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Abstract: As one of the most important components in rotating machinery, if bearings fail, serious
disasters may occur. Therefore, the remaining useful life (RUL) prediction of bearings is of great
significance. Health indicator (HI) construction and early fault detection play a crucial role in
data-driven RUL prediction. Unfortunately, most existing HI construction methods require prior
knowledge and preset trends, making it difficult to reflect the actual degradation trend of bearings.
And the existing early fault detection methods rely on massive historical data, yet manual annotation
is time-consuming and laborious. To address the above issues, a novel deep convolutional auto-
encoder (CAE) based on envelope spectral feature extraction is developed in this work. A sliding
value window is defined in the envelope spectrum to obtain initial health indicators, which are
used as preliminary labels for model training. Subsequently, CAE is trained by minimizing the
composite loss function. The proposed construction method can reflect the actual degradation trend
of bearings. Afterwards, the autoencoder is pre-trained through contrast learning (CL) to improve its
discriminative ability. The model that has undergone offline pre-training is more sensitive to early
faults. Finally, the HI construction method is combined with the early fault detection method to
obtain a comprehensive network for online health assessment and fault detection, thus laying a solid
foundation for subsequent RUL prediction. The superiority of the proposed method has been verified
through experiments.

Keywords: health indicator construction; early fault detection; convolutional auto-encoder; contrast
learning

1. Introduction

Once a bearing failure occurs, it leads to machine downtime and even serious safety
accidents, directly affecting the working performance of mechanical equipment [1]. There-
fore, predicting the remaining useful life of bearings is crucial for fully utilizing the useful
life of equipment and improving productivity [2].

As a key step in data-driven remaining useful life (RUL) prediction, the construc-
tion method of HI has a significant impact on the final prediction accuracy of RUL [3].
The degradation process of bearings is generally nonlinear, and HI can provide visual
curves to visually display the degradation trend of bearings, which plays a comparative
reference role in studying the degradation trend of bearings under different working condi-
tions [4]. Bearing HI is a highly condensed representation of the health status and degree
of degradation of bearings [5]. In the process of obtaining HI, it can enhance the model’s
feature extraction ability and further improve its predictive ability [6]. Obtaining HI from
monitoring data that can characterize the characteristics and actual evolution trends of
bearing conditions is crucial for condition assessment and prediction of RUL [7]. There
are now some methods to describe the trend of bearing degradation and construct HI.
Chen et al. [8] used relative root mean square (RMS) to construct HI to describe the trend
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of bearing degradation while dividing the entire bearing life into several stages to verify
the accuracy of this method. Yang et al. [9]. improved independent component analysis
and Mahalanobis distance calculation to predict the HI of rolling bearings and RUL and
verified their accuracy and reliability through experiments. Ding et al. [10] fused multiple
statistical features into a one-dimensional HI using principal component analysis (PCA)
to predict the remaining life of bearings in the future. Xu et al. fused [11] the downscaled
data points with Euclidean distance to establish HI that can characterize degraded bearings.
Chen proposed [12] a deep convolutional autoencoder based on quadratic functions that
constructs HI from raw vibration data. Islam et al. proposed [13] a bearing’s HI by defining
a degree-of-defectiveness metric in the frequency domain of a bearing raw signal. Meng
et al. [14] processed multiple characteristic parameters of the envelope spectrum based on
bearing vibration signals to obtain two health guidelines that can be used to determine
early bearing faults. Ni et al. [15] obtained a novel HI using Wasserstein distance and linear
rectification, which can to some extent eliminate the influence of noise on RUL prediction.

To better start predicting RUL, several early fault detection methods have been devel-
oped. Yan [16] used the composite HI generated by spectral amplitude fusion to detect
early faults and provide a monotonically increasing trend for degradation assessment.
Mao [17] introduced prior degradation information in the anomaly detection process of the
isolation forest algorithm, which can accurately evaluate the normal state and early fault
state under noise interference. Brkovic [18] selected representative features after process-
ing vibration signals and used scatter matrices to reduce the feature space dimension to
two-dimensional, achieving early fault detection and diagnosis. Lu et al. [19] combined
deep neural networks (DNN) with long short-term memory (LSTM) networks to obtain
distribution estimates using the extracted bias values of the model, thereby achieving early
fault detection. Xie et al. [20] fused amplitude frequency and phase frequency information
and used a lightweight neural network as a diagnostic model for early fault detection. Xu
et al. [21] designed an SR method with parameter estimation to adaptively estimate SR
parameters and diagnose weak composite faults in bearings. Tang et al. [22] proposed a
minimum unscented Kalman filter-assisted deep confidence network to extract invariant
features from vibration signals collected by multiple sensors, and the effectiveness of the
method was verified through experiments. Yan et al. [23] designed a GRU network with a
self-attention mechanism and introduced the binary segmentation change point detection
algorithm to automatically identify early fault features of bearings.

After investigation of the literature, it was found that traditional methods in the past
were used to transform time-frequency domain features, such as HHT, WT, BEMD, etc., and
used statistical and mechanical learning methods, such as SVM, IF, SVDD, etc., to determine
the time point of fault occurrence. However, such methods often require data preprocessing
and the manual design of criteria and thresholds, which can be influenced by subjective
human factors. Ultimately, it may lead to a decrease in prediction accuracy, undermine
the generalizability of the method, and make manual labeling of the data time-consuming
and laborious.

From the above works, it can be easily noted that an end-to-end HI construction
method is needed, one that can accurately reflect the actual degradation trend of bearings,
along with a simple and accurate method for detecting early fault occurrence points.
Whereupon, a deep convolutional auto-encoder (CAE) neural network is proposed for
extracting HI from raw vibration signals of bearings. Meanwhile, a sliding value window
in the envelope spectrum is developed for labeling the variation tendency of HI, and it is
added to the loss of CAE to reflect the actual degradation trend as a new loss term. This
paper uses contrast learning based on the contrast learning framework to pre-train the
autoencoder, enhance its discriminative ability, and adopt self-supervised learning methods
to complete training with less annotated data. Finally, this paper combines bearing health
assessment and fault detection, and constructs a comprehensive network using a unified
loss function.



Machines 2024, 12, 362 3 of 21

2. CAE-EPS-HI Construction Method
2.1. Preliminary Health Indicator Construction Based on Envelope Spectrum

Envelope Power Spectrum (EPS) is a widely used frequency domain analysis method
that can more effectively extract characteristic signals generated by bearing faults [24], such
as feature frequency and energy comparison. When a bearing fails, a series of periodic
impact signals are generated, which are modulated with high-frequency natural vibrations,
causing abnormal changes in the envelope spectrum at specific fault frequencies. At these
frequencies, the symptoms of bearing failure are obvious. EPS plays an important role in
bearing fault detection, as it can detect local defects in bearings and represent the degree
of failure through its amplitude [13]. The advantage of EPS is that it is more sensitive to
early fault signals and can clearly display the degradation trend of faults. In addition, EPS
is based on mechanical failure mechanisms and can effectively reflect the actual degree of
defects [25].

When the inner ring, outer ring, rolling element, or retainer of the bearing malfunctions,
it causes specific frequency changes, which can be monitored and diagnosed through
vibration analysis to identify the type and degree of bearing failure.

In Equations (1)–(4), FBPFO is the characteristic frequency of outer ring faults, FBSF is
the characteristic frequency of rolling element faults, FBPFI is the characteristic frequency of
inner ring faults, and FTF is the characteristic frequency of cage faults. These frequencies
depend on the shaft speed ( fr), the number of rolling elements (n), the contact angle with
the radial plane (θ), the roller diameter (Rd), and the pitch diameter (D), as shown in
Figure 1.
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Figure 1. Schematic Diagram of Possible Failure Locations in a Rolling Bearing.

The radial load has a significant impact on the impact force generated by rolling defects.
Every time the rolling element passes through the position of the outer ring defect, the
inner ring fault that rotates almost at the speed of the shaft is subjected to different forces.
Therefore, all harmonics of FBPFI are amplitude-modulated by the shaft speed (i.e., fr).
Similarly, the value of 2FBSF generated by rolling element defects is amplitude-modulated
by the cage’s FTF.

In summary, when a fault occurs inside the bearing, sidebands are generated at
intervals of the modulation frequency (i.e., fr or FTF), centered around FBPFI or 2FBSF.
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These sidebands are clear symptoms of these bearing defects. Sidebands are typically
observed in bearing defect frequencies with random variations of 1–2% of the theoretical
fault frequency, the magnitude of the range in this paper is set to ϵ = 1.5%. For illustration,
take the inner and outer ring fault bearing as an example, Figure 2 shows the EPS-HI
calculation process including the value window, where each window of the highest three
harmonics of the fault frequency can be seen.
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Figure 2. Schematic diagram of the envelope spectrum and its value window for rolling bearings
with inner and outer ring faults.

The fault frequency (including three harmonics) in the envelope spectrum (after DC
removal) is utilized to obtain a preliminary health indicator. The entire process comprises
two steps. Firstly, based on the previous analysis, a 1.5% value window is defined around
the FBPFO, FBSF, and FBPFI frequency bands. Then, the health indicator EPS-HI is established
as a preliminary reference within the constructed value window according to the formula.

The proposed EPS-HI formula is defined as follows:

EPS − HI =
mas3

1(RMS(windows))
4

n2 ∑n
h=1

{
RMSFBPFO(ϵ) + RMS2FBSF (ϵ) + RMSFBPFI (ϵ)

} (5)

In Equation (5), n (=3) is the total number of harmonics, h is the order of the harmonic
of the fault frequency, ϵ is the value range of the value window at the fault frequency, and
RMSFBPFO defines the root mean square value calculated in the value window of the FBPFO
fault frequency at harmonic h. Similarly, RMS2FBSF and RMSFBPFI define the root mean
square values of FBSF and FBPFI , respectively. mas3

1(RMS(windows)) represents the sum of
the three largest RMS values among all nine value windows.

When bearings fail, significant changes in amplitude are observed near the harmonics
at three different fault frequencies, with the greatest sensitivity occurring during the early
fault stages. The numerator in Equation (5) represents the sum of three maximum value
windows, allowing the expected health guidance to capture the value window with the
largest amplitude change, which is most sensitive.

Compared to the HI established by existing time-frequency statistical parameters (such
as root mean square, variance, skewness, and kurtosis), this process takes into account the
actual dynamics and mechanical mechanisms when faults occur in the bearings. Therefore,
the proposed EPS-HI reflects, to some extent, the actual degradation trend of the bearings.
Unlike other methods that focus on a single type of fault, the HI constructed in this paper
takes values at all possible fault frequencies and can also reflect the degree of mixed faults
to some extent.

2.2. Health Indicator Construction Based on Autoencoder

Autoencoders (AE) are an unsupervised learning method consisting of neural net-
works trained to reconstruct their original inputs, often used for feature dimensionality
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reduction. Autoencoders have two parts: an encoder and a decoder. The encoder com-
presses the input signal into a lower-dimensional representation and extracts features. The
decoder then takes the encoder output as input and tries to recreate the original input
signal. Autoencoders use backpropagation to update internal parameters to minimize
errors. The key is constructing a hidden layer with fewer neurons than the input/output
layers. Thus, the intermediate hidden layer can produce a feature representation with
lower dimensionality than the original data. A typical autoencoder structure is shown in
Figure 3.
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Assuming that the encoder input is x = [x1, x2, . . . , xL], where L is the length of the
input data. Then, the hidden layer output of the encoder can be expressed as:

s = fh(whx + bh) (6)

where fh denotes the encoder activation function, wh and bh are the weight and bias matrices
between adjacent neurons, respectively. On the other hand, the reconstructed output data
from the decoder, x = [x1, x2, . . . , xL], is obtained as follows:

x = ft(wts + bt) (7)

where ft denotes the decoder activation function, wt and bt are the decoder weight and
bias matrices between adjacent neurons, respectively. The autoencoder weights and bias
matrices are optimized by minimizing the following loss function, defined as:

LAE =
1
L

L

∑
i=1

∥xi − x i∥2 (8)

This paper designs a convolutional autoencoder (CAE) structure [26] to generate
bearing HI by introducing convolutional operations to replace matrix operations in a basic
autoencoder. First, convolution and pooling operations are performed on the input data,
referred to as encoding. Then, pooling and convolution reconstruction are performed on
the input data, referred to as decoding. The entire network structure expects the input and
output data to be as identical as possible. Thus, the output of the intermediate hidden layer
can be regarded as a high-level feature extraction of the input data, which is the anticipated
HI in this paper. The CAE structure designed in this study is shown in Figure 4.
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In this case, choosing to fit based on the EPS-HI obtained in the previous section
to train the required autoencoder utilizes the end-to-end feature extraction capability of
deep learning and follows the actual degradation trend of bearings. That is, the trained
autoencoder has the ability to transform the original vibration data into a health indicator
that follows the actual degradation trend. Therefore, obtaining the final health indicator
based on EPS-HI through the convolutional autoencoder is a superior result.

The specific steps to obtain the health indicator CAE-EPS-HI through the convolutional
autoencoder are as follows:

(1) In the accelerated degradation test of the bearing, the original vibration signal is
collected by the accelerometer sensor. Let x = [x1, x2, . . . , xL] represent the original
vibration signal dataset, where xi =

[
x1

i , x2
i , . . . , xM

i
]
, L represents the length of the

vibration sample, and M represents the number of each sample.
(2) In order to obtain a degradation trend based on EPS-HI, the output labels of the

encoder during the training process should be H = [ 𝒽1,𝒽2, . . .𝒽L] (i.e., EPS-HI),
which can be represented by Equation (9). It is expected that the encoder’s output
H′ =

[
𝒽′

1,𝒽′
2, . . .𝒽′

L
]

is as close to the labels H = [ 𝒽1,𝒽2, . . .𝒽L] as possible. This
part of the loss function can be defined as:

LHI =
1
L

L

∑
i=1

∥𝒽i −𝒽′
i∥2 (9)

(3) The CAE is trained by the original vibration data and the set labels. By minimizing the
loss function, the encoder’s output H′ =

[
𝒽′

1,𝒽′
2, . . .𝒽′

L
]

and the decoder’s output
x = [x1, x2, . . . , xL] are as close as possible to the labels H = [ 𝒽1,𝒽2, . . .𝒽L] and the
original data x = [x1, x2, . . . , xL]. Then, the final loss function can be defined as:

L = LHI + LAE =
w
L

L

∑
i=1

∥xi − x i∥2 +
1
L

L

∑
i=1

∥𝒽i −𝒽′
i∥2 (10)

where L is the loss function and w is a proportional coefficient. The weight and bias
parameters in the CAE neural network are updated by minimizing the equation using
the training dataset. When the error curve tends to be stable, it indicates that the DCAE
training is complete and can be used to construct the HI of the experimental bearing.

The combined loss function incorporates supervised learning and unsupervised learn-
ing methods to train the model, making full use of the degradation information of the
bearings to enhance the model’s HI extraction capability. In the offline training phase of the
model, the vibration data and labels of the bearings are used for training. The backpropa-
gation algorithm is used to optimize internal parameters to minimize losses, as shown in
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Figure 5. In the online testing phase of the model, the vibration data of the bearings is used
as input, and the trained CAE encoder is utilized to obtain the CAE-EPS-HI, as shown in
Figure 6.
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After training, the encoder has obtained the capability to transform the original
vibration data into a degradation trend that follows the EPS-HI, achieving end-to-end
feature extraction and health indicator construction.

In summary, by utilizing the EPS-HI labels obtained in the previous section, training
the CAE model with a composite loss function can realize end-to-end HI acquisition and
automatic HI extraction. Based on the labels constructed according to the actual mechanical
failure mechanisms, utilizing both local and global temporal information can generate
more robust and realistic EPS-HI that are closer to actual operating conditions. The trained
convolutional autoencoder can automatically extract bearing health indicators (CAE-EPS-
HI) from raw vibration signals without requiring expert knowledge, and the extracted HI
follows actual degradation trends.

3. Early Fault Detection Method Based on Contrast Learning
3.1. Basic Principle of Contrast Learning

The bearing data typically used may not explicitly provide information about whether
early faults have occurred, especially when used online, as early fault states cannot be
identified in advance. Alternatively, some labels can be obtained from prior knowledge,
specifically indicating that the bearing is healthy at the start of operation and faulty at
the end of operation. This serves as a reminder to explore unsupervised learning or self-
supervised learning methods. Unsupervised learning can avoid large-scale data annotation
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due to its ability. Self-supervised learning can be regarded as a representative branch of un-
supervised learning. It utilizes the input data itself as supervision to make representations
and fine-tune for downstream tasks. The early fault detection framework proposed in this
paper can adopt a self-supervised strategy.

For the problem of early fault detection on degradation data from normal operation
to failure without state labels, an encoder pretrained with contrast learning (CL) [27] can
be utilized to obtain feature representations that demonstrate clear similarities between
instances across the entire dataset. This approach ultimately aims to enhance the deep
feature extraction capabilities of a self-encoder, enabling high discrimination. Based on
these highly discriminative representations, by fine-tuning a downstream classification
model with proper task settings, the fault occurrence time (FOT) can be readily determined
to easily evaluate the bearing state.

Our goal is to train an encoder without annotated supervision. A good feature extractor
should map more similar samples closer in the feature space, with the similarity measured
in the space as:

d
(
xi, xj

)
=

∣∣| fθ(xi)− fθ

(
xj
)
|
∣∣ (11)

where fθ is a deep neural network representing the parameters as the encoder, mapping
instances x to features h.

SimCLR [28]: a simple framework for contrast learning of visual representations is
illustrated in Figure 7.
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Our framework allows for various choices of network architectures without any
restrictions. The CAE encoder from the previous section, denoted as f (·), is chosen. It takes
the augmented data as input and produces two feature vectors h as output.

hi = f (x̃i) = CAENet(x̃i) (12)

where hi is the output of the pooling layer, x̃i denotes the data augmented. The obtained h is
then passed through an MLP (i.e., fully connected network) and projected by the operation
g(·) to obtain zi.

zi = g(hi) (13)

In this framework, zi is used for calculating the contrastive loss. However, the ultimate
representation desired is hi. The expected feature extractor is f (·) (the encoding part of the
CAE encoder in this paper). For downstream tasks, the MLP used during training needs
to be discarded (previous studies have shown that the hi obtained by calculating the loss
through zi during training leads to better results, and the MLP only serves as an auxiliary
for the training process).

Next, the loss function for the contrast learning network is defined as follows. Given a
dataset {x̃k}k ̸=i containing a pair of positive instances x̃i and x̃j, N samples are randomly
sampled, and from the extended samples of the mini-batch, 2N augmented data points
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are obtained. Negative examples are not explicitly sampled. For the given original data,
two augmentations x̃i and x̃j are defined as positive examples, while the other 2(N − 1)
extended samples are considered negative examples. In this way, during the learning
process, the model will pull closer to the distance between positive examples while pushing
away negative examples, enabling it to learn the similarities between objects to some
extent. The NT-Xent (Normalized Temperature-Tuned Cross-Entropy Loss) loss function is
adopted, as defined in Equation (14).

𝓁i,j = − log
exp

(
sim(zi ,zj)

τ

)
∑2N

k=1 1[k ̸=i]exp
(

sim(zi ,zj)
τ

) (14)

where sim(u, v) = uTv/ ∥ u ∥∥ v ∥ represents the dot product (i.e., cosine similarity) be-
tween u and v after 𝓁2 normalization, 1[k ̸=i] equals 1 only when k ̸= i and equals 0 otherwise,
τ is the temperature parameter, which can appropriately scale the computation of similarity
so that the similarity is not limited to [−1,1]. zi represents the feature vector of positive
examples in the representation space.

In the numerator part of the loss function, the closer the distance between the two
positive examples, the smaller the loss function, which means the closer the distance
between positive examples, the better. The denominator part indicates that the farther the
distance between positive and negative examples, the smaller the loss function, and the
farther the distance, the smaller the loss function. By defining the loss function, it guides
the direction of model training to make the model closer and closer to the expected target.

3.2. Early Fault Detection Based on Contrast Learning

Contrast learning is commonly used in the field of images. This article requires the
use of corresponding data augmentation methods when applied to time-series data. For
given data, data augmentation is carried out in the following ways: a segment of vibration
data are selected for augmentation, as shown in Figure 8.

(1) Gaussian noise: Gaussian noise is a data augmentation method that intuitively applies
to one-dimensional signals. It is carried out by adding a random sequence G:

x̃ = x + G (15)

(2) Amplitude adjustment: The amplitude of the signal sequence is adjusted by a factor
of s:

x̃ = s x, s ∼ N(1, σS) (16)

where σS represents the proportional coefficient.

(3) Time stretching: The signal length is stretched to l ∼ N(1, σt) times of the original
length through downsampling or upsampling interpolation, where σt represents the
stretching coefficient. Then, zero padding or truncation is applied to recover the
signal length.

(4) Mask noise: Given a mask M of length N, where the probability of each element being
0 is µ, otherwise 1. Then, mask the signal:

x̃ = x ⊗ M (17)

where ⊗ indicates element-wise multiplication and µ represents the mask probability.
In the second stage of this section, the parameters of the feature extraction layer

(autoencoder) trained in the first stage are loaded and frozen, and supervised learning
is performed with a small amount of labeled samples (only training the fully connected
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layer). The bearings were healthy at the start of the run and faulty at the end of the run.
This small portion of data is used to train the fully connected layer Linear [192,1]. The loss
function for this stage is the cross-entropy loss function, CrossEntropyLoss(). The epoch
for network training is set to 300, and convergence is achieved when the training loss term
reaches its minimum. The learning rate in this study is set to 0.001, with a learning rate
reduction strategy implemented. If the loss does not decrease continuously for 50 iterations,
the learning rate is reduced to 0.1 times the original value, with a minimum value of 0.0001.
The Adam optimizer is utilized for optimization.
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As shown in Figure 9, the model structure consists of an upper and lower branch
for the self-supervised offline pre-training framework. The main purpose is to minimize
the distance between two positive examples and maximize the distance between positive
and negative examples. This allows the model to learn to discriminate between similar
instances by ignoring some features, so that the pre-trained model can demonstrate stronger
discrimination ability in downstream tasks.
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Figure 9. Diagram of self-supervised offline pre-training framework.

In the online detection part, by referring to the knowledge of fine-tuning in transfer
learning, the trained encoder is transferred to the downstream task and connected to the
linear layer. The linear layer output is controlled to be 0 or 1, where 0 represents normal
and 1 represents fault, thus setting up the fault detection task as a binary classification
problem of normal (N) vs. fault (F). In the training dataset, 10% of the samples from the
beginning stage and 5% of the samples from the end stage of the bearing lifecycle data are
selected for health and failure labeling, respectively. This small amount of data is then used
to train the fully connected layer. In this section, only a small amount of annotated data
is required, and the annotation process is simple, significantly reducing the workload of
annotating data. The online monitoring workflow is illustrated in Figure 10.
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By leveraging a large amount of unlabeled data and using contrast learning as guid-
ance, an encoder model with strong discrimination ability and its corresponding feature
representations are learned. The goal of contrast learning is to group similar samples
together while separating different samples far apart. For the input data, the encoder is
able to extract key information while ignoring irrelevant information. It is hoped that
the pre-trained model can have certain transfer learning effects on downstream tasks to
enhance generalization ability.

4. Health Assessment and Fault Detection Neural Network (ADNN)

In Part 2 and Part 3, an encoder structure is used. By integrating the encoder for health
condition assessment from Part 1 (which obtains health indicators), the two encoders can
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be organically combined to obtain the health assessment and early fault detection neural
network (ADNN), as shown in Figure 11.
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Figure 11. Online training process of the integrated network for health assessment and early
fault detection.

The loss function Lz for the integrated network is defined as:

Lz = 𝓁i,j + LHI + LAE (18)

For the fault detection part of this integrated network, the encoder takes in raw data
as input without data augmentation, which differs from the traditional contrast learning
training approach.

By utilizing transfer learning methods to fine-tune the pretrained encoder (with strong
feature extraction and discrimination capabilities) for downstream tasks, online health
assessment can obtain health indicators, and online detection can obtain fault occurrence
points, thus starting the prediction phase. The online processes of health assessment and
fault monitoring are illustrated in Figure 12.
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The innovations of Sections 2 and 3 in this paper are: proposing a method of construct-
ing health indicators based on bearing fault mechanisms, integrating contrast learning,
transfer learning and metric learning ideas, training an encoder with strong feature extrac-
tion and discrimination capabilities, and skillfully integrating the evaluation and detection
parts of the model to obtain an integrated training network, with a small-sized model that
can solve online evaluation and detection problems.

5. Experiments

For the RUL estimation of rolling bearing driven by experimental data, the rolling
bearing experimental data from operation to failure adopted in this paper comes from
the XJTU-SY [29] bearing data center, and its bearing degradation experiment platform is
shown in Figure 13. The experimental bearing is the UER204 rolling bearing produced by
LDK. Two acceleration sensors were installed on the test bearing, with a sampling rate of
25.6 kHz and a sampling interval of 1 min. To reduce model size and computation, each
sample of 1.28 s duration is divided into several samples of 1280 ms duration. Signals
under three different operating conditions were collected for experimental research, as
shown in Table 1.

Machines 2024, 12, x FOR PEER REVIEW 13 of 21 
 

 

5. Experiments 

For the RUL estimation of rolling bearing driven by experimental data, the rolling 

bearing experimental data from operation to failure adopted in this paper comes from the 

XJTU-SY [29] bearing data center, and its bearing degradation experiment platform is 

shown in Figure 13. The experimental bearing is the UER204 rolling bearing produced by 

LDK. Two acceleration sensors were installed on the test bearing, with a sampling rate of 

25.6 kHz and a sampling interval of 1 min. To reduce model size and computation, each 

sample of 1.28 s duration is divided into several samples of 1280 ms duration. Signals 

under three different operating conditions were collected for experimental research, as 

shown in Table 1. 

 

Figure 13. XJTU-SY bearing degradation experiment platform. 

Table 1. Description of the XJTU-SY Dataset. 

Operating Condition 

Number 
Rotation Speed (r/min) Radial Force/kN Bearing Number 

1 2100 12 XJTU 1_1∼1_5 

2 2250 11 XJTU 2_1∼2_5 

3 2400 10 XJTU 3_1∼3_5 

All case studies in this paper were conducted on a Windows 10 platform using Py-

thon 3.9 and PyTorch 1.9, with the following configuration: i7 8700K, NVIDIA 1070Ti, 32 

GB RAM. 

5.1. Implementation Details 

As shown in Figure 4, the CAE encoder consists of three layers of 1D convolutional 

layers (C1 to C3) and three layers of 1D max pooling layers (P1 to P3). The output of the 

encoder is the HI, which also serves as the input to the decoder. The decoder consists of 

six layers of 1D transposed convolutional layers. Ultimately, the input and output data 

are expected to be consistent. The activation function uses Sigmoid for all layers. The 

Adam optimizer is adopted, and the loss function is calculated using mean square error 

loss (MSELoss). Batch normalization (BatchNorm) is performed after each layer, with a 

batch size of 64. The input data dimension is [−1, 1, 1280]. Specific model parameters are 

shown in Tables 2 and 3. 

  

Figure 13. XJTU-SY bearing degradation experiment platform.

Table 1. Description of the XJTU-SY Dataset.

Operating Condition
Number

Rotation Speed
(r/min) Radial Force/kN Bearing Number

1 2100 12 XJTU 1_1∼1_5
2 2250 11 XJTU 2_1∼2_5
3 2400 10 XJTU 3_1∼3_5

All case studies in this paper were conducted on a Windows 10 platform using
Python 3.9 and PyTorch 1.9, with the following configuration: i7 8700K, NVIDIA 1070Ti,
32 GB RAM.

5.1. Implementation Details

As shown in Figure 4, the CAE encoder consists of three layers of 1D convolutional
layers (C1 to C3) and three layers of 1D max pooling layers (P1 to P3). The output of the
encoder is the HI, which also serves as the input to the decoder. The decoder consists of
six layers of 1D transposed convolutional layers. Ultimately, the input and output data
are expected to be consistent. The activation function uses Sigmoid for all layers. The
Adam optimizer is adopted, and the loss function is calculated using mean square error
loss (MSELoss). Batch normalization (BatchNorm) is performed after each layer, with a
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batch size of 64. The input data dimension is [−1, 1, 1280]. Specific model parameters are
shown in Tables 2 and 3.

Table 2. Encoder layer parameters.

Encoder Number of
Input Channels

Number of Output
Channels Kernel Size Stride

Conv-1 1 8 56 8
MaxPool-1 8 8 16 2
Conv1d-2 8 16 8 2
MaxPool-2 16 16 4 2
Conv1d-3 16 32 4 2
MaxPool-3 32 32 4 2

Table 3. Decoder layer parameters.

Decoder Number of
Input Channels

Number of Output
Channels Kernel Size Stride

ConvT-1 32 32 4 2
ConvT-2 32 16 4 2
ConvT-3 16 16 4 2
ConvT-4 16 8 12 2
ConvT-5 8 8 16 2
ConvT-6 8 1 56 8

To integrate with the previous health assessment section, the encoder part in the
diagram shares the same structure as the first five layers of the encoder in the previous
section (i.e., with the same three convolutional layers C1, C2, C3, and two pooling layers
P1, P2). The batch size is 64, and Adam optimizer is used with a learning rate of 0.001. The
specific parameters are shown in Table 4.

Table 4. Parameters of layers in the fault detection encoder.

Encoder Number of
Input Channels

Number of Output
Channels Kernel Size Stride

Conv-1 1 8 56 8
MaxPool-1 8 8 16 2
Conv1d-2 8 16 8 2
MaxPool-2 16 16 4 2
Conv1d-3 16 32 4 2

The feature representation hi extracted from the encoder can be used for downstream
tasks. It is then passed through three linear layers to obtain zi, which is used to calculate
the contrastive loss. The specific parameters of the linear layers are shown in Table 5.

Table 5. Parameters of linear layers in fault detection.

Linear Layer Number of Input Channels Number of Output Channels

Linear-1 192 160
Linear-2 160 144
Linear-3 144 128

5.2. Health Indicators Comparison

Taking Bearing1_1, Bearing1_2, and Bearing1_3 as examples, the comparison between
the EPS-HI obtained through the value window of Equation (5) and the CAE-EPS-HI ob-
tained by the encoder is shown in Figure 14. In the figure, the actual values are represented
by the blue scatter points, while the red curve represents the fitted values for ease of display.
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After the health guidelines CAE-EPS-HI are obtained, a degradation trend can be
clearly observed. Significant jumps in the health guidelines will be observed during the
early stages of failure.

Several traditional methods will be introduced and compared with the proposed CAE-
EPS-HI. The root mean square (RMS) of the original vibration signal is a classic bearing
health indicator, which is directly used to represent the health status of bearings. Traditional
Convolutional Neural Networks (CNN) can also obtain health indicators after setting the
parameters of each network layer.
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There are significant differences in the degradation trends of bearings reflected by
different features. Some features are insensitive to bearing degradation information, have
high volatility, and do not experience significant sudden changes in early faults. Therefore,
some evaluation indicators need to be compared and analyzed. The construction of HI for
bearings is to facilitate subsequent RUL prediction of remaining service life, and it is also
necessary to compare the trend and robustness of HI. To assess the performance of different
types of HI, their monotonicity, correlation, and robustness were calculated. The details of
the three measurement methods can be found in the relevant section [30].

A good bearing health guide should have a certain degree of monotony to avoid the
phenomenon of “health improvement” at the data level. Mon is defined as:

Mon(X)HI=
|Num(d/dx > 0)− Num(d/dx < 0)|

L − 1
(19)

where Num(d/dx > 0) is the number of monotonically upward vectors between a certain
feature point and the next point, and L is the total length of HI. Mon is used to measure
the increasing or decreasing trend of HI. When Mon = 1, it indicates that HI is completely
monotonic, with values limited to the range of 0 to 1, and is positively correlated with
health guidance performance.

The health guidelines constructed based on the full life cycle data of bearings should
be correlated with time. This article uses the Spearman correlation coefficient to describe
the correlation between health guidance and time. Tre is calculated as follows:

Tre(X)HI= 1 −
6Σd2

i
n(n − 1)

(20)

where n is the total length of HI and di is the rank difference of the time series after updating
the order arrangement. Tre is used to measure the linear correlation between HI and time,
with a numerical limit between 0 and 1. The magnitude of the value is positively correlated
with the correlation between HI.

The robustness of a health indicator refers to the ability to distinguish the various
stages of degradation well, with strong stage separability, which helps indirectly improve
the diagnostic ability of the model. is defined as:

Rob(X)HI =
1
M ∑M

i=1 exp
[
−
∣∣∣∣ XR(tM)

XT(tM) + XR(tM)

∣∣∣∣] (21)

where M is the total number of observations, XT(tM) is the smoothed average trend,
and XR(tM) is the fluctuation term. Each feature parameter should undergo the same
smoothing process during the comparison of robustness indicators.

Operating conditions 2 and 3 in the XJTU dataset are utilized as the training set,
while operating condition 1 serves as the testing set. The process is repeated ten times to
obtain evaluation results for each test and calculate their average values. Time-domain
features such as mean, variance, root mean square, waveform factor, clearance indicator,
and kurtosis are selected, along with frequency-domain features including spectral mean,
spectrum root mean square, frequency centroid, and frequency variance. A comparison
between EPS-HI and CAE-EPS-HI is conducted in this study, with all features normalized
during evaluation calculations. The experimental results are shown in Figures 15–17.

It is not difficult to see that the health guideline CAE-EPS-HI proposed in this article
has good performance in monotonicity, correlation, and robustness. In each evaluation
indicator, the last layer of the dark green trend wall can be clearly seen, indicating that the
effect in the dataset is better than the other HI mentioned.
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The Mean Absolute Error (MAE) between the smoothed computed HI and the actual
HI was calculated as a metric. The MAE values are depicted in Figure 18. The proposed
CAE-EPS-HI outperforms the other HI in both respects.
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In summary, from the perspectives of monotonicity, correlation, robustness, and MAE
values, this method clearly outperforms the other methods in experimental effectiveness.

Furthermore, the fact that CAE-EPS-HI performs better than EPS-HI suggests that
the training through encoding, decoding, and contrastive learning within the composite
network enhances the model’s feature extraction capabilities and discriminative power. As
a result, the obtained CAE-EPS-HI demonstrates slightly better predictive performance.

5.3. Fault Detection Results

After pre-training, the model can easily be transferred to downstream tasks. In the
complete life cycle data of bearings, only the initial normal data and the data at the end
when the bearing fails are readily obtainable. The linear layer of the network is trained
using the two parts of limited data, labeled as normal and fault. The model parameters of
the encoder are kept fixed, and the output of the linear layer is controlled to be either 0 or 1.
A time-evolving state sequence is obtained, with each element being 0 or 1, representing
normal (N) and fault (F), respectively.

During online detection, false alarms are inevitable due to interference from other
factors in data collection. These inevitable interference factors that make the model produce
misjudgments in healthy conditions, causing false alarms. As long as there is continuous
data input, the false alarm rate will be greatly reduced. In consideration of the above
reasons, a reference coefficient σk = 0.2% [27] is set, that is, if the alarm persists within 0.2%
of the number of input samples and the subsequent data remains normal, it is considered a
false alarm. Therefore, the threshold of σk = 0.2% is selected to predict early-stage faults as
soon as possible while also minimizing the occurrence of false alarms, thereby enhancing
the reliability of the predictions.

Operating conditions 2 and 3 in the XJTU dataset are utilized as the training set, while
operating condition 1 serves as the testing set. Based on the aforementioned setup, the
occurrence of faults for each bearing is predicted online. Taking the bearings Bearing1_1,
1_2, and 1_3 as examples and the vibration data as input, the detection results are as shown
in Figure 19. The red dashed line represents the moment of fault occurrence, and the
regions N and F, respectively, represent the normal and fault states of the bearings. The
experimental results indicate that our proposed method achieves early fault detection
across all tested bearings.
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6. Conclusions

Through the training of autoencoders and contrastive learning, the model has strong
feature extraction capabilities. The established health indicator can reflect the actual
degradation level of bearings to a certain extent. The pre-trained autoencoder can be easily
transferred to similar downstream tasks. It only requires quick fine-tuning without the
need to train from scratch, making the method highly referential. The online detection
network does not depend on any data processing or statistical features; it directly inputs
the original vibration data to realize an end-to-end construction of health indicators and
early fault detection.

In addition, the following shortcomings and prospects have been identified:
In the fault detection phase, further definition of early fault characteristics is needed,

along with the identification of suitable evaluation criteria to differentiate between prema-
ture and late warnings. Building on the ADNN, further exploration of methods to reduce
the dependency on prior knowledge and annotations is warranted.
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