
Citation: Alshahir, A.; Kaaniche, K.;

Albekairi, M.; Alshahr, S.; Mekki, H.;

Sahbani, A.; Alanazi, M.D. An

Advanced IBVS-Flatness Approach

for Real-Time Quadrotor Navigation:

A Full Control Scheme in the Image

Plane. Machines 2024, 12, 350.

https://doi.org/10.3390/

machines12050350

Academic Editor: Endrowednes

Kuantama

Received: 22 March 2024

Revised: 15 May 2024

Accepted: 16 May 2024

Published: 19 May 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

machines

Article

An Advanced IBVS-Flatness Approach for Real-Time Quadrotor
Navigation: A Full Control Scheme in the Image Plane
Ahmed Alshahir 1 , Khaled Kaaniche 1,* , Mohammed Albekairi 1 , Shahr Alshahr 1, Hassen Mekki 2 ,
Anis Sahbani 3 and Meshari D. Alanazi 1

1 Department of Electrical Engineering, College of Engineering, Jouf University, Sakakah 72388, Saudi Arabia;
aaalshahir@ju.edu.sa (A.A.); msalbekairi@ju.edu.sa (M.A.); saalshahr@ju.edu.sa (S.A.);
mdalsayer@ju.edu.sa (M.D.A.)

2 NOCCS Laboratory, National School of Engineering of Sousse, University of Sousse, Sousse 4054, Tunisia;
hassen.mekki@eniso.u-sousse.tn

3 Institute for Intelligent Systems and Robotics (ISIR), Centre National de la Recherche Scientifique,
Sorbonne University, 75006 Paris, France; anis.sahbani@sorbonne-universite.fr

* Correspondence: kkaaniche@ju.edu.sa

Abstract: This article presents an innovative method for planning and tracking the trajectory in the
image plane for the visual control of a quadrotor. The community of researchers working on 2D
control widely recognizes this challenge as complex, because a trajectory defined in image space can
lead to unpredictable movements of the robot in Cartesian space. While researchers have addressed
this problem for mobile robots, quadrotors continue to face significant challenges. To tackle this
issue, the adopted approach involves considering the separation of altitude control from the other
variables, thus reducing the workspace. Furthermore, the movements of the quadrotor (pitch, roll,
and yaw) are interdependent. Consequently, the connection between the inputs and outputs cannot
be reversed. The task complexity becomes significant. To address this issue, we propose the following
scenario: When the quadrotor is equipped with a downward-facing camera, flying at high altitude
is sensible to spot a target. However, to minimize disturbances and conserve energy, the quadrotor
needs to descend in altitude. This can result in the target being lost. The solution to this problem is a
new methodology based on the principle of differential flatness, allowing the separation of altitude
control from the other variables. The system first detects the target at high altitude, then plots a
trajectory in the image coordinate system between the acquired image and the desired image. It
is crucial to emphasize that this step is performed offline, ensuring that the image processing time
does not affect the control frequency. Through the proposed trajectory planning, complying with
the constraints of differential flatness, the quadrotor can follow the imposed dynamics. To ensure
the tracking of the target while following the generated trajectory, the proposed control law takes
the form of an Image Based Visual Servoing (IBVS) scheme. We validated this method using the
RVCTOOLS environment in MATLAB. The DJI Phantom 1 quadrotor served as a testbed to evaluate,
under real conditions, the effectiveness of the proposed control law. We specifically designed an
electronic card to transfer calculated commands to the DJI Phantom 1 control joystick via Bluetooth.
This card integrates a PIC18F2520 microcontroller, a DAC8564 digital-to-analogue converter, and
an RN42 Bluetooth module. The experimental results demonstrate the effectiveness of this method,
ensuring the precise tracking of the target as well as the accurate tracking of the path generated in the
image coordinate system.

Keywords: advanced guidance and navigation; IBVS; path planning; path tracking; quadrotor;
flatness control; DJI Phantom 1

1. Introduction

Visual servoing, applied to drone navigation, is an approach that combines computer
vision and control theory. This integration allows the quadrotor to navigate autonomously

Machines 2024, 12, 350. https://doi.org/10.3390/machines12050350 https://www.mdpi.com/journal/machines

https://doi.org/10.3390/machines12050350
https://doi.org/10.3390/machines12050350
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/machines
https://www.mdpi.com
https://orcid.org/0000-0003-3804-4925
https://orcid.org/0000-0003-0625-6245
https://orcid.org/0000-0002-5165-5950
https://orcid.org/0000-0003-3356-1608
https://orcid.org/0000-0003-1483-6207
https://doi.org/10.3390/machines12050350
https://www.mdpi.com/journal/machines
https://www.mdpi.com/article/10.3390/machines12050350?type=check_update&version=2

Machines 2024, 12, 350 2 of 25

with high accuracy and efficiency. Through the utilization of visual feedback obtained
from cameras installed onboard, drones are able to continuously adapt their position and
orientation in relation to visual landmarks or objects of interest within their surroundings.
This advanced technology enables unmanned aerial vehicles (UAVs), commonly known as
drones, to execute intricate operations such as accurate object tracking, real-time obstacle
avoidance, and precise maneuvering in environments where GPS signals are unavailable
or obstructed by obstacles. Visual servoing algorithms facilitate the ability of drones to
make instantaneous decisions by utilizing the visual data they perceive. This enables the
drones to navigate in a flexible and adaptable manner in different situations. This capability
has significant implications across various industries, such as surveillance, agriculture,
infrastructure inspection, and search and rescue missions. Drones equipped with visual
servoing technology can operate with improved autonomy and effectiveness, as evidenced
by studies [1–4]. Drones equipped with state-of-the-art visual servoing techniques have the
capability to monitor traffic patterns, thereby ensuring improved traffic flow and increased
safety. Within the domain of cartography and geographical surveying [5,6], these drones
possess the capability to traverse intricate landscapes, acquiring high-definition visual
data for meticulous mapping purposes. This functionality is also utilized in the field
of agriculture [7,8], where unmanned aerial vehicles (UAVs) aid in the process of crop
monitoring and precision farming.

Generally, the methods in visual servoing are categorized into two families: 3D visual
servoing or Position-Based Visual Servoing (PBVS) and 2D visual servoing or Image-
Based Visual Servoing (IBVS) [9]. PBVS is a technique that aims to estimate the relative
pose of visual targets in a three-dimensional (3D) space. This estimation allows for the
accurate control of the drone’s position. However, IBVS operates directly in the image
coordinate system (the image plane) by utilizing image feature errors to calculate the control
commands. The utilization of image feature errors in the IBVS-based approaches eliminates
the necessity for any prior knowledge regarding the geometry of the target. IBVS-based
approaches reduce the complexity of calculations and improve the resilience of the system.
The ability to regulate the drone/camera system without reconstructing the target’s relative
pose gives the IBVS-based approaches a significant advantage.

Several works combining visual sensors with UAVs have been proposed. The authors
of [10] employ perspective points as a means of directing a quadrotor through enclosed
passageways while avoiding collisions with the surrounding walls. The authors of [11–14]
used, respectively, monocular, stereo, and RGB-D cameras to acquire comprehensive
3D data pertaining to the surrounding environment. The “teach and repeat” approach,
which involves capturing, storing, and organizing significant visual representations of
the surroundings to facilitate robot navigation, has been the subject of several research
studies [15–19]. In order to achieve the tracking of the visual trajectory of quadrotors in in-
door environments, a recent study proposed a hierarchical visual servo control scheme. This
scheme effectively handles collision avoidance, visibility, and visual tasks in a hierarchical
manner, as outlined in [20].

Elementary geometric shapes in the 2D space of the image, such as points of interest,
lines, ellipses, cylinders, and projective invariants are used as visual primitives in these
methods. However, matching the primitives in images can be a complex task. For example,
if we use the coordinates of four points of interest in the image as the primitives, it would
be difficult to directly propose a desired trajectory, as this would require proposing four
distinct trajectories. This does not necessarily reflect the user’s concerns regarding the
movements made in Cartesian space. The dynamics of a quadrotor (the UAV considered in
this work) are very fast and nervous. In order to efficiently control this specific system, it is
imperative to create a regulator with a high-frequency capability [21]. In contrast, visual
servoing involves a preliminary stage of image processing that is designed to extract the
object’s distinctive features. This phenomenon may have a negative impact on the rate
of progression of the control law. Furthermore, the complex nature of image processing
may lead to temporal lags in motion control, potentially leading to the loss of targets. In

Machines 2024, 12, 350 3 of 25

the context of a conventional IBVS-based system, it should be noted that configuring the
kinematic tensor of the quadrotor does not provide a guarantee of its successful execution
in the physical domain. This is because of problems with controllability, especially when
the system is not fully activated. In contrast to the quadrotor, which only has four inputs,
the kinematic tensor has a dimension of six. It is extremely difficult to complete all six
commands generated by the visual servo algorithm using only four control inputs.

The concept of differential flatness introduced and developed by Fliess [22] simplifies
the dynamic behavior modeling of a system by identifying a set of fundamental variables
called “flat outputs”. As we will see in the rest of this paper, this approach has numerous
interesting consequences regarding system control. Firstly, it redirects the process control
towards the concept of a path that the system must adhere to. In other words, the motion
required from a system has to fit the system’s capabilities, avoiding many problems that
control experts often face. Generating an appropriate desired trajectory is a key stage in
flatness-based control. This trajectory takes into consideration the system’s model in an
implicit manner.

Typically, when a quadrotor is equipped with a downward-facing camera, conven-
tional logic would suggest flying at a high altitude to detect a target. However, to minimize
disturbances and save energy, the quadrotor is compelled to descend in altitude, poten-
tially resulting in the loss of the target in the camera’s field of view and the possibility
of encountering obstacles. To overcome all the aforementioned issues, we propose a new
trajectory planning and tracking method based on the concept of differential flatness. The
key idea of this approach is to separate altitude control from the control of the other vari-
ables, allowing the quadrotor to initially fly at a high altitude to increase the camera’s field
of view. Once the target is detected, a path is planned in the image coordinate system
between the detected image and the desired image at the same altitude. This trajectory is
then converted into a trajectory in Cartesian space, independent of altitude. This planning,
conducted offline, makes the quadrotor move in a way that gets it to its goal. It does this by
setting dynamics like a smooth start, acceleration in the middle of the path, and a smooth
arrival, which control the dynamics in the Cartesian plane. To reinforce this approach,
we introduce a visual servoing method, demonstrating that a single point of the target to
reach, representing, for example, the object’s center of gravity, is sufficient. A trajectory
generation block then converts the chosen trajectory in the image plane into a trajectory
expressed in Cartesian space, independent of the altitude of the quadrotor. Furthermore, to
get around problems with underactuated control and strong coupling of the quadrotor, we
suggest a flatness-based control that would make the system controllable and make sure
the generated trajectory converges asymptotically.

We include numerical simulations in order to validate the efficacy of this novel control
approach. We also tested the proposed control laws under real-world conditions. We
used the DJI Phantom 1 quadrotor as a testbed for this. Our team developed a specialized
electronic card with the purpose of transferring calculated commands to the DJI Phantom 1
control joystick through the use of a Bluetooth connection. The experiments demonstrate
the effectiveness of this method by ensuring accurate trajectory tracking in the image plane
and precise target tracking. These advancements promise to significantly enhance the
capabilities of camera-equipped quadrotors to reach fixed targets in complex environments,
paving the way for new applications and developments in the field of aerial robotics.

This paper is organized as follows: Section 2 describes the quadrotor dynamic model.
Section 3 explains the control strategy. The implementation of the control strategy takes
place in two stages. Establishing the quadrotor’s kinematic actions to track the trajectory in
the image plane is the first step. This phase is offline. In the second phase, a differential
flatness control strategy guarantees the asymptotic convergence of the Cartesian trajectory
while maintaining a certain robustness. Section 4 shows the simulation results to verify the
methodology’s efficiency. The experimental tests performed using the DJI Phantom 1 are
presented in Section 5.

Machines 2024, 12, 350 4 of 25

2. Quadrotor Dynamic Model

The quadrotor dynamic model, which is widely employed [23–25], can be expressed
mathematically as follows:

..
x = u1(cos ψ sin θ cos ϕ + sin ψ sin ϕ)− K1

.
x

m
..
y = u1(sin ψ sin θ cos ϕ − cos ψ sin ϕ)− K2

.
y

m
..
z = u1(cos θ cos ϕ)− g − K3

.
z

m..
θ = u2 − lK4

.
θ

I1
..
ϕ = u3 − lK5

.
ϕ

I2
..
ψ = u4 − K6

.
ψ

I3

. (1)

Numerous experimental tests have supported this model. In Equation (1), (x, y, z)
are the coordinates of the quadrotor; (θ, ϕ, ψ) represent the Euler angles for pitch, roll,
and yaw; g is the gravitational acceleration; l represents the distance from the quadrotor’s
center of gravity to its rotors; m represents the whole mass of the quadrotor; (I1, I2, I3)
are the moments of inertia along the directions x, y, and z; (K1, K2, K3, K4, K5, K6) are the
drag coefficients (in this work, we make the assumption that the drag force is negligible,
as it becomes insignificant at low velocities); and (u1, u2, u3, u4) are the command inputs
defined by [24] as follows:

u1 = (T1+T2+T3+T4)
m

u2 = l(−T1−T2+T3+T4)
I1

u3 = l(−T1+T2+T3−T4)
I2

u4 = C(T1−T2+T3−T4)
I3

. (2)

In Equation (2), (T1, T2, T3, T4) represent the thrusts produced by the four rotors. These
variables are the effective control inputs of the system. C denotes the force–moment scaling
factor; u1 represents the total thrust on the body according to the Z-axis; u2 and u3 are the
pitch and roll inputs; and u4 is the yaw input.

3. Control Strategy

The strategy of control allowing the quadrotor to follow a specific trajectory in the
image plane is explained as follows: The quadrotor flies at a predefined altitude zd, usually
at a high altitude for a better view from its downward-facing camera. When the quadrotor
locates the target, we can select any path in the image coordinate system that connects the
first image the camera captures to the desired final image, both at the same altitude zd. This
trajectory takes into account the relative position of the target in relation to the quadrotor
as well as the velocity, thus making it possible to specify a desired dynamic. For example,
we can plan for a smooth start, acceleration in the middle of the path, and a smooth arrival.
This also means that we can impose dynamics on the quadrotor itself in the Cartesian plane
to reach the target.

In this study, we demonstrate that a single point of the target to be reached is sufficient
to achieve visual control. A trajectory generation module converts the path chosen in the
image plane into another expressed in Cartesian space. The trajectory thus generated will
be independent of the altitude of the quadrotor. Thanks to the notion of differential flatness,
we only need to know the positions (x, y, z), and the yaw orientation ψ to describe and
control all the remaining variables of the system. Given that we previously imposed the
altitude z independently of the other variables, the trajectory generated in Cartesian space
provides the three other variables (x, y, ψ). The control strategy takes place in two stages.
Firstly, in the initial stage, the focus is on developing the required movements that the
quadrotor must execute to track the trajectory within the image plane. This phase occurs
offline, meaning it is conducted prior to the actual execution of the trajectory. During this

Machines 2024, 12, 350 5 of 25

stage, intricate planning takes place, mapping out the sequence of movements necessary
for the quadrotor to precisely follow the desired trajectory when projected onto the image
plane. This planning ensures that when the quadrotor is in motion, it can adhere to the
trajectory outlined in the image plane. The second stage consists of ensuring asymptotic
convergence of the trajectory thus established in Cartesian space with a given level of
robustness using a control based on differential flatness. Differential flatness, as a concept,
becomes instrumental in orchestrating the quadrotor’s movements in a way that not only
follows the planned trajectory in the image plane but also guarantees the asymptotic
convergence in three-dimensional Cartesian space. The term “asymptotic convergence”
implies that the quadrotor progressively approaches and settles onto the desired trajectory
over time.

3.1. Path Generation in Cartesian Space (Offline)

It should be emphasized that all the simplification hypotheses addressed in this
paragraph are limited to the problem of generating the trajectory in Cartesian space from
the desired trajectory chosen in the image plane. Subsequently, the dynamics of all system
variables will be taken into account in the control problem. The principle of this step is
illustrated in Figure 1. Once the quadrotor has been stabilized at a specific altitude, meaning
the roll and pitch angles are very low, we proceed to acquire the image containing the
target. Then, we choose an arbitrary trajectory that connects the initial image captured by
the camera to the desired image to reach the same altitude. Since both images are captured
at the same altitude, the trajectory connecting these two images can be independent of z
altitude. In other words, we can consider an in-plane trajectory, as shown in Figure 2. Since
the generated trajectory in Cartesian space is independent of the altitude of the quadrotor,
we can choose a lower altitude for the quadrotor. This decision aims to save energy and
reduce sources of disturbance that could affect the system. Therefore, we can select a
trajectory in the image plane that bypasses obstacles, as illustrated in Figure 1.

Machines 2024, 12, x FOR PEER REVIEW 6 of 26

Figure 1. Path generation in Cartesian space: the principle.

Figure 2. Trajectory in the world frame vs. trajectory in the image plane.

Due to the quadrotor’s virtual displacement being limited to a certain plane and the
dynamics of the desired trajectory, we can look at the onboard camera’s behavior on the
quadrotor in a way that is similar to that of a differential-based mobile robot. This robot
operates within a plane that is parallel to the (𝑋௪, 𝑌௪) plane, and it maintains a constant
distance of 𝑧ௗ from it. Moreover, the mobile robot executes a rotational movement

Figure 1. Path generation in Cartesian space: the principle.

Machines 2024, 12, 350 6 of 25

Machines 2024, 12, x FOR PEER REVIEW 6 of 26

Figure 1. Path generation in Cartesian space: the principle.

Figure 2. Trajectory in the world frame vs. trajectory in the image plane.

Due to the quadrotor’s virtual displacement being limited to a certain plane and the
dynamics of the desired trajectory, we can look at the onboard camera’s behavior on the
quadrotor in a way that is similar to that of a differential-based mobile robot. This robot
operates within a plane that is parallel to the (𝑋௪, 𝑌௪) plane, and it maintains a constant
distance of 𝑧ௗ from it. Moreover, the mobile robot executes a rotational movement

Figure 2. Trajectory in the world frame vs. trajectory in the image plane.

Due to the quadrotor’s virtual displacement being limited to a certain plane and the
dynamics of the desired trajectory, we can look at the onboard camera’s behavior on the
quadrotor in a way that is similar to that of a differential-based mobile robot. This robot
operates within a plane that is parallel to the (Xw, Yw) plane, and it maintains a constant
distance of zd from it. Moreover, the mobile robot executes a rotational movement around
the ZW-axis with an angle ψ (as shown in Figure 2), adhering to the following dynamics:

.
xr = υr cos(ψ)
.
yr = υr sin(ψ)

.
ψ = ωr

, (3)

where
.
xr and

.
yr denote the translational speeds along the Xw and Yw axes of the robot,

respectively, and υr and ωr represent the robot’s linear and angular velocities, respectively.

3.1.1. Characteristics of the Descriptor

Based on the dynamics described in Equation (3), recognition of the translation ve-
locities (

.
xr,

.
yr) along the Xw and Yw axes allows deduction of the orientation ψ along the

ZW-axis. Indeed:

ψ = atan2
(.

yr
.

xr

)
. (4)

Since we know that zc = z = zd = constant, we can deduce the translation velocities
(

.
xr,

.
yr) by exploring the location of a single point P on the target. P can be arbitrarily chosen

from the target, but it should not coincide with the camera’s projection center. Indeed, the
points belonging to the camera’s projection center remain unchanged when subjected to

Machines 2024, 12, 350 7 of 25

rotations around the ZW-axis. To simplify the detection process, we can choose the centroid
of the target or the centroid of a part of the target, as depicted in Figure 3.

Machines 2024, 12, x FOR PEER REVIEW 7 of 26

around the 𝑍ௐ −axis with an angle 𝜓 (as shown in Figure 2), adhering to the following
dynamics:

ቐ𝑥ሶ = 𝜐cos (𝜓)𝑦ሶ = 𝜐sin (𝜓)𝜓ሶ = 𝜔 , (3)

where 𝑥ሶ and 𝑦ሶ denote the translational speeds along the 𝑋௪ and 𝑌௪ axes of the robot,
respectively, and 𝜐 and 𝜔 represent the robot’s linear and angular velocities, respec-
tively.

3.1.1. Characteristics of the Descriptor
Based on the dynamics described in Equation (3), recognition of the translation ve-

locities (𝑥ሶ, 𝑦ሶ) along the 𝑋௪ and 𝑌௪ axes allows deduction of the orientation 𝜓 along the 𝑍ௐ-axis. Indeed: 𝜓 = atan2 ቀ௬ೝሶ௫ೝሶ ቁ. (4)

Since we know that 𝑧 = 𝑧 = 𝑧ௗ = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡, we can deduce the translation velocities
(𝑥ሶ, 𝑦ሶ) by exploring the location of a single point 𝑃 on the target. 𝑃 can be arbitrarily
chosen from the target, but it should not coincide with the camera’s projection center. In-
deed, the points belonging to the camera’s projection center remain unchanged when sub-
jected to rotations around the 𝑍ௐ-axis. To simplify the detection process, we can choose
the centroid of the target or the centroid of a part of the target, as depicted in Figure 3.

Figure 3. Characteristics of the descriptor.

3.1.2. Image-Based Visual Servoing
Consider 𝑃 a point in the 3D Cartesian coordinate system, where its coordinates are

represented by 𝑋 = (𝑋, 𝑌, 𝑍 = 𝑧ௗ = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡) . Given the coordinates (𝑥, 𝑦) ex-
pressed in millimeters, point 𝑝 represents the projection of 𝑃 onto the image coordinate
system. In this work, the visual data considered are denoted by 𝑆 = (𝑥, 𝑦). The follow-
ing equations define the mathematical expressions for these coordinates:

Figure 3. Characteristics of the descriptor.

3.1.2. Image-Based Visual Servoing

Consider P a point in the 3D Cartesian coordinate system, where its coordinates
are represented by X = (Xc, Yc, Zc = zd = constant). Given the coordinates (xm, ym)
expressed in millimeters, point p represents the projection of P onto the image coordinate
system. In this work, the visual data considered are denoted by S = (xm, ym). The
following equations define the mathematical expressions for these coordinates:xm = Xc

Zc
= (u−cu)

f .αu

ym = Yc
Zc

= (v−cv)
f .αv

. (5)

The pair (u,v) denotes the pixel-based coordinates of the image point p. The parameters
a = (cu, cv, f , αu, αv) refer to the camera’s intrinsic attributes, where (cu, cv) represents
the coordinates of the image’s principal point, f denotes the focal length, and (αu, αv)
represent the vertical and horizontal scale factors expressed in pixels per millimeter. By
applying the operator of time derivative to the projection Equation (5), we get the following:

.
S = ls. V. (6)

The kinematic tensor of the camera, denoted as V, is composed of the translational
velocities vc and the rotational velocities ωc. Ls is the matrix that represents the inter-
action between variables, commonly known as the image Jacobian. It is derived from
the following:

Ls =

[
− 1

zd
0 xm

zd
xmym −

(
1 + xm

2) ym

0 − 1
zd

ym
zd

1 + ym
2 − xmym − xm

]
. (7)

Machines 2024, 12, 350 8 of 25

Since the robot’s movement is in the two-dimensional plane, using Equation (4),
we can compute the translation velocity along the Yc-axis given the translation velocity
along the Xc-axis and the rotation velocity along the Zc-axis. The interaction matrix in
Equation (7) becomes the following:

Ls =

[
− 1

zd
ym

0 −xm

]
. (8)

Equation (6) can be reformulated in the subsequent format:(.
xm.
ym

)
=

(
− 1

zd
ym

0 −xm

)(
vr
ωr

)
. (9)

3.1.3. Generation of the Trajectory in Cartesian Space

Let (x∗(t), y∗(t)) be the desired trajectory chosen in the image coordinate system. We
generate a robot-executed trajectory in the image plane using a homographic transforma-
tion, ensuring asymptotic convergence to the desired trajectory. Using Equation (9), the
two control inputs of the mobile robot are given by the following:

(
vr
ωr

)
=

(
− 1

zd
ym

0 −xm

)−1(.
xm.
ym

)
. (10)

Since we assumed that point p does not coincide with the projection center, and by
explicitly expressing the image Jacobian inverse (for xm ̸= 0), we obtain the following:(

vr
ωr

)
=

(
−zd − zdym

xm
0 − 1

xm

)(.
xm.
ym

)
. (11)

In this situation, a reversible correlation is established between the outputs and inputs.
Subsequently, we utilize a precise linearization technique as proposed in [26]. The linearized
system that is obtained can be represented as a system that exhibits an integration as follows:{ .

xm = ϑx.
ym = ϑy

, (12)

where ϑx and ϑy represent the two auxiliary control inputs that need to be determined in
order to achieve asymptotic tracking of the intended path. The control law governing the
behavior of the mobile robot is expressed as follows:(

vr
ωr

)
=

(
−zd − zdym

xm
0 − 1

xm

)(
ϑx
ϑy

)
, (13)

with the following: {
ϑx =

.
x∗ + k1(x∗ − xm)

ϑy =
.
y∗ + k2(y∗ − ym)

, (14)

where k1 and k2 must have values guaranteeing asymptotically stable error dynamics. It is
sufficient to take k1 > 0 and k2 > 0, ensuring asymptotic tracking of the desired trajectory
(x∗, y∗). Once we have synthesized the two controls (v r, ωr) that ensure asymptotic track-
ing of the specified path in the image coordinate system we can deduce, using Equation (3),
the necessary displacements (xd, yd, ψd) that the quadrotor must execute to ensure the
pursuit of this trajectory.

Machines 2024, 12, 350 9 of 25

3.2. Tracking of the Trajectory Generated in Cartesian Space

The proposed method for ensuring the tracking of the generated trajectory in Cartesian
space is illustrated in Figure 4. This method consists of two distinct control loops. The first
loop deals with altitude control, while the second loop manages the displacements and
orientation in the plane using a flatness-based control.

Machines 2024, 12, x FOR PEER REVIEW 9 of 25

where 𝜗𝑥 and 𝜗𝑦 represent the two auxiliary control inputs that need to be determined

in order to achieve asymptotic tracking of the intended path. The control law governing

the behavior of the mobile robot is expressed as follows:

(
𝑣𝑟
𝜔𝑟
) = (

−𝑧𝑑 −
𝑧𝑑𝑦𝑚

𝑥𝑚

0 −
1

𝑥𝑚

)(
𝜗𝑥
𝜗𝑦
), (13)

with the following:

{
𝜗𝑥 = �̇�

∗ + 𝑘1(𝑥
∗ − 𝑥𝑚)

𝜗𝑦 = �̇�
∗ + 𝑘2(𝑦

∗ − 𝑦𝑚)
, (14)

where 𝑘1 and 𝑘2 must have values guaranteeing asymptotically stable error dynamics.

It is sufficient to take 𝑘1 > 0 and 𝑘2 > 0 , ensuring asymptotic tracking of the desired

trajectory (𝑥∗, 𝑦∗) . Once we have synthesized the two controls (𝑣𝑟 , 𝜔𝑟) that ensure

asymptotic tracking of the specified path in the image coordinate system we can deduce,

using Equation (3), the necessary displacements (𝑥𝑑 , 𝑦𝑑 , 𝜓𝑑) that the quadrotor must

execute to ensure the pursuit of this trajectory.

3.2. Tracking of the Trajectory Generated in Cartesian Space

The proposed method for ensuring the tracking of the generated trajectory in

Cartesian space is illustrated in Figure 4. This method consists of two distinct control

loops. The first loop deals with altitude control, while the second loop manages the

displacements and orientation in the plane using a flatness-based control.

Figure 4. Tracking of the trajectory generated in Cartesian space (online).

3.2.1. Loop 1: Control of the Altitude

As stated in Section 2, the control input 𝑢1 governs the displacement along 𝑍. By

employing the input–output feedback linearization method to the third equation of the

system of Equation (1), the linearizing control will be given by the following:

𝑢1 =
(𝑁𝑢𝑧+𝑔)

cos𝜃cos𝜑
 ,with, cos𝜃cos𝜑 ≠ 0. (15)

Note that 𝑁𝑢𝑧 is the linearized system’s new input:

�̈� = 𝑁𝑢𝑧. (16)

Desired

trajectory in

Cartesian

space

Feedforword

flatness

control

Corrective

terms

Quadrotor

Altitude

control
Desired altitude

𝑧𝑑

𝑥𝑑

𝑦𝑑

𝜓𝑑

𝑢1

𝑢2𝐹𝑇𝐶

𝑢3𝐹𝑇𝐶

𝑢4𝐹𝑇𝐶

𝑢2𝑑

𝑢3𝑑

𝑢4𝑑

𝑙𝑜𝑜𝑝1

𝑙𝑜𝑜𝑝2

(𝑧, 𝜃, 𝜙)

(𝑥, 𝑦, 𝜓)

Figure 4. Tracking of the trajectory generated in Cartesian space (online).

3.2.1. Loop 1: Control of the Altitude

As stated in Section 2, the control input u1 governs the displacement along Z. By
employing the input–output feedback linearization method to the third equation of the
system of Equation (1), the linearizing control will be given by the following:

u1 =
(Nuz + g)
cosθcosφ

, with cosθcosφ ̸= 0. (15)

Note that Nuz is the linearized system’s new input:

..
z = Nuz. (16)

To ensure that the altitude z(t) tracks the desired altitude zd(t), it is sufficient to take
the new input as follows:

Nuz =
..
zd + k11

(.
zd −

.
z
)
+ k12(zd − z). (17)

The coefficients k11 and k12 are chosen such that the polynomial s2 + k11s + k11 is a
Hurwitz-type polynomial.

3.2.2. Loop 2: Tracking Based on Differential Flatness

In this paragraph, we provide a flatness-based control approach aimed at achieving
and guaranteeing the asymptotic convergence of the trajectory generated in Section 3.1.3.
The study of flat systems is a complex field within the disciplines of differential geometry
and algebra. The concept of differential flatness is introduced in [22]. Let us consider a
nonlinear system that Equation (18) describes as follows:

.
x = f (x, u), x ∈ Rn and u ∈ Rm. (18)

Machines 2024, 12, 350 10 of 25

The system in (18) is considered differentially flat if a vector F ∈ Rm that satisfies the
given condition exists as follows:

F = ξ
(

x, u,
.
u, . . . , u(r−1)

)
, (19)

where elements are differentially independent. Moreover, there should be the existence of
η(.) and Γ(.) such that:

x = η
(

F,
.
F,

..
F, . . . , F(α−1)

)
, (20)

u = Γ
(

F,
.
F,

..
F, . . . , F(α)

)
, (21)

In the given context, α and r represent finite multi-indices, while ξ, η, and Γ denote vectors
consisting of smooth functions. F is commonly known as the flat output of the system.
A flat system is characterized by the ability to express the state and control variables in
terms of the flat output and its derivatives. The open-loop flatness control, referred to as
the Brunovosky control, is denoted by Equation (21) and is recognized for its capability to
achieve an exact linearization of the system. In the case of a differentially flat system, the
desired trajectory Fd can be determined. This allows for the definition of the desired state
xd and the desired open-loop control ud in the following manner.

xd = η
(

Fd,
.
Fd,

..
Fd, . . . , F(α−1)

d

)
, (22)

ud = Γ
(

Fd,
.
Fd,

..
Fd, . . . , F(α)

d

)
. (23)

In the case that the system demonstrates inherent stability, it will exhibit satisfactory
behavior and adhere to the planned trajectory. In order to enhance the convergence speed,
unstable systems require the addition of a closed-loop correction term to the existing open-
loop control. This correction term is crucial for ensuring accurate trajectory tracking. Thus,
we propose a closed-loop flatness control system. The notation FTC, which stands for
Flatness-Based Tracking Control, is used to represent this loop. The control system consists
of two components: the open-loop control, represented by Equation (21) and a loop term ϑ.
The loop term ϑ is a linear control that is designed to stabilize the linearized system. The
FTC is provided in the following manner:

uFTC = Γ
(

Fd,
.
Fd,

..
Fd, . . . , ϑ

)
, (24)

where ϑ(t) indicates the newly introduced command. When the partial derivative of Γ
with respect to F(α) is locally invertible, it results in the following decoupled system:

F(α) = ϑ, (25)

with the following:

ϑ = F(α)
d + ∑α−1

i=0 ki

(
F(i)

d − F(i)
)

. (26)

Let K(s) = sβ + ∑
β−1
i=0 kisi. K(s) is a diagonal matrix. The components of K(s) are

polynomials. The roots of these polynomials have a strictly negative real part. The proposed
K(s) enables the achievement of the asymptotic trajectory tracking lim

t→∞
(Fd − F) = 0.

As illustrated in Figure 4, the control, based on differential flatness, ensures the
necessary displacements of the UAV to follow the desired trajectory in the image plane.
This command employs an open-loop method to make the system linear and a closed-loop
correction term to make sure that the desired path converges asymptotically, even when

Machines 2024, 12, 350 11 of 25

there are disturbances. Replacing the control u1 expressed by Equation (15) in the model
describing the quadrotor’s dynamics (Equation (1)), we obtain the following:

..
x = (Nuz + g) tan θ cos ψ + (Nuz + g) tan(ϕ)

cos θ sin ψ
..
y = (Nuz + g) tan θ sin ψ − (Nuz + g) tan(ϕ)

cos θ cos ψ
..
z = Nuz =

..
zd + k11

(.
zd −

.
z
)
+ k12(zd − z)

..
θ = u2..
ϕ = u3..
ψ = u4

. (27)

We can demonstrate that this system is flat and has the following flat outputs: F1 = z;
F2 = x; F3 = y; F4 = ψ. Via the first and second equations within system (27), we can
express the variables θ and ϕ in terms of the flat outputs:

θ = arctan
(

cos(ψ)
..
x+sin(ψ)

..
y

..
z+g

)
ϕ = arcsin

(
sin(ψ)

..
x−cos(ψ)

..
y√

..
x2
+

..
y2
+(

..
z+g)

2

)
. (28)

The control variables can be represented in relation to the flat outputs and their
respective derivatives:

u2 =
..
θ = d2

dt

(
arctan

(
cos(ψ)

..
x+sin(ψ)

..
y

..
z+g

))
u3 =

..
ϕ = d2

dt

(
arcsin

(
sin(ψ)

..
x−cos(ψ)

..
y√

..
x2
+

..
y2
+(

..
z+g)

2

))
u4 =

..
ψ

. (29)

We have just expressed all the variables of the system in terms of the dynamics of
(z, x, y, ψ). Subsequently, system (27) is flat and has the following flat outputs: F1 = z;
F2 = x; F3 = y; and F4 = ψ. To execute the desired trajectory (xd, yd, ψd), created using
Equation (29), it is possible to infer the open-loop control that will achieve this desired
trajectory:

u2d = d2

dt

(
arctan

(
cos(ψd)

..
xd+sin(ψd)

..
yd..

zd+g

))
u3d = d2

dt

(
arcsin

(
sin(ψd)

..
xd−cos(ψd)

..
yd√

..
x2

d+
..
y2

d+(
..
zd+g)

2

))
u4d =

..
ψd

. (30)

At this stage, flatness has been utilized for the computing controls that match the open-
loop trajectories of the system. Once the system reaches a state of stability, it will respond
accordingly and adhere to the intended path. However, for non-stable systems or when one
aims to expedite convergence, it is imperative to augment this open-loop command with
a small closed-loop correction term to guarantee precise trajectory tracking. To generate
these correction terms, we will make hypotheses. It is important to emphasize that these
hypotheses only apply to the derivation of the correction terms and are considered solely
in the vicinity of the desired trajectory. Once the quadrotor attains its desired trajectory, it
is reasonable to hypothesize that the angles θ, ϕ, and ψ will decrease in magnitude. The
expressions for the second derivative of θ and ϕ are provided as follows:

..
θ =

F(4)
2..

F1+g
− 2 F(3)

2 F(3)
1(..

F1+g
)2 + 2

..
F1

(
F(3)

1

)2

(..
F1+g

)3 −
..
F2F(4)

1(..
F1+g

)3

..
ϕ =

F(4)
3..

F1+g
+ 2 F(3)

3 F(3)
1(..

F1+g
)2 − 2

..
F3

(
F(3)

1

)2

(..
F1+g

)3 +
..
F3F(4)

1(..
F1+g

)2

. (31)

Machines 2024, 12, 350 12 of 25

By employing the theorem provided by [27], which ignores all terms in the polynomial
equation above the fourth degree, Equation (31) becomes the following:

..
θ =

F(4)
2..

F1+g
..
ϕ =

F(4)
3..

F1+g

. (32)

Assuming that the quadrotor attains its desired altitude (z − zd = 0), the expressions
for the commands can be written as follows:u2 =

..
θ =

F(4)
2
g

u3 =
..
ϕ =

F(4)
3
g

. (33)

Finally, here are the expressions for the closed-loop control laws that confirm asymp-
totic convergence (FTC: Flatness Tracking Control) toward the desired path, even when
there are disturbances:

u2FTC = u2d + k21e(3)2 + k22e(2)2 + k23
.
e2 + k24e2

u3FTC = u3d + k31e(3)3 + k32e(2)3 + k33
.
e3 + k34e3

u4FTC = u4d + k41
.
e4 + k42e4

, (34)

where ei = Fid − Fi; (i = 2, 3, 4), and the kij terms are designated using the pole placement
technique.

4. Simulation Results

As mentioned in Section 3, our method consists of two steps: a first step for generating
the trajectory in Cartesian space, which is performed offline, and a second step involving
the execution of the generated trajectory. The RVCTOOLS library was used for conducting
the simulations.

4.1. Step 1: Trajectory Generation (Offline)

In order to evaluate the efficiency of the proposed tracking approach, we implemented
the following procedure: The quadrotor initially reached a predefined altitude. At time
t = 10 s (the time required for the quadrotor to stabilize at the altitude zd = 15 m), we
detected point P on the target. In our simulation, we considered the midpoint on one side
of an object defined by four points. The next step involved choosing an arbitrary path in
the image coordinate system that linked the starting and ending positions of point P on
the target, both captured at the same altitude. It is crucial to consider that we can trace an
arbitrary trajectory on the screen of an interface and extract an analytical expression for
it. Given that we have the capability to define the dynamics of this trajectory (in terms of
position and velocity), we opted for a polynomial-type trajectory, where PI =

(
x∗i , y∗i

)
was

the initial position of point P on the object in the image coordinate system at time ti and
Pf =

(
x∗f , y∗f

)
was its final position at time t f . Let us consider the task of finding a path

linking these two points and passing through a peak (maximum). To illustrate this, let us

consider the example of a point with coordinates
(

x∗f +x∗i
2 , 2y∗f − y∗i

)
, which represents the

maximum of the curve between y∗i and y∗f . We suggest the following dynamics: a gradual
start, a sudden increase in speed during the path, and ultimately a smooth finish. The
intended path y∗(x∗) must meet the following constraints:

Machines 2024, 12, 350 13 of 25

y∗
(
x∗i
)
= y∗i

y∗
(

x∗f
)
= y∗f

y∗
(

x∗f +x∗i
2

)
= 2y∗f − y∗i

dy∗
dx∗

(
x∗f +x∗i

2

)
= 0

d2y∗

d2x∗

(
x∗f +x∗i

2

)
< 0

. (35)

We can use, for example, the polynomial equation in x∗, which fulfills the aforemen-
tioned constraints.

y∗(x∗) = y∗i +
(

y∗f − y∗i
)(x∗ − x∗i

x∗f − x∗i

)9 − 12

(
x∗ − x∗i
x∗f − x∗i

)
+ 4

(
x∗ − x∗i
x∗f − x∗i

)2
. (36)

It remains to construct the evolution of x∗(t). This must satisfy the specified limit
conditions:

x∗(ti) = x∗i ,
.
x∗(ti) = 0, · · · , x∗(5)(ti) = 0, (37)

x∗
(

t f

)
= x∗f ,

.
x∗
(

t f

)
= 0, · · · , x∗(5)

(
t f

)
= 0. (38)

This translates to the 11th-degree polynomial as follows:

x∗(t) = x∗i +
(

x∗f − x∗i
)

σ6(t)
(

462 − 1980σ(t) + 3465σ2(t)− 3080σ3(t) + 1386σ4(t)− 252σ5(t)(t)
)

, (39)

where:

σ(t) =
t − ti
t f − ti

. (40)

The dynamics of the desired trajectory are depicted in Figure 5. Figure 5a,b illustrate
the desired position trajectory, connecting the two boundary points in the image plane
and passing through a maximum. Figure 5c,d show the evolution of the trajectory along
the axes (u and v), while Figure 5e,f present the velocity dynamics of these trajectories,
reflecting the desired dynamics with a gradual start, acceleration in the middle, and smooth
convergence. The image-based visual control is implemented using Equations (13) and (14).
The coefficients of Equation (14) are defined as follows: k1 = 10 ; k2 = 10.

Machines 2024, 12, x FOR PEER REVIEW 14 of 26

(a) (b)

(c) (d)

(e) (f)

Figure 5. The dynamics of the desired trajectory: (a,b) the desired position trajectory of a point 𝑃;
(c) the evolution of the trajectory along the 𝑢-axis; (d) the evolution of the trajectory along the 𝑣-
axis; (e) the velocity dynamics of the trajectory along the 𝑢-axis in pixel/s; and (f) the velocity dy-
namics of the trajectory along the 𝑣-axis pixel/s.

The simulation results are presented in Figure 6. Figure 6a,b show the evolution of
the desired trajectory and the trajectory obtained through visual control. It is evident that
the visual control algorithm operates effectively in generating a trajectory faithful to the
desired path. Figure 6c–e represent the necessary displacements generated by the visual

Figure 5. Cont.

Machines 2024, 12, 350 14 of 25

Machines 2024, 12, x FOR PEER REVIEW 14 of 26

(a) (b)

(c) (d)

(e) (f)

Figure 5. The dynamics of the desired trajectory: (a,b) the desired position trajectory of a point 𝑃;
(c) the evolution of the trajectory along the 𝑢-axis; (d) the evolution of the trajectory along the 𝑣-
axis; (e) the velocity dynamics of the trajectory along the 𝑢-axis in pixel/s; and (f) the velocity dy-
namics of the trajectory along the 𝑣-axis pixel/s.

The simulation results are presented in Figure 6. Figure 6a,b show the evolution of
the desired trajectory and the trajectory obtained through visual control. It is evident that
the visual control algorithm operates effectively in generating a trajectory faithful to the
desired path. Figure 6c–e represent the necessary displacements generated by the visual

Figure 5. The dynamics of the desired trajectory: (a,b) the desired position trajectory of a point P;
(c) the evolution of the trajectory along the u-axis; (d) the evolution of the trajectory along the v-axis;
(e) the velocity dynamics of the trajectory along the u-axis in pixel/s; and (f) the velocity dynamics of
the trajectory along the v-axis pixel/s.

The simulation results are presented in Figure 6. Figure 6a,b show the evolution of
the desired trajectory and the trajectory obtained through visual control. It is evident that
the visual control algorithm operates effectively in generating a trajectory faithful to the
desired path. Figure 6c–e represent the necessary displacements generated by the visual
control algorithm. These displacements indicate the movements that the quadrotor must
execute to track the desired trajectory chosen in the image plane.

4.2. Step 2: Generated Trajectory Performed by the Quadrotor (Online Tracking)

In the previous step, we generated desired trajectories for the variables x, y, and Ψ.
Given that the proposed method separates altitude control (the displacement along the
z-axis) from the other variables, we have the ability to independently choose the desired
trajectory for the altitude. To evaluate the effectiveness of our control strategy, although
we considered a constant altitude in the trajectory generation problem, we introduced
a variable altitude as a source of disturbance, as follows: The quadrotor stabilizes at an
altitude zd = 15 m, then undergoes a gradual takeoff, acceleration in the middle, and
smooth convergence towards the altitude zd = 1 m. The parameters of Equation (17)
ensuring the pursuit of this desired trajectory are chosen as follows: k11 = 10 and k12 = 25.
Taking into account the physical characteristics of the quadrotor, the control input for
altitude must be bounded by |u1| < 15. Figure 7a,b illustrate the evolution of the desired

Machines 2024, 12, 350 15 of 25

altitude and the altitude achieved by the quadrotor. It is clear that the quadrotor stabilizes
around the altitude z = 15 m in less than 4 s and follows the desired trajectory. The evolution
of the control law ensuring the desired altitude is presented in Figure 7c,d. It is evident
that this is a continuous, smooth, and physically achievable evolution.

Machines 2024, 12, x FOR PEER REVIEW 15 of 26

control algorithm. These displacements indicate the movements that the quadrotor must
execute to track the desired trajectory chosen in the image plane.

(a) (b)

(c) (d)

(e)

Figure 6. Trajectories generation and tracking in the image plane: (a,b) the desired trajectory and
the performed trajectory in the image plane; (c) the desired displacement in Cartesian space along
the 𝑋-axis; (d) the desired displacement in Cartesian space along the 𝑌-axis; and (e) the desired
rotation (yaw angle) along the 𝑍-axis.

4.2. Step 2: Generated Trajectory Performed by the Quadrotor (Online Tracking)

Zoom

Figure 6. Trajectories generation and tracking in the image plane: (a,b) the desired trajectory and the
performed trajectory in the image plane; (c) the desired displacement in Cartesian space along the
X-axis; (d) the desired displacement in Cartesian space along the Y-axis; and (e) the desired rotation
(yaw angle) along the Z-axis.

Machines 2024, 12, 350 16 of 25

Machines 2024, 12, x FOR PEER REVIEW 16 of 26

In the previous step, we generated desired trajectories for the variables 𝑥, 𝑦, and 𝛹.
Given that the proposed method separates altitude control (the displacement along the z-
axis) from the other variables, we have the ability to independently choose the desired
trajectory for the altitude. To evaluate the effectiveness of our control strategy, although
we considered a constant altitude in the trajectory generation problem, we introduced a
variable altitude as a source of disturbance, as follows: The quadrotor stabilizes at an alti-
tude 𝑧ௗ = 15 m, then undergoes a gradual takeoff, acceleration in the middle, and smooth
convergence towards the altitude 𝑧ௗ = 1 m. The parameters of Equation (17) ensuring the
pursuit of this desired trajectory are chosen as follows: 𝑘ଵଵ = 10 and 𝑘ଵଶ = 25 . Taking
into account the physical characteristics of the quadrotor, the control input for altitude
must be bounded by |𝑢ଵ| < 15. Figure 7a,b illustrate the evolution of the desired altitude
and the altitude achieved by the quadrotor. It is clear that the quadrotor stabilizes around
the altitude z = 15 m in less than 4 s and follows the desired trajectory. The evolution of
the control law ensuring the desired altitude is presented in Figure 7c,d. It is evident that
this is a continuous, smooth, and physically achievable evolution.

(a) (b)

(c) (d)

Figure 7. Control of the quadrotor altitude: (a,b) evolution of the desired altitude and the performed
altitude of the quadrotor; and (c,d) evolution of the altitude control law.

To achieve the generated trajectory for the variables 𝑥, 𝑦, and 𝛹, a flatness-based
control was proposed. The gain parameters, which define the dynamics of the errors, are
listed in Table 1.

Table 1. The gain parameters.

Zoom

Zoom

Figure 7. Control of the quadrotor altitude: (a,b) evolution of the desired altitude and the performed
altitude of the quadrotor; and (c,d) evolution of the altitude control law.

To achieve the generated trajectory for the variables x, y, and Ψ, a flatness-based
control was proposed. The gain parameters, which define the dynamics of the errors, are
listed in Table 1.

Table 1. The gain parameters.

Gain k21 k22 k23 k24 k31 k32 k33 k34 k41 k42

Value 4 6 4 1 4 6 4 1 2 1

Figure 8a–d illustrate the desired trajectories (the displacement along x, displacement
along y, and orientation along the z-axis) as well as the trajectories actually executed by
the quadrotor. It is clear that the proposed method effectively ensures the pursuit of the
generated trajectory. Figure 8e–g present the evolution of the control laws that ensure the
pursuit of the desired trajectories. Figure 8h,i represent the variation of the roll angle and
pitch angle, respectively. It is evident that these two variables remain sufficiently small
during the trajectory tracking.

Machines 2024, 12, 350 17 of 25
Machines 2024, 12, x FOR PEER REVIEW 18 of 26

(a) (b)

(c) (d)

(e) (f)

Zoom

Figure 8. Cont.

Machines 2024, 12, 350 18 of 25
Machines 2024, 12, x FOR PEER REVIEW 19 of 26

(g) (h)

(i)

Figure 8. Generated trajectory performed by the quadrotor: (a,b) desired (in black) and performed
(in blue) trajectories along the 𝑥-axis and 𝑦-axis, respectively; (c,d) desired (in black) and performed
(in blue) of the yaw angle; (e) input control 𝑢ଶ; (f) input control 𝑢ଷ; (g) input control 𝑢ସ; (h) roll
angle variation; and (i) pitch angle variation.

5. Experimental Results
The strategy adopted in this section is similar to that addressed in the simulation

section. Starting from the very conclusive simulation results presented in Section 4, we
explore in this section the performance of our proposed control law on a real platform.
We use the DJI Phantom 1 quadrotor for this. We configure the onboard camera to contin-
uously send a 240 × 320 pixel stream on the 2.4 GHz frequency with a rate of 15 frames
per second. The desire to reduce the calculations related to image segmentation drove the
choice of this minimal configuration. This segmentation must provide, in real time, the
position of the center of gravity of the target. The target is a black mobile robot, which
contrasts significantly with the color of the navigation space (bare terrain). The extraction
of the target is carried out thanks to a simple binarization of the image followed by a mor-
phological opening operation (erosion and dilation). This last operation is necessary to
marginalize the shadow of the quadrotor as best as possible. Finally, a selection based on
the proportion of extracted regions allows the identification of the target and the calcula-
tion of its center of gravity. Figure 9 shows the binarization and selection operations of
the target based on the size criterion.

Figure 8. Generated trajectory performed by the quadrotor: (a,b) desired (in black) and performed
(in blue) trajectories along the x-axis and y-axis, respectively; (c,d) desired (in black) and performed
(in blue) of the yaw angle; (e) input control u2; (f) input control u3; (g) input control u4; (h) roll angle
variation; and (i) pitch angle variation.

5. Experimental Results

The strategy adopted in this section is similar to that addressed in the simulation
section. Starting from the very conclusive simulation results presented in Section 4, we
explore in this section the performance of our proposed control law on a real platform. We
use the DJI Phantom 1 quadrotor for this. We configure the onboard camera to continuously
send a 240 × 320 pixel stream on the 2.4 GHz frequency with a rate of 15 frames per second.
The desire to reduce the calculations related to image segmentation drove the choice of
this minimal configuration. This segmentation must provide, in real time, the position
of the center of gravity of the target. The target is a black mobile robot, which contrasts
significantly with the color of the navigation space (bare terrain). The extraction of the target
is carried out thanks to a simple binarization of the image followed by a morphological
opening operation (erosion and dilation). This last operation is necessary to marginalize
the shadow of the quadrotor as best as possible. Finally, a selection based on the proportion
of extracted regions allows the identification of the target and the calculation of its center
of gravity. Figure 9 shows the binarization and selection operations of the target based on
the size criterion.

Machines 2024, 12, 350 19 of 25

Machines 2024, 12, x FOR PEER REVIEW 19 of 26

We use the DJI Phantom 1 quadrotor for this. We configure the onboard camera to contin-
uously send a 240 × 320 pixel stream on the 2.4 GHz frequency with a rate of 15 frames
per second. The desire to reduce the calculations related to image segmentation drove the
choice of this minimal configuration. This segmentation must provide, in real time, the
position of the center of gravity of the target. The target is a black mobile robot, which
contrasts significantly with the color of the navigation space (bare terrain). The extraction
of the target is carried out thanks to a simple binarization of the image followed by a mor-
phological opening operation (erosion and dilation). This last operation is necessary to
marginalize the shadow of the quadrotor as best as possible. Finally, a selection based on
the proportion of extracted regions allows the identification of the target and the calcula-
tion of its center of gravity. Figure 9 shows the binarization and selection operations of
the target based on the size criterion.

(a) (b) (c)

Figure 9. Target recognition: (a) original image; (b) binarization and opening; and (c) target selection
based on the size criterion.

To control the quadrotor with the command values calculated using the proposed
algorithm, we designed an electronic card that was integrated into the control joystick.
This card receives the necessary thrusts via a Bluetooth connection and transforms them
into four voltages to power the four motors of the quadrotor. This design includes a
PIC18F2520 microcontroller, a DAC8564 digital-to-analogue converter, and a RN42 Blue-
tooth module. The generated thrusts are deduced based on Equation (2), with 𝑚 =0.670 K g, 𝑙 = 0.175 m , 𝐼1 = 𝐼2 = 0.0137 K g.m2, 𝐼3 = 0.0231 K g.m2, and 𝐶 = 0.4 . Equa-
tion (41) enables the conversion of the generated commands for each motor into thrust
values.

൦𝑇ଵ𝑇ଶ𝑇ଷ𝑇ସ൪ = ቌ0.1675 −0.01960.1675 −0.0196 −0.0196 0.01440.0196 −0.01440.1675 0.01960.1675 0.0196 0.0196 0.0144−0.0196 −0.0144ቍ 𝑢ଵ𝑢ଶ𝑢ଷ𝑢ସ. (41)

The desired trajectory in the image plane is built using Equations (36)–(40) with 𝑥∗ =171, 𝑦∗ = 178, 𝑡 = 0.66𝑠, 𝑥∗ = 108, 𝑦∗ = 77, and 𝑡 = 2. Figure 10 shows the results of an
experiment in which the DJI Phantom 1 takes off to reach an altitude of 15 m. Once the
target has been detected (which will give us a starting point of 𝑥∗ = 171, 𝑦∗ = 178), a tra-
jectory is generated in the image plane (the yellow curve). The mobile robot playing the
role of the target is static throughout the experience. Its orientation, as well as its apparent
size in successive images, are tracked by the movement of the quadrotor. The task of the
quadrotor during this experience is to make the necessary movements to ensure that the
target remains on the desired trajectory. In this phase, we introduced a Kalman filter to
estimate the position and size of the target. This filter has proven to be very useful because
the analogue transmission of the live streaming is sometimes very noisy. This makes the
target detection phase impossible. Figure 10b perfectly illustrates this case. Despite the
total absence of the target, our algorithm continues to generate the necessary commands

Figure 9. Target recognition: (a) original image; (b) binarization and opening; and (c) target selection
based on the size criterion.

To control the quadrotor with the command values calculated using the proposed
algorithm, we designed an electronic card that was integrated into the control joystick. This
card receives the necessary thrusts via a Bluetooth connection and transforms them into
four voltages to power the four motors of the quadrotor. This design includes a PIC18F2520
microcontroller, a DAC8564 digital-to-analogue converter, and a RN42 Bluetooth module.
The generated thrusts are deduced based on Equation (2), with m = 0.670 kg, l = 0.175 m,
I1 = I2 = 0.0137 kg.m2, I3 = 0.0231 kg.m2, and C = 0.4. Equation (41) enables the
conversion of the generated commands for each motor into thrust values.

T1
T2
T3
T4

 =

0.1675 −0.0196
0.1675 −0.0196

−0.0196 0.0144
0.0196 −0.0144

0.1675 0.0196
0.1675 0.0196

0.0196 0.0144
−0.0196 −0.0144

u1
u2
u3
u4

. (41)

The desired trajectory in the image plane is built using Equations (36)–(40) with
x∗i = 171, y∗i = 178, ti = 0.66s, x∗f = 108, y∗f = 77, and t f = 2. Figure 10 shows the results
of an experiment in which the DJI Phantom 1 takes off to reach an altitude of 15 m. Once
the target has been detected (which will give us a starting point of x∗i = 171, y∗i = 178), a
trajectory is generated in the image plane (the yellow curve). The mobile robot playing the
role of the target is static throughout the experience. Its orientation, as well as its apparent
size in successive images, are tracked by the movement of the quadrotor. The task of the
quadrotor during this experience is to make the necessary movements to ensure that the
target remains on the desired trajectory. In this phase, we introduced a Kalman filter to
estimate the position and size of the target. This filter has proven to be very useful because
the analogue transmission of the live streaming is sometimes very noisy. This makes the
target detection phase impossible. Figure 10b perfectly illustrates this case. Despite the
total absence of the target, our algorithm continues to generate the necessary commands
based entirely on the estimated position (the yellow square). In Figure 10a,c–e, the green
square shows the success of the target identification phase. We notice that the size of the
target is almost constant during the first half of the flight (Figure 10a–c). This is completely
normal since we have separated the u1 command responsible for altitude from the rest
of the commands. However, the size of the target suddenly changes in the second half of
the flight (it became 10 to 15% smaller; see Figure 10d,e). This is due to a gust of wind.
Despite this, the quadrotor continues to follow the desired trajectory by manipulating
the u2, u3, and u4 commands. This result shows in an experimental manner the benefit
of the separation of commands proposed in the diagram of Figure 4. Finally, Figure 11
shows the desired and achieved trajectories. If we take into account the DJI Phantom 1’s
experience with wind gusts and the target’s intermittent absence, the superposition of the
two trajectories is almost perfect.

Machines 2024, 12, 350 20 of 25Machines 2024, 12, x FOR PEER REVIEW 21 of 26

(a)

(b)

Figure 10. Cont.

Machines 2024, 12, 350 21 of 25Machines 2024, 12, x FOR PEER REVIEW 22 of 26

(c)

(d)

Figure 10. Cont.

Machines 2024, 12, 350 22 of 25Machines 2024, 12, x FOR PEER REVIEW 23 of 26

(e)

Figure 10. IBVS-Based Image Plan Path planning and tracking with the DJI Phantom 1: (a) tracking
start; (b) continuation of the tracking without target recognition; (c) tracking reaching halfway
through the flight (frame 138); (d) tracking under wind gusts (target size decreases); and (e) the
achievement of the desired trajectory. For all sub-figures, the red rectangle delimits the zone of in-
terest in which the target recognition operation is carried out. The yellow curve represents the de-
sired trajectory. The green square demarcates the recognized target. The yellow square represents
the estimated size and position of the target.

Figure 11. Desired (in blue) and performed (in red) trajectories.

Figure 10. IBVS-Based Image Plan Path planning and tracking with the DJI Phantom 1: (a) tracking
start; (b) continuation of the tracking without target recognition; (c) tracking reaching halfway
through the flight (frame 138); (d) tracking under wind gusts (target size decreases); and (e) the
achievement of the desired trajectory. For all sub-figures, the red rectangle delimits the zone of
interest in which the target recognition operation is carried out. The yellow curve represents the
desired trajectory. The green square demarcates the recognized target. The yellow square represents
the estimated size and position of the target.

Machines 2024, 12, x FOR PEER REVIEW 23 of 25

desired trajectory. The green square demarcates the recognized target. The yellow square represents
the estimated size and position of the target.

Figure 11. Desired (in blue) and performed (in red) trajectories.

6. Discussion
Our work primarily focuses on planning and implementing a specific trajectory from

the image plane (a 2D space) to a 3D space. The research community specializing in 2D
control widely acknowledges this issue as intricate, given that a specific path in the image
space can lead to unpredictable robot motion in Cartesian space.

Although we have recently resolved this issue for a mobile robot [28], it continues to
pose a significant challenge for a quadrotor. Indeed, our previous approach was based on
the assumption that the coordinates of an image point (u and v) could serve as a flat output
for a two-wheeled robot. This allowed us to establish a relationship between the flat
output space and the workspace (2D/2D). Nevertheless, this methodology is not suitable
for the scenario involving a quadrotor.

We employ a methodology to tackle this problem, which involves investigating the
feasibility of decoupling altitude control from the other variables, thereby reducing the
workspace. Furthermore, due to the interconnection of the quadrotor’s movements (pitch,
roll, and yaw), it is not feasible to establish a reversible relationship between the outputs
and inputs. This highlights the intricate nature of the task. We would like to emphasize
that trajectory planning entails applying dynamics to the trajectory.

In order to address these challenges, we opted to utilize a virtual dynamics system
that is based on the kinematic model of a two-wheeled mobile robot for the trajectory
generation. We chose this approach because existing evidence suggests that this
framework can establish a reversible relationship between the outputs and inputs.
Following that, we were able to successfully generate the required motions in 2D space to
accomplish this trajectory in the 2D image plane. Subsequently, it became imperative to
establish the mapping between the motions produced in the two-dimensional (2D) realm
of the virtual robot and the motions occurring in the three-dimensional (3D) realm of the
quadrotor.

Our methodology effectively addresses the issue of energy conservation and
mitigates disturbances that may impact the quadrotor, such as wind gusts. Once we have

Figure 11. Desired (in blue) and performed (in red) trajectories.

Machines 2024, 12, 350 23 of 25

6. Discussion

Our work primarily focuses on planning and implementing a specific trajectory from
the image plane (a 2D space) to a 3D space. The research community specializing in 2D
control widely acknowledges this issue as intricate, given that a specific path in the image
space can lead to unpredictable robot motion in Cartesian space.

Although we have recently resolved this issue for a mobile robot [28], it continues to
pose a significant challenge for a quadrotor. Indeed, our previous approach was based on
the assumption that the coordinates of an image point (u and v) could serve as a flat output
for a two-wheeled robot. This allowed us to establish a relationship between the flat output
space and the workspace (2D/2D). Nevertheless, this methodology is not suitable for the
scenario involving a quadrotor.

We employ a methodology to tackle this problem, which involves investigating the
feasibility of decoupling altitude control from the other variables, thereby reducing the
workspace. Furthermore, due to the interconnection of the quadrotor’s movements (pitch,
roll, and yaw), it is not feasible to establish a reversible relationship between the outputs
and inputs. This highlights the intricate nature of the task. We would like to emphasize
that trajectory planning entails applying dynamics to the trajectory.

In order to address these challenges, we opted to utilize a virtual dynamics system
that is based on the kinematic model of a two-wheeled mobile robot for the trajectory
generation. We chose this approach because existing evidence suggests that this framework
can establish a reversible relationship between the outputs and inputs. Following that,
we were able to successfully generate the required motions in 2D space to accomplish
this trajectory in the 2D image plane. Subsequently, it became imperative to establish the
mapping between the motions produced in the two-dimensional (2D) realm of the virtual
robot and the motions occurring in the three-dimensional (3D) realm of the quadrotor.

Our methodology effectively addresses the issue of energy conservation and mitigates
disturbances that may impact the quadrotor, such as wind gusts. Once we have executed
the required maneuvers to reach the desired destination, we were able to initiate a descent
in altitude.

Another notable contribution to this work is the use of a camera as an information
source for guiding the quadrotor’s control decisions. Nevertheless, this presents a practical
obstacle in terms of control frequency. Quadrotor control necessitates a high control
frequency, whereas image processing necessitates a lower control frequency, resulting in
potential synchronization issues. In our control approach, we addressed this problem
by implementing an offline planning strategy, ensuring that the time required for image
processing does not impact the control frequency.

As previously stated, we have the ability to choose a trajectory within the image plane.
In a practical implementation, the control tower must manually specify the trajectory. The
task involves tracing the trajectory to avoid obstacles shown on the interface screen and
then formulating an analytical expression to integrate into the control loop. Given our
system’s outdoor operation and susceptibility to external disturbances, it is imperative to
improve the control algorithm in order to guarantee its robustness.

7. Conclusions

In this paper, we present a novel method for trajectory planning and tracking in the
image plane for the visual control of a quadrotor. This approach relies on the concept
of differential flatness, allowing the separation of altitude control from the control of the
other variables. The control strategy is implemented in two steps. The first step involves
determining the necessary displacements that the quadrotor must execute to follow the
trajectory in the image plane, conducted offline. To facilitate the trajectory planning,
a new visual servoing method was proposed, demonstrating that a single point of the
target to be reached is sufficient for the visual control. The second step aims to ensure
the asymptotic convergence of the trajectory generated in Cartesian space with a given
level of robustness. To overcome the challenges related to underactuated control and

Machines 2024, 12, 350 24 of 25

strong coupling of the quadrotor, a flatness-based control was introduced. This approach
ensures the controllability of the system and guarantees the asymptotic convergence of the
generated trajectory. The simulations performed on MATLAB using RVCTOOLS library
and experiments performed with the DJI Phantom 1 demonstrate the effectiveness of the
proposed method.

Author Contributions: Conceptualization, H.M., A.A. and K.K.; methodology, H.M. and K.K.;
software, A.A. and S.A.; validation, M.A., S.A. and A.A.; formal analysis, M.A.; investigation,
A.S.; resources, A.A.; data curation, K.K.; writing—original draft preparation, H.M., A.A. and
K.K.; writing—review and editing, M.D.A. and K.K.; visualization, A.S.; supervision, K.K.; project
administration, A.A.; funding acquisition, A.A. All authors have read and agreed to the published
version of the manuscript.

Funding: The authors extend their appreciation to the Deputyship for Research and Innovation,
Ministry of Education in Saudi Arabia for funding this research work through project number 223202.

Data Availability Statement: Data are contained within the article.

Conflicts of Interest: The authors declare no conflicts of interest.

References
1. Wei, Z.; Zhu, M.; Zhang, N.; Wang, L.; Zou, Y.; Meng, Z.; Wu, H.; Feng, Z. UAV-Assisted Data Collection for Internet of Things: A

Survey. IEEE Internet Things J. 2022, 9, 15460–15483. [CrossRef]
2. Ceren, Z.; Altuğ, E. Image Based and Hybrid Visual Servo Control of an Unmanned Aerial Vehicle. J. Intell. Robot. Syst. 2011, 65,

325–344. [CrossRef]
3. Metni, N.; Hamel, T. A UAV for Bridge Inspection: Visual Servoing Control Law with Orientation Limits. Autom. Constr. 2007, 17,

3–10. [CrossRef]
4. Arafat, M.Y.; Moh, S. Routing Protocols for Unmanned Aerial Vehicle Networks: A Survey. IEEE Access 2019, 7, 99694–99720.

[CrossRef]
5. Fraundorfer, F.; Heng, L.; Honegger, D.; Lee, G.H.; Meier, L.; Tanskanen, P.; Pollefeys, M. Vision-Based Autonomous Mapping

and Exploration Using a Quadrotor MAV. In Proceedings of the 2012 IEEE/RSJ International Conference on Intelligent Robots
and Systems, Vilamoura, Portugal, 7–12 October 2012. [CrossRef]

6. Bi, R.; Gan, S.; Yuan, X.; Li, R.; Gao, S.; Yang, M.; Luo, W.; Hu, L. Multi-View Analysis of High-Resolution Geomorphic Features in
Complex Mountains Based on UAV–LiDAR and SfM–MVS: A Case Study of the Northern Pit Rim Structure of the Mountains of
Lufeng, China. Appl. Sci. 2023, 13, 738. [CrossRef]

7. Tokekar, P.; Hook, J.V.; Mulla, D.; Isler, V. Sensor Planning for a Symbiotic UAV and UGV System for Precision Agriculture. IEEE
Trans. Robot. 2016, 32, 1498–1511. [CrossRef]

8. Costello, B.; Osunkoya, O.O.; Sandino, J.; Marinic, W.; Trotter, P.; Shi, B.; Gonzalez, F.; Dhileepan, K. Detection of Parthenium
Weed (Parthenium hysterophorus L.) and Its Growth Stages Using Artificial Intelligence. Agriculture 2022, 12, 1838. [CrossRef]

9. Chaumette, F.; Hutchinson, S. Visual Servo Control. I. Basic Approaches. IEEE Robot. Autom. Mag. 2006, 13, 82–90. [CrossRef]
10. Garcia, A.; Mattison, E.; Ghose, K. High-Speed Vision-Based Autonomous Indoor Navigation of a Quadcopter. In Proceedings of

the 2015 International Conference on Unmanned Aircraft Systems (ICUAS), Denver, CO, USA, 9–12 June 2015. [CrossRef]
11. Iacono, M.; Sgorbissa, A. Path Following and Obstacle Avoidance for an Autonomous UAV Using a Depth Camera. Robot. Auton.

Syst. 2018, 106, 38–46. [CrossRef]
12. Mercado, D.; Castillo, P.; Lozano, R. Sliding Mode Collision-Free Navigation for Quadrotors Using Monocular Vision. Robotica

2018, 36, 1493–1509. [CrossRef]
13. Park, J.; Kim, Y. Collision Avoidance for Quadrotor Using Stereo Vision Depth Maps. IEEE Trans. Aerosp. Electron. Syst. 2015, 51,

3226–3241. [CrossRef]
14. Yang, X.; Chen, J.; Dang, Y.; Luo, H.; Tang, Y.; Liao, C.; Chen, P.; Cheng, K.-T. Fast Depth Prediction and Obstacle Avoidance 417

on a Monocular Drone Using Probabilistic Convolutional Neural Network. IEEE Trans. Intell. Transp. Syst. 2021, 22, 156–167.
[CrossRef]

15. Courbon, J.; Mezouar, Y.; Guénard, N.; Martinet, P. Vision-Based Navigation of Unmanned Aerial Vehicles. Control Eng. Ing Pract.
2010, 18, 789–799. [CrossRef]

16. Do, T.; Carrillo-Arce, L.C.; Roumeliotis, S.I. Autonomous Flights through Image-Defined Paths. Springer Proc. Adv. Robot. 2017, 1,
39–55. [CrossRef] [PubMed]

17. Kozak, V.; Pivonka, T.; Avgoustinakis, P.; Majer, L.; Kulich, M.; Preucil, L.; Camara, L.G. Robust Visual Teach and Repeat
Navigation for Unmanned Aerial Vehicles. In Proceedings of the 2021 European Conference on Mobile Robots (ECMR), Virtual,
31 August–3 September 2021. [CrossRef]

18. Nguyen, T.; Mann, G.K.I.; Gosine, R.G.; Vardy, A. Appearance-Based Visual-Teach-And-Repeat Navigation Technique for Micro
Aerial Vehicle. J. Intell. Robot. Syst. 2016, 84, 217–240. [CrossRef]

https://doi.org/10.1109/jiot.2022.3176903
https://doi.org/10.1007/s10846-011-9582-4
https://doi.org/10.1016/j.autcon.2006.12.010
https://doi.org/10.1109/access.2019.2930813
https://doi.org/10.1109/iros.2012.6385934
https://doi.org/10.3390/app13020738
https://doi.org/10.1109/tro.2016.2603528
https://doi.org/10.3390/agriculture12111838
https://doi.org/10.1109/mra.2006.250573
https://doi.org/10.1109/icuas.2015.7152308
https://doi.org/10.1016/j.robot.2018.04.005
https://doi.org/10.1017/s0263574718000516
https://doi.org/10.1109/taes.2015.140222
https://doi.org/10.1109/tits.2019.2955598
https://doi.org/10.1016/j.conengprac.2010.03.004
https://doi.org/10.1007/978-3-319-51532-8_3
https://www.ncbi.nlm.nih.gov/pubmed/38222975
https://doi.org/10.1109/ecmr50962.2021.9568807
https://doi.org/10.1007/s10846-015-0320-1

Machines 2024, 12, 350 25 of 25

19. Warren, M.; Greeff, M.; Patel, B.; Collier, J.; Schoellig, A.P.; Barfoot, T.D. There’s No Place Like Home: Visual Teach and Repeat for
Emergency Return of Multirotor UAVs During GPS Failure. IEEE Robot. Autom. Lett. 2019, 4, 161–168. [CrossRef]

20. Toro-Arcila, C.A.; Becerra, H.M.; Arechavaleta, G. Visual Path Following with Obstacle Avoidance for Quadrotors in Indoor
Environments. Control Eng. Pract. 2023, 135, 105493. [CrossRef]

21. López, J.; Dormido, R.; Dormido, S.; Gómez, J.P. A RobustH∞Controller for an UAV Flight Control System. Sci. World J. 2015,
2015, 403236. [CrossRef] [PubMed]

22. Fliess, M.; Lévine, J.; Martin, P.; Rouchon, P. On Differentially Flat Nonlinear Systems. IFAC Proc. Vol. 1992, 25, 159–163. [CrossRef]
23. Chamseddine, A.; Zhang, Y.; Rabbath, C.A.; Join, C.; Theilliol, D. Flatness-Based Trajectory Planning/Replanning for a Quadrotor

Unmanned Aerial Vehicle. IEEE Trans. Aerosp. Electron. Syst. 2012, 48, 2832–2848. [CrossRef]
24. Li, T.; Xia, Y.; Ma, D. Flatness-Based Target Tracking for a Quadrotor Unmanned Aerial Vehicle. IFAC-PapersOnLine 2015, 48,

874–879. [CrossRef]
25. Abadi, A.; El Amraoui, A.; Mekki, H.; Ramdani, N. Guaranteed Trajectory Tracking Control Based on Interval Observer for

Quadrotors. Int. J. Control 2019, 93, 2743–2759. [CrossRef]
26. Hagenmeyer, V.; Delaleau, E. Exact Feedforward Linearization Based on Differential Flatness. Int. J. Control 2003, 76, 537–556.

[CrossRef]
27. Chamseddine, A.; Zhang, Y.; Rabbath, C.A.; Theilliol, D. Trajectory Planning and Replanning Strategies Applied to a Quadrotor

Unmanned Aerial Vehicle. J. Guid. Control Dyn. 2012, 35, 1667–1671. [CrossRef]
28. Albekairi, M.; Mekki, H.; Kaaniche, K.; Yousef, A. An Innovative Collision-Free Image-Based Visual Servoing Method for Mobile

Robot Navigation Based on the Path Planning in the Image Plan. Sensors 2023, 23, 9667. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1109/lra.2018.2883408
https://doi.org/10.1016/j.conengprac.2023.105493
https://doi.org/10.1155/2015/403236
https://www.ncbi.nlm.nih.gov/pubmed/26221622
https://doi.org/10.1016/s1474-6670(17)52275-2
https://doi.org/10.1109/taes.2012.6324664
https://doi.org/10.1016/j.ifacol.2015.12.240
https://doi.org/10.1080/00207179.2019.1610903
https://doi.org/10.1080/0020717031000089570
https://doi.org/10.2514/1.56606
https://doi.org/10.3390/s23249667

	Introduction
	Quadrotor Dynamic Model
	Control Strategy
	Path Generation in Cartesian Space (Offline)
	Characteristics of the Descriptor
	Image-Based Visual Servoing
	Generation of the Trajectory in Cartesian Space

	Tracking of the Trajectory Generated in Cartesian Space
	Loop 1: Control of the Altitude
	Loop 2: Tracking Based on Differential Flatness

	Simulation Results
	Step 1: Trajectory Generation (Offline)
	Step 2: Generated Trajectory Performed by the Quadrotor (Online Tracking)

	Experimental Results
	Discussion
	Conclusions
	References

