021, 155, 104070. [Google Scholar] [CrossRef]
- Norton, R.L. Design of Machinery: An Introduction to the Synthesis and Analysis of Mechanisms and Machines, 6th ed.; McGraw-Hill Education: New York, NY, USA, 2020; ISBN 978-1-260-11331-0. [Google Scholar]
- Blechschmidt, J.L.; Uicker, J.J. Linkage Synthesis Using Algebraic Curves. J. Mech. Transm. Autom. Des. 1986, 108, 543–548. [Google Scholar] [CrossRef]
- Ananthasuresh, G.K.; Kota, S. A Renewed Approach to the Synthesis of Four-Bar Linkages for Path Generation via the Coupler Curve Equation. In Proceedings of the National Applied Mechanisms and Robotics Conference, Cincinnati, OH, USA, 8–10 November 1993; p. 83. [Google Scholar]
- Lin, W.-Y. A GA–DE Hybrid Evolutionary Algorithm for Path Synthesis of Four-Bar Linkage. Mech. Mach. Theory 2010, 45, 1096–1107. [Google Scholar] [CrossRef]
- Bai, S.; Angeles, J. Coupler-Curve Synthesis of Four-Bar Linkages via a Novel Formulation. Mech. Mach. Theory 2015, 94, 177–187. [Google Scholar] [CrossRef]
- Bai, S. A Note on the Univariate Nonic Derived from the Coupler Curve of Four-Bar Linkages. Mech. Mach. Theory 2021, 162, 104344. [Google Scholar] [CrossRef]
- Li, X.; Wei, S.; Liao, Q.; Zhang, Y. A Novel Analytical Method for Function Generation Synthesis of Planar Four-Bar Linkages. Mech. Mach. Theory 2016, 101, 222–235. [Google Scholar] [CrossRef]
- Li, X.; Wei, S.; Liao, Q.; Zhang, Y. A Novel Analytical Method for Four-Bar Path Generation Synthesis Based on Fourier Series. Mech. Mach. Theory 2020, 144, 103671. [Google Scholar] [CrossRef]
- Nguyen-Van, S.; Nguyen-Dinh, N.; Duong, P.T.M.; Hung, N.Q.; Nguyen, T.T.N. The Dimensional Synthesis of the Four-Bar Mechanism with a Symbiotic Organisms Search Algorithm. In Advances in Engineering Research and Application; Sattler, K.-U., Nguyen, D.C., Vu, N.P., Long, B.T., Puta, H., Eds.; Lecture Notes in Networks and Systems; Springer International Publishing: Cham, Switzerland, 2021; Volume 178, pp. 780–791. ISBN 978-3-030-64718-6. [Google Scholar]
- Valencia-Segura, L.E.; Villarreal-Cervantes, M.G.; Corona-Ramirez, L.G.; Cuenca-Jimenez, F.; Castro-Medina, R. Optimum Synthesis of Four-Bar Mechanism by Using Relative Angle Method: A Comparative Performance Study. IEEE Access 2021, 9, 132990–133010. [Google Scholar] [CrossRef]
- Deshpande, S.; Purwar, A. A Machine Learning Approach to Kinematic Synthesis of Defect-Free Planar Four-Bar Linkages. J. Comput. Inf. Sci. Eng. 2019, 19, 021004. [Google Scholar] [CrossRef]
- Fernández De Bustos, I.; Urkullu, G.; García Marina, V.; Ansola, R. Optimization of Planar Mechanisms by Using a Minimum Distance Function. Mech. Mach. Theory 2019, 138, 149–168. [Google Scholar] [CrossRef]
- Sharma, S.; Purwar, A.; Jeffrey Ge, Q. An Optimal Parametrization Scheme for Path Generation Using Fourier Descriptors for Four-Bar Mechanism Synthesis. J. Comput. Inf. Sci. Eng. 2019, 19, 014501. [Google Scholar] [CrossRef]
- Hernández, A.; Muñoyerro, A.; Urízar, M.; Amezua, E. Comprehensive Approach for the Dimensional Synthesis of a Four-Bar Linkage Based on Path Assessment and Reformulating the Error Function. Mech. Mach. Theory 2021, 156, 104126. [Google Scholar] [CrossRef]
- Yao, X.; Wang, X.; Sun, W.; Kong, J.; Lin, Z. Optimal Synthesis of Four-Bar Linkages for Path Generation Using the Individual Repairing Method. Mech. Sci. 2022, 13, 79–87. [Google Scholar] [CrossRef]
- Zhang, K.; Huang, Q.; Zhang, Y.; Song, J.; Shi, J. Hybrid Lagrange Interpolation Differential Evolution Algorithm for Path Synthesis. Mech. Mach. Theory 2019, 134, 512–540. [Google Scholar] [CrossRef]
- Nguyen-Van, S.; Lieu, Q.X.; Xuan-Mung, N.; Nguyen, T.T.N. A New Study on Optimization of Four-Bar Mechanisms Based on a Hybrid-Combined Differential Evolution and Jaya Algorithm. Symmetry 2022, 14, 381. [Google Scholar] [CrossRef]
- Smaili, A.; Diab, N. Optimum Synthesis of Hybrid-Task Mechanisms Using Ant-Gradient Search Method. Mech. Mach. Theory 2007, 42, 115–130. [Google Scholar] [CrossRef]
- Kang, Y.-H.; Lin, J.-W.; You, W.-C. Comparative Study on the Synthesis of Path-Generating Four-Bar Linkages Using Metaheuristic Optimization Algorithms. Appl. Sci. 2022, 12, 7368. [Google Scholar] [CrossRef]
- Rodríguez-Molina, A.; Villarreal-Cervantes, M.G.; Rueda-Gutiérrez, A.-B.; Aldape-Pérez, M.; Álvarez-Piedras, J.D.; Parra-Ocampo, M.F. Study of Differential Evolution Variants in the Dimensional Synthesis of Four-Bar Grashof-Type Mechanisms. Appl. Sci. 2023, 13, 6966. [Google Scholar] [CrossRef]
- Yu, S.-C.; Chang, Y.; Lee, J.-J. A Generative Model for Path Synthesis of Four-Bar Linkages via Uniform Sampling Dataset. Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci. 2023, 237, 811–829. [Google Scholar] [CrossRef]
- Grabski, J.K.; Sopa, M.; Mrozek, A. Application of the Path-Repairing Technique and Virus Optimization Algorithm for the Dimensional Synthesis of Four-Bar Mechanisms. Arch. Civ. Mech. Eng. 2023, 23, 134. [Google Scholar] [CrossRef]
- Ding, J.; Liu, W.; Sun, J. Feature Extraction Method for Planar Four-bar Mechanism with Design Requirement of Finitely Separated Position. J. Mech. Transm. 2018, 42, 59–63. [Google Scholar] [CrossRef]
- Peng, C.; Sodhi, R.S. Optimal Synthesis of Adjustable Mechanisms Generating Multi-Phase Approximate Paths. Mech. Mach. Theory 2010, 45, 989–996. [Google Scholar] [CrossRef]
- Acharyya, S.K.; Mandal, M. Performance of EAs for Four-Bar Linkage Synthesis. Mech. Mach. Theory 2009, 44, 1784–1794. [Google Scholar] [CrossRef]
- Eqra, N.; Abiri, A.H.; Vatankhah, R. Optimal Synthesis of a Four-Bar Linkage for Path Generation Using Adaptive PSO. J. Braz. Soc. Mech. Sci. Eng. 2018, 40, 469. [Google Scholar] [CrossRef]
- Hadizadeh Kafash, S.; Nahvi, A. Optimal Synthesis of Four-Bar Path Generator Linkages Using Circular Proximity Function. Mech. Mach. Theory 2017, 115, 18–34. [Google Scholar] [CrossRef]
1 | 2 | 3 | 5 | 6 | 7 | 8 | 9 | 10 | |
---|---|---|---|---|---|---|---|---|---|
20 | 17.66 | 11.736 | 5 | 0.60307 | 0.60307 | 5 | 11.736 | 17.66 | |
10 | 15.142 | 17.878 | 16.928 | 12.736 | 7.2638 | 3.0718 | 2.1215 | 4.8577 |
Design Variables | Solution 1 1 | Solution 1 Cognate 1 | Solution 1 2 | Solution 2 2 | Solution 1 3 | Solution 2 3 |
---|---|---|---|---|---|---|
8.9999 | 9.9998 | 8.0283 | 8.0283 | 9.2163 | 9.2163 | |
9.0008 | 60,385.8909 | 104.9061 | 107.5520 | 296.7365 | 315.8426 | |
54,347.8187 | 10.0008 | 88.0198 | 96.7131 | 278.4022 | 359.2052 | |
54,347.8182 | 60,385.8903 | 167.1844 | 178.8989 | 489.2287 | 592.9863 | |
14.1419 | 6028.0809 | 17.5653 | 17.5653 | 60.3629 | 60.3629 | |
1.0000 | 6038.0722 | 22.5292 | 22.5292 | 57.5619 | 57.5619 | |
0.7854 | 3.1399 | −0.7829 | −0.7829 | −0.4673 | −0.4673 | |
3.1415 | 0.0000 | 2.8611 | −2.3222 | −1.7631 | −0.7260 | |
0.0000 | 0.0000 | −0.7099 | −2.7514 | −1.5479 | 2.6307 | |
TE | 0.5690 | 0.5690 | 0.0038 | 0.0021 | 0.0005 | 0.0003 |
Conf. | crossed | open | crossed | open | crossed | open |
1 | 2 | 3 | 5 | 6 | 7 | 8 | 9 | 10 | |
---|---|---|---|---|---|---|---|---|---|
1 | −0.0168 | 0.6766 | 1.3661 | 2.0585 | 2.7542 | 3.4555 | 4.1600 | 4.8648 | 5.5677 |
2 | −0.1107 | 0.5873 | 1.2870 | 1.9876 | 2.6880 | 3.3872 | 4.0847 | 4.7807 | 5.4763 |
Design Variables | Solution 1 | Solution 2 | Solution 1 Cognate | Solution 3 | Solution 2 Cognate | Solution 3 Cognate |
---|---|---|---|---|---|---|
9.7177 | 9.7177 | 9.2163 | 9.2163 | 8.0379 | 8.0379 | |
293.5478 | 304.9371 | 296.7365 | 315.8426 | 305.7470 | 313.2784 | |
312.8796 | 369.6413 | 278.4022 | 359.2052 | 252.2273 | 275.4601 | |
515.8436 | 586.6166 | 489.2287 | 592.9863 | 485.2171 | 517.1691 | |
41.2041 | 41.2041 | 60.3629 | 60.3629 | 77.1553 | 77.1553 | |
54.0054 | 54.0054 | 57.5619 | 57.5619 | 65.4647 | 65.4647 | |
−2.8664 | −2.8664 | −0.4673 | −0.4673 | 1.3290 | 1.3290 | |
0.1816 | 0.1816 | 0.0000 | 0.0000 | 0.1392 | 0.1392 | |
1.1969 | 0.1993 | −1.7631 | −0.7260 | −2.8999 | 2.2764 | |
−1.3663 | 0.7777 | −1.5479 | 2.6307 | 0.7353 | 2.7699 | |
TE | 0.0005 | 0.0007 | 0.0005 | 0.0003 | 0.0007 | 0.0003 |
Conf. | open | crossed | crossed | open | open | crossed |
Method | Computational Time (s) 1 |
---|---|
Method considering the auxiliary mechanism | 1.9500 |
Method without considering the auxiliary mechanism | 17.1092 |
Design Variables | Proposed Method | Acharyya. 2009 [46] | Lin. 2017 [6] | Eqra. 2018 [47] | Li. 2020 [29] | Moreno. 2022 [1] |
---|---|---|---|---|---|---|
9.2163 | 8.6834 | 8.0457 | 8.5320 | 8.8355 | 8.0700 | |
315.8426 | 34.3186 | 50.8190 | 31.4848 | 109.0051 | 50.5900 | |
359.2052 | 79.9962 | 42.2080 | 33.2131 | 118.0160 | 42.0100 | |
592.9863 | 54.3609 | 80.0000 | 54.7218 | 199.3538 | 79.5700 | |
60.3629 | 15.5770 | 8.5286 | 8.7906 | 23.4929 | 8.2257 | |
57.5619 | 1.4653 | 10.8809 | 6.0145 | 20.4649 | 10.3833 | |
−0.4673 | 0.7909 | −0.0890 | 0.5897 | −0.2535 | −0.0791 | |
−0.7260 | 1.5707 | −2.9294 | 1.5004 | −1.0982 | −2.9937 | |
2.6307 | 2.1297 | 3.8892 | 0.0965 | 2.8291 | 3.9300 | |
TE | 0.0003 | 2.3432 | 0.0051 | 0.0145 | 0.0037 | 0.4490 |
Conf. | open | open | open | crossed | open | open |
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
7.03 | 6.95 | 6.77 | 6.4 | 5.91 | 5.43 | 4.93 | 4.67 | 4.38 | 4.04 | 3.76 | 3.76 | 3.76 | |
5.99 | 5.45 | 5.03 | 4.6 | 4.03 | 3.56 | 2.94 | 2.6 | 2.2 | 1.67 | 1.22 | 1.97 | 2.78 | |
14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | ||
3.76 | 3.76 | 3.76 | 3.76 | 3.8 | 4.07 | 4.53 | 5.07 | 5.45 | 5.89 | 6.41 | 6.92 | ||
3.56 | 4.34 | 4.91 | 5.47 | 5.98 | 6.4 | 6.75 | 6.85 | 6.84 | 6.83 | 6.8 | 6.58 |
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | |
---|---|---|---|---|---|---|---|---|---|
3.3675 | 3.6823 | 3.9022 | 4.1316 | 4.3962 | 4.6129 | 4.8593 | 4.9919 | 5.1496 | |
10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | |
5.3695 | 5.6202 | 0.1458 | 0.4443 | 0.7182 | 0.9979 | 1.2165 | 1.4516 | 1.6822 | |
19 | 20 | 21 | 22 | 23 | 24 | 25 | |||
1.9178 | 2.1792 | 2.3998 | 2.5443 | 2.7071 | 2.8931 | 3.1029 |
Design Variables | Proposed Method | Zhang. 2019 [37] | Li. 2020 [29] | Hernández. 2021 [35] |
---|---|---|---|---|
1.7869 | 1.92715 | 2.01440 | 2.44870 | |
4.2405 | 4.65983 | 5.54970 | 5.07450 | |
4.0146 | 7.27223 | 6.71420 | 6.61420 | |
6.2684 | 10.00000 | 10.10860 | 8.18640 | |
10.5236 | 3.82046 | 4.54090 | 2.35603 | |
9.2977 | 8.18655 | 9.74180 | 8.53541 | |
−0.2698 | 2.28210 | 2.64080 | 2.95265 | |
0.1621 | 0.19171 | 0.10880 | −0.35591 | |
2.6661 | 5.66686 | −0.45260 | −0.06010 | |
TE | 0.0371 | 0.05201 | 0.04951 | 0.05568 |
Conf. | crossed | open | open | open |
Design Variables | Proposed Method | Disregarding Time Parameters | Hadizdeh Kafash 2017 [48] | Original Linkage |
---|---|---|---|---|
3.1609 | 3.1076 | 3.1092 | 3.1 | |
5.0157 | 5.0012 | 5.0394 | 5 | |
9.3046 | 8.6050 | 8.7281 | 8.6 | |
11.0445 | 10.4199 | 10.5479 | 10.4 | |
0.1542 | 0.0309 | 0.0488 | 0 | |
5.9161 | 5.9765 | 6.0387 | 6 | |
2.9681 | 2.4404 | −1.4744 | 0 | |
0.0000 | −0.0030 | 0.0000 | 0 | |
0.9741 | 1.0026 | 0.9993 | 1 | |
−0.0256 | −0.0019 | 0.0000 | 0 | |
TE | 0.0125 | 0.0096 | 0.0194 | 0 |
Conf. | open | open | open | open |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Qian, Y.; Zhong, H.; Wang, T.; Wang, L. An Improved Fourier-Based Method for Path Generation of Planar Four-Bar Linkages without Prescribed Timing. Machines 2024, 12, 299. https://doi.org/10.3390/machines12050299
Qian Y, Zhong H, Wang T, Wang L. An Improved Fourier-Based Method for Path Generation of Planar Four-Bar Linkages without Prescribed Timing. Machines. 2024; 12(5):299. https://doi.org/10.3390/machines12050299
Chicago/Turabian StyleQian, Yahui, Hong Zhong, Tao Wang, and Liangmo Wang. 2024. "An Improved Fourier-Based Method for Path Generation of Planar Four-Bar Linkages without Prescribed Timing" Machines 12, no. 5: 299. https://doi.org/10.3390/machines12050299
APA StyleQian, Y., Zhong, H., Wang, T., & Wang, L. (2024). An Improved Fourier-Based Method for Path Generation of Planar Four-Bar Linkages without Prescribed Timing. Machines, 12(5), 299. https://doi.org/10.3390/machines12050299