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Abstract: Ball bearings are one of the most critical components of rotating machines. They ensure shaft
support and friction reduction, thus their malfunctioning directly affects the machine’s performance.
As a consequence, it is necessary to monitor the health conditions of such a component to avoid major
degradations which could permanently damage the entire machine. In this context, HMS (Health
Monitoring Systems) and PHM (Prognosis and Health Monitoring) methodologies propose a wide
range of algorithms for bearing diagnosis and prognosis. The present article proposes an end-to-end
PHM approach for ball bearing RUL (Remaining Useful Life) estimation. The proposed methodology
is composed of three main steps: HI (Health Indicator) construction, bearing diagnosis and RUL
estimation. The HI is obtained by processing non-stationary vibration data with the MODWPT
(Maximum Overlap Discrete Wavelet Packet Transform). After that, a degradation profile is defined
and coupled with crack initiation and crack propagation fatigue models. Lastly, a MB-HMM (Hidden
Markov Model) is trained to capture the bearing degradation dynamics. This latter model is used
to estimate the current degradation state as well as the RUL. The obtained results show good RUL
prediction capabilities. In particular, the fatigue models allowed a reduction of the ML (Machine
Learning) model size, improving the algorithms training phase.

Keywords: RUL estimation; HMS; prognosis; HMM; rotating machines; bearings; reusable rocket
engines

1. Introduction

Bearing Prognosis and Health Management (PHM) has a critical role in the field
of rotating machines. First of all, a bearing is a key mechanical component of rotating
machines. It provides shaft support, friction reduction, vibration denoising and other
important features [1]. Its correct functioning is essential for the good functioning of the
machine. As a consequence, its State of Health (SoH) needs to be estimated and predicted
during the machine’s operation to avoid failure and major damages.

According to the definition given by Hu et al. [2], PHM is a new piece of technology
that can perform three main tasks: Fault/Anomaly Detection, Fault Diagnosis and SoH
Prediction (prognosis) to support the maintenance decision process. Depending on when
the PHM is integrated in the system or component life cycle, it can be used in different
scenarios. The most common one consists in easing the maintenance planning. Thanks to
the PHM, maintenance activities can be optimised according to the machine SoH, reducing
costs and maximising the operating time. In addition, the knowledge acquired during
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diagnosis and prognosis analysis can be used to guide refurbishing procedures during
which a new set of components has to be chosen for the next mission [2]. In the most
advanced scenarios, when the PHM is included from the initial product design phase, it can
be applied for system control or operating point correction. Different PHM methodologies
have already been proposed in the literature concerning the diagnosis and prognosis of
bearings and gears in rotating machines. Their fields of application are wide and they
include wind turbines, aeronautical systems and space propulsion. In order to perform
the three tasks previously listed, PHM algorithms are characterised by a four-step general
structure [3] including Data Collection, Health Indicator (HI) Construction, Health Stage
(HS) Division and Remaining Useful Life (RUL) Estimation.

In the Data Collection step, the available monitoring data are gathered together with
all the knowledge about the system. In the case of bearing PHM, the monitoring data
can be collected with multiple sensors such as accelerometers, acoustic emission sensors,
temperature sensors and encoders [4]. Vibration signals are generally preferred since
accelerometers are reliable sensors and they can be easily installed on the bearing housing.

Depending on the type, quality and quantity of the available monitoring data, the HI
is constructed and computed. As described by Lei et al. [3], HIs obtained from vibration
signals can be categorised as Physical HIs and Virtual HIs. Physical HIs include all the
classical statistical features like the Root Mean Square (RMS), the Kurtosis, the Crest Factor
and the Impulse Factor [5]. Depending on the situation, the acquired vibration signal is
treated with a sliding window or divided into segments. The HI is computed at different
time instants and its evolution can be used to detect and diagnose faults or to predict
failures. A deep understanding of the failure mechanism is required to establish a strong
link between the variation of the HI and the failure mechanism (wear, crack propagation,
spalling, etc.). To this matter, Jain et al. [6] carried out a detailed analysis of the bearing
defect size variation effect on the most frequently used statistical indicators. Moreover,
to cope with the masking of the degradation information, advanced signal processing
techniques can be implemented to enhance the vibration content and to improve the HI
computation like Empirical Mode Decomposition (EMD) [7] and Discrete Wavelet Packet
Transform (DWPT) [8]. The second family of HIs, Virtual HIs, is preferred when the
degradation phenomenon is too complex to understand, affecting the correct interpretation
of the HI evolution over time. In this case, the HI is built using Artificial Intelligence
(AI) techniques including Machine Learning (ML) [9], Deep Learning (DL) and Transfer
Learning (TL) [2], etc. As an example, Mochammad et al. [10] proposed an unsupervised
health indicator obtained through frequency analysis and Principal Component Analysis
(PCA) feature fusion. While these techniques can extract the degradation information
without the a priori degradation mechanism knowledge, their accuracy strongly depends
on the quality and quantity of the available data. As explained by the authors in previous
work [11], the dataset used for the algorithm training should contain clear information
about the degradation dynamics during the entire life of the bearing.

Once the HI is defined, bearing diagnosis and prognosis can be performed. Based on
the current HI value and its history up to the present time, the bearing SoH can be assessed
to understand to what extent the component is damaged. Statistical tests as well as AI
techniques can be used to perform these tasks. For example, Fan et al. [12] used a new type
of CUSUM statistical test to perform Bearing Fault Detection. Chen et al. [13] proposed
a deep transfer Convolutional Neural Networks (CNN) to perform bearing diagnosis.
Konig et al. [14] presented a precise fault classification algorithm based on CNN and ML.

Lastly, the bearing RUL can be computed. The HI trend is captured and projected
on a determined time horizon or until failure is reached. Thus, a predictive algorithm
has to be used, which can be one of of three different types: model-based, data-driven or
hybrid. Model-based prognosis approaches are characterised by mathematical models that
describe the bearing degradation from a theoretical point of view. Since bearings are mostly
subject to fatigue damages, fatigue models, like the Paris law, have been extensively used
in the past to predict the size of bearing surface defects. For example, Behzad et al. [15]
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combined the Paris Law with reliability methods. This kind of models requires a small
amount of monitoring data and has been proven to be effective as far as crack initiation
and propagation are correctly modelled. At the same time, their application is limited since
they describe the degradation mechanism according to the degree of its understanding.
Complex and highly non-linear study cases may not be correctly represented, leading to an
estimation error during the RUL computation.

Data-driven prognosis approaches consist of the biggest group of predictive algo-
rithms for RUL estimation. They include AI techniques (ML, DL, TL) as well as fuzzy
logic techniques and statistical modelling techniques. They directly extract the degradation
dynamics from the data without any previous knowledge, but their precision is directly
affected by the quantity and the quality of the learning dataset. Haidong et al. [16] pro-
posed an early fault prognosis algorithm based on complex wavelet transform and deep
gated recurrent unit networks. Gao et al. [17] used PWT to construct an efficient HI and
estimated the bearing RUL with an encoder–decoder Long-Short Term Memory (LSTM)
neural network. Liu et al. [18] used a transformer model-based predictor to perform
bearing prognosis under different degradation processes. Some interesting work was
also conducted in the field of statistical modelling where Hidden Markov Model (HMM)
approaches have been proposed for bearing diagnosis and prognosis. HMM models are
classified as unsupervised ML models. In this field, Medjaher et al. [19] used GMM-HMM
for bearing RUL estimation. Soave et al. [20] proposed a generalised GMM-HMM model
for rotating machinery prognosis. Zhao et al. [21] developed a multi-feature HMM model
for bearing diagnosis and prognosis.

Lastly, hybrid prognosis techniques try to increase the RUL estimation precision and
reliability by combining the two previous types of algorithms. For example, Qian et al. [22]
proposed a hybrid approach merging PTW and a modified Paris law to take into account
fast and slow degradation dynamics.

Going further, PHM methodologies can be classified as real-time or offline method-
ologies. Real-time PHM methods collect the data and process them immediately before
or while the next sample is available. This is the case for production lines and machine
monitoring: the bearings are supervised in real time when the machine is functioning. In a
different way, offline approaches collect the data during a specific time interval (missions)
and treat them at the end of it. The PHM analysis is carried out in between missions and
may serve as aid for maintenance planning and preparation for the next mission.

Problem Statement and Contributions

The space transportation sector has been revolutionised during the last decade by the
arrival of reusable launchers and with them reusable Liquid Propellant Rocket Engines
(LPRE). LPRE are very complex systems and their reusability introduces some new chal-
lenges. Engine re-ignition, trust modulation and maintenance planning are just a few of
them. As far as maintenance planning is concerned, the Space Shuttle program revealed
how extremely expensive and time consuming this kind of procedures can be. For this
reason, PHM is a promising discipline since it allows us to optimise the maintenance
actions and their planning: action will be taken only when required, towards the system
end-of-life before any irreversible failure takes place. Some studies have been carried out in
the field of rocket engine PHM or HMS. Park et al. [23] proposed a DNN for fault detection
and diagnosis during the startup transient stage of liquid-propellant rocket engine tests.
Chelouati et al. [24] proposed an extended Kalman filter to predict the SoH of a LPRE
in case of crack propagation in the combustion chamber. Wang et al. [25] proposed a
detailed survey of diagnosis techniques applied to rocket engines or rocket engines sub-
systems. Most of the research performed in this specific field concerns on-line or real-time
approaches in the domain of Health Aware Control. In this case the RUL serves as key
information to adjust the engine operating point. Not a lot of works have been carried out
concerning LPRE turbopump bearings, except for the contribution of Pan et al. [26] where
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a complex data-driven approach with meta pruning framework with attention augmented
convolutions is proposed for LPRE bearing RUL estimation.

In this context, we propose an offline PHM methodology to estimate the RUL of a
reusable LPRE turbopump bearing. The offline approach is motivated by the fact that
the estimated RUL is intended for maintenance guidance. As a consequence no real time
estimation is necessary since the computation is performed at the end of each mission.
The bearing acceleration signals are decomposed using the Maximum Overlap Discrete
Wavelets Packet Transform (MODWPT) and the nodal energy HI is computed. Then,
diagnosis and prognosis of the bearing are performed through the use of a physics-defined
Hidden Markov Model (HMM). In particular, the bearing RUL is obtained through the
computation of the Markov Chain (MC) absorption time. The present work is characterised
by the following contributions:

• A new methodology is proposed which is tailored and adapted to LPRE RUL esti-
mation for preventive maintenance planning. Indeed, previous works approached
LPRE from a global point of view, taking into account the entire system. When the
final objective is Health Aware Control, a global approach is suitable, but in the case
of maintenance planning a local approach focusing on a specific components is better,
since specific degradation phenomena have to be taken into account which may not
be visible if the system is monitored globally. The proposed method takes into account
also other challenging aspects such as the limited amount of data and the difficult
operating conditions. The application chosen by the authors seeks a yet unexplored
research area .

• A degradation profile is extracted from existing data and validated with respect to
fatigue models which was not presented in the literature before according to the
authors’ knowledge.

• The proposed methodology is based on a Multi-Level MB physics-driven HMM
model. Even thought HMM are not a new piece of technology, this new version of
them coupled with a physical degradation model of the bearing fatigue degradation
proposes a new and efficient alternative to classical methods.

The rest of the article is organised as follows: Section 2 describes the PHM methodology
step by step. Section 3 presents the simulation set-up and the obtained results when the
proposed approach is applied to synthetic data. Section 4 reports the results obtained with
real run-to-failure experimental data. Finally, Section 5 draws the conclusions.

2. PHM Approach

In this section, the developed approach is described in detail from the initial step of
data collection until RUL estimation. The proposed data-driven approach is deployed in
two main steps: unsupervised training and algorithm exploitation. In the first step, each
collected acceleration signals is processed to construct its respective HI. The obtained HIs
are used to train a family of multiple HMM whose structure was defined according to
bearing qualitative fatigue models. During the second step, new signals are treated to
compute the necessary HI and used to compute the bearing RUL. The HMM model that
best represents the current HI is chosen from the trained models and the RUL is obtained
through the computation of the MC absorption time. Figure 1 shows the main steps
from data collection to RUL estimation. The proposed methodology is built on an off-line
approach which means that it is not applied during the functioning of the bearing but right
after. The unsupervised learning step is performed before the first bearing utilisation, while
the algorithm exploitation is performed at each interruption of the bearing functioning.

2.1. Data Collection

The vibration produced by the bearing motion is captured by an accelerometer placed
on the bearing housing. Samples of duration ds are registered during a sampling interval
ps and with a sampling frequency fs. Figure 2 gives an example of the data acquisition
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process where ps = 10 s, ds = 0.1 ms and Fs = 25.6 kHZ. Finally, all the samples are chained
to form one long signal.

Figure 1. General methodology scheme.

Figure 2. Data collection example [27].

2.2. Health Indicator Construction

Figure 3 shows all the steps concerning the HI construction. At first, each bearing
acceleration signal is decomposed using the MODWPT (step 1). Then, the obtained sub-
signals are used to compute the nodal energy HI, also known as relative energy (step 2).
The obtained HIs were analysed and they led to the identification of a common recurrent
degradation profile clearly showing the degradation evolution with respect time (step 3).
At this point the HI are prepared for prognosis. A discretization technique is applied to
enhance the degradation information (step 4). Eventually the obtained HIs are broken
down into clusters according their degradation rate and sensitivity to the degradation
(step 5). Having completed step 5 the HIs are ready for HMM training and RUL prediction.

2.2.1. Signal Processing (MODWPT)

In this second step, the bearing vibration signal is decomposed using the MODWPT
signal processing technique. This specific type of wavelet transform was chosen since it
allows us to decompose the raw signal on all its frequency spectrum without losing the
time-dependent information contained in the data. Moreover, this technique allows us
to avoid down-sampling thanks to the wavelets filter adaptation at each decomposition
level and to the padding of the filtered signals [28]. To ensure the conservation of the
signal energy the db5 mother wavelet was chosen, which is an orthogonal function. The
decomposition frequency bands can be computed using Equation (1), where f is the index
of the frequency band f b and L is the decomposition level [29].

f b f =
[
( f − 1)

Fs

2L+1 ; ( f )
Fs

2L+1

]
with f = 1, ..., 2L (1)
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Figure 3. HI construction steps.

2.2.2. Health Indicator Extraction

The sub-signals obtained during the previous steps are now used to compute the HI
using a sliding window of length w. After a careful analysis of the available statistical
indicators, it was decided to proceed with the computation of the nodal energy, or relative
energy, ENrel as shown by Equation (2) [11]:

ENrel(t, f ) =
En f b f

Entot
=

∑t+w
j=t |xs, f (j)|2

∑t+w
j=t |xs(j)|2

(2)

where EN f b f
and ENtot are the energy of the sub-signal xs, f and the raw signal xs, respec-

tively; f is the frequency band and t is time.

2.2.3. Health Indicator Analysis

The identified degradation profile is composed of three stages, as depicted in Figure 4:

1. Nominal stage: in this early life stage, the bearing is functioning without defect. The
HI is constant with small oscillations.

2. Degradation stage: here the degradation begins. The defect is initiated and slowly
propagates. The HI shows an increasing or decreasing trend with variable levels
of oscillations. Towards the end of this stage, the profile tends to a constant trend.
Indeed, in some situations, due to friction smoothing or other factors, the degradation
is momentarily slowed down. Anyway, the degradation is not stopped and it is just a
matter of time before failure is reached.

3. Failure: eventually the bearing reaches its end-of-life. The HI starts to vary with a
random behaviour, without a clear logic.

The change points between one stage and another are marked with blue dots in
Figure 4 and are called t1 and t2. The first parameter, t1, represents the duration of the
nominal phase. At time = t1 the degradation starts. The second parameter, t2, marks the
end of the degradation phase and the bearing end of life.
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Figure 4. Bearing experimental degradation profile [11].

Depending on how the degradation affects the bearing vibration signature this profile
can be observed at lower or higher frequencies at a specific frequency band [11]. Anyway,
sometimes multiple frequency bands may be sensitive to the degradation. In these cases
the wavelet decomposition level should be adapted to avoid cutting the spectrum near the
solicited frequencies, and the obtained HIs should be analysed again carefully.

2.2.4. Health Indicator Discretisation

To be a suitable HI for HMM-based bearing diagnosis and prognosis, a discretiza-
tion step is necessary. Indeed, classical HMM algorithms are suitable only for discrete
observation sequences. The chosen discretization technique consists defining two discrete
observation sequences for each HI and combining them.

A Discrete Sequence 1, Hd1: the first discrete sequence is obtained by quantisation of
the HI. Since the nodal energy is a normalised quantity, its value is included in the
interval I = [0, 1]. Such an interval is divided into sub-intervals of equal length as
shown hereafter:

I = I1 ∪ I2 ∪ ... ∪ Iγ (3)

where γ is the number of sub-intervals I. Sub-intervals from I1 to Iγ−1 are right open
intervals while Iγ is closed on both sides. Each element of the HI is replaced by the
index of the sub-interval including it:

HId1(t) = ι (4)

where ι = argminι|HI − Iι|. In other words, ι is the index of the interval that min-
imises the absolute difference between the health indicator HI and the boundaries
of the intervals. This means that ι is the index of the interval to which HI belongs.
Figure 5a,b illustrates a practical example.

0 2 4 6
0

0.2

0.4

0.6

0.8

1

time [h]

H
I

(a) HI before quantisation.

0 2 4 6

2

4

6

time [h]

H
I d

1

(b) HI after quantisation.
Figure 5. HI discretization—first sequence.
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B Discrete Sequence 2, Hd2: this discrete sequence is defined based on the DCS fail-
ure detection:

HId2(t) =
{

1 Failure not detected
2 Failure detected

(5)

For each initial raw signal, a family of 2L HIs is obtained. Depending on the degra-
dation phenomena that affected the bearing, the degradation impacts the vibration
signal on the low, medium or high frequencies. This behaviour can be clearly ob-
served thanks to the MODWPT decomposition. As stated above, the vibration signal
becomes random when failure occurs. With the chosen HI, it results in an abrupt
variance increase or by strong oscillations of the mean. The Dynamic Cumulative
Sum (DCS) statistical test was chosen to perform failure detection for its good capa-
bility of detecting these types of signal variations both in the variance and the mean.
The DCS test computes the likelihood ratio between signal segments as shown in
Equation (6) [30]:

DCSSa ,Sb(t) =
w

∑
k=1

0.5 ·
(

log

(
σ2

a

σ2
b

)
+ (Sb(k)− µb)

2 ·
(

1
σ2

a
− 1

σ2
b

))
(6)

In this equation, w is the window length, Sa is the window after time t, Sb is the
window before time t, σ is the standard deviation and µ is the mean. When the
segments Sa, Sb present similar distributions, the ratio is close to one while in the
opposite case its value increases. Let us consider two sliding contiguous windows; it
was demonstrated in [30] that the DCS likelihood ratio will reach its maximum when
the change point, cpt, is reached. As a consequence, a decision function, g, can be
established to perform the change point detection as shown in Equation (7) [30].

g(t) = max(DCS)− DCS(t) (7)

Figure 6 illustrates an example of the DCS test applied to a signal that changes in
mean and variance. As it can be noticed, the DCS will detect multiple change points,
thus an additional analysis has to be carried out to select the failure change points.
To do this two actions are taken. At first, the optimal threshold is defined using the
experimental ROC curve [31]. The threshold is optimal since it minimises the false
positive rate and maximises the true positive rate. Subsequently, the detected change
point are analysed by the authors and classified manually. This procedure is applied to
the data used during the training phase. During the testing, or in real life conditions,
failure detection is not performed. Indeed, the bearing is not supposed to reach failure
since as soon as its remaining useful life is shorter that the expected mission duration it
will be replaced. If any failure happened during the mission, the consequences would
be catastrophic and no RUL estimation procedure would be necessary.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3

0.2

0.3

0.4

time[h]

HI

DCS Test Example

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3
0

20

40

time[h]

g
cpt 1
cpt2
dcs
threshold

Figure 6. DCS statistical test example, cpt2 is the failure change point.
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C Discrete HIs combination, HIC: at last, HId1 and HId2 are combined. Table 1 gives
an example of the combination process. Given γ and knowing that the second
discrete sequence can only have two values, the y vector containing all the possible
combinations can be defined, which will contain M = γ · 2 elements. For example, if
γ = 4:

y = [11, 12, 13, 14, 21, 22, 23, 24] (8)

Table 1. Sequence combination example.

HId1 1 1 2 3 2

HId2 1 1 1 2 2

HIC “11” “11” “12” “23” “22”

Figure 7a reports an example of the two discrete sequences, HId1 and HId2. HId1
conserved the information about the HI evolution trend, in this case monotonically in-
creasing, while HId2 contained specific information about its failure. If taken singularly
HId1 or HId2 are not very strong HIs. Indeed, as observed during the HI analysis, the
degradation provokes a change in mean and variance in the relative energy, which is
partially lost during the HI quantisation. The increasing trend is still noticeable in HId1 but
the failure time is more difficult to spot. HId2 contains only information about the failure
time and no increasing trend is observable. Consequently, the discrete sequence HId2 can
only reveal if failure occurred or not and it cannot provide any information about how the
degradation evolved. HId1 or HId2 contain complementary information. As a consequence,
their combination provides a strong HI containing both information about the degradation
process and the failure time. Figure 7b shows an example of HIC.

1

2

3

4

time [h]

H
I d

,1

1

1.2

1.4

1.6

1.8

2

H
I d

,2

HId,1
HId,2

(a)

0 2 4 6

15

20

25

time [h]

H
I C

(b)

Figure 7. HI discretisation—combination. (a) Discrete sequences HId1 (blue) and HId2 (orange).
(b) Combined discrete sequence HIC.

2.2.5. Health Indicators Breakdown in Clusters

The obtained HI were carefully analysed and broken down into categories in order to
organise the information contained in them and ease the training of the predictive model.

Two different classifications were performed according to the following criteria:

• Degradation Speed: the degradation process may take place at different speeds. In
this work a faster degradation dynamic damaging the bearing in approximately 2.5 h
and a slower dynamic damaging the bearing in approximately 5 h are considered.
Signals are labelled as “SLOW ” or “FAST”. These values were chosen based on the
degradation behaviour observed during two different test campaigns [27,32].

• Sensitivity of the HI to the presence of degradation: as explained in Section 2.2.1, the
HI are computed after having performed the MODWPT. The application of this signal
processing technique allows us to isolate the effect of the degradation in a specific
frequency band enhancing the variation of the health indicator. As a consequence,
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some frequency bands are more sensitive than others to perform RUL estimation.
The application of this classification criterion is based on the assumption that given
stable working conditions (speed and radial load), the health indicator affected by the
presence of a degradation will show significant variations while the others will remain
stable. HIs are labelled as “SENSIBLE” and “NOT-SENSIBLE”.

All the available data are classified according to the described criteria and two sets of
clusters are obtained. Each one has a specific purpose. The clusters obtained with the first
criteria are used to select a specific structure of the predictive model (HMM) that will know
a priori that two types of degradation dynamics exist, a faster and a slower one. More
details can be found by the author in the following Section 2.3.1. The clusters obtained
from the second criterion are useful to select the right HI for RUL prediction as explained
in Section 2.3.3.

2.3. RUL Prediction
2.3.1. Multi-Level Multi-Branch Hidden Markov Models

HMMs are an extension of Markov Chains. A Markov chain is a probabilistic model
containing information about sequences of random variables [33] based on the following
Markov assumption [34]: “When predicting the future (time t + 1), the past (time t − 1) does not
count, only the present (time t) counts”. Given a list of states S = [S1, ..., SN ] and a sequence of
observed states, Q = [q1, ..., qT ], the previous assumption can be formalised as reported in
Equation (9):

P(qi = a|q1, ..., qT) = P(qi = a|qi−1) (9)

MC are used to describe observable discrete stochastic processes. When the process is
not observable, the MC model is extended to a HMM [34,35]. Assuming the chosen obser-
vation variable varies with the state and that it depends only on the state that generated it:

P(oi|q1, ..., qi, ..., qT , o1, ..., oi, ..., oT) = P(oi|qi) (10)

Given a list of states, S = [S1, ..., SN ] and a list of observations O = [o1, ..., oM], the
classical HMM model, λ = (A, B, π), is defined by the following elements [34]:

1. Transition matrix (A): N × N matrix, where N is the number of hidden states. The
element ai,j is the probability of going from state i to state j:

ai,j = P(qt = Sj|qt−1 = Si), 1 < i, j < N (11)

N

∑
j=1

aij = 1 (12)

2. Emission Matrix (B): N × M matrix, where M is the number of possible observations.
The element bj(k) is the probability of measuring observation k, 1 < k < M, with
hidden state j:

bj(ok) = P(O(t) = ok|qt = Sj), 1 ≤ k ≤ M (13)

M

∑
k=1

bj(ok) = 1 (14)

3. Initial distribution vector (π) : 1 × N vector. The element πi is the probability of being
in state i at the initial time:

πi = P(q1 = Si), 1 < i < N (15)

Depending on how the HMM is applied, three different problems can be defined [34]:

1. Likelihood Problem: given the observations sequence O = [o1, ..., oM] and the model
λ, compute P(O|λ), the probability of observing sequence O = [o1, ..., oM] given λ.
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2. Decoding Problem: given the observations sequence O = [o1, ..., oM] and the model λ,
find the most probable sequence of hidden states, Q = [q1, ..., qT ].

3. Learning Problem: given the observations sequence O = [o1, ..., oM] and a sequence of
hidden states S = [S1, ..., SN ], find the model λ.

2.3.2. Model Definition

Many variations of the classical HMM model previously described have been proposed
over the years. Among them, it is possible to find I/O HMM models, Semi HMM, GMM
HMM, Hierarchical HMM, etc. The HMM chosen for the present work is a Multi-Level
Multi-Branch Physics-defined HMM:

• Physics-defined: The classical formulation from [34] is kept, but the structure defining
the A matrix is defined according to a fatigue model describing the bearing degrada-
tion process. The qualitative degradation model proposed by [36] was chosen for this
purpose. As shown in Figure 8, the model is composed of five degradation stages:
running-in, steady state, defect initiation, defect propagation and damage growth.
Assuming that the running-in stage is much shorter than the others, the selected model
can be reduced to four degradation stages. On this basis, a left-to-right HMM model
can be defined with the structure presented in Figure 9. In this scheme, no backward
transition is allowed because the degradation process is believed to be irreversible.
The last state, S4, is called the absorbent state since once it is reached it is not possible
to leave it.

Figure 8. Dynamic behaviour and surface topology due to wear evolution [36].

• Multi-Branch: Classical HMM models extract the average dynamics according to the
defined states and the available observation. When the observations are generated by
different dynamics, a simple HMM is not enough to represent the hidden stochastic
process. Indeed, its parameters would be trained to be somewhere in the middle or
closer to the most frequent degradation dynamic. Following the steps of Le et al. [35],
a multi-branch HMM is proposed to catch the multiple dynamics that may provoke
the bearing degradation which is composed of b left-to right HMM models. Figure 9
shows the general structure of the proposed model.

• Multi-Level: Depending on the working conditions but also on how the degradation
process solicited the bearing harmonics, it was decided to introduce a MB-HMM
model for each frequency band obtained during the wavelets decomposition (step
2 in Figure 1). In this way, the proposed predictive model is provided with enough
flexibility to isolate and predict the bearing degradation. Figure 10 shows a small
scheme of the general structure of the proposed predictive model.
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Figure 10. Multi-Level MB-HMM Structure.

Given the scheme in Figure 9 and the HI discretization proposed in Section 2.2.4, it is
possible to write the general formulation, applicable to each branch b in the MB-HMM
model, of matrix Ab and Bb as reported by Equation (16):

Ab =


a1,1 a1,2 0 0
0 a2,2 a2,3 0
0 0 a3,3 a3,4
0 0 0 1

; Bb =


b1(y(1)) b1(y(2)) ... b1(y(M))
b2(y(1)) b2(y(2)) ... b2(y(M))
b3(y(1)) b3(y(2)) ... b3(y(M))
b4(y(1)) b4(y(2)) ... b4(y(M))

; (16)

The model λb of each branch in the Multi-Level MB-HMM is trained using the Baum–Welch
Algorithm. The training dataset for each branch is chosen according to the classification
performed on the available data.

2.3.3. Health Indicator Classification

Once the Multi-Level MB-HMM is ready, the signals in the testing dataset are treated
by applying the same steps from Figure 3. A series containing f HIs is obtained for each
of them. The HIs showing very low values of relative energies are discarded by using a
threshold. Indeed, if the relative energy is too low, no clear variation can be observed,
meaning that no degradation can be observed in that specific frequency band. The next
step consists of understanding which health indicator among the remaining ones actually
reveals the presence of fatigue degradation. To do this, two additional HMM models were
trained. Both models are classical discrete left-to-right HMM models, λh and λd. The
matrices Ah, Ad, Bh and Bd present the same structure as in Equation (16). The model λd is
trained with HI from frequency bands where the degradation is clearly visible, while model
λh is trained with HIs, whose profile did not present any significant energy variation.

Each new HI is classified in the following way:
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1. The likelihood probabilities P(O|λh) and P(O|λd) are computed using the decoding
algorithm [34].

2. The HI class is defined according to the model presenting the highest likeli-
hood probability.

2.3.4. RUL Computation

Having selected the best HI, the RUL estimation can be preformed by using the
corresponding trained Multi-Level MB-HMM, (λ1,...,λb). The posterior probability of each
branch is computed using the Bayes theorem [35]:

P(λb|O) =
P(O|λb)P(λb)

∑nb
b=1 P(O|λb)P(λb)

(17)

where nb is the number of branches, P(O|λb) is the likelihood obtained by solving the
likelihood problem described in Section 2.3.1 and P(λb) is the a priori probability computed
using Equation (18).

P(λb) =
number o f sequences used f or training λb

total number o f available sequences
(18)

Once the branch with the highest probability is found, the Remaining Useful Life
(RUL) is obtained based on the formulation proposed by [37] for Mean Time To Failure
(MTTF) computation. In [37], the MTTF is computed using the transition matrix A which
contains transition rates between the different states of the defined MC. Following the
approach proposed in some previous work [38], the MTTF formulation from [37] is re-
proposed for bearing RUL estimation. In this case, the matrix A contains the transition
probabilities between multiple degradation states (transient states) converging to one failure
state (absorption state). As a consequence, the proposed approach consists of estimating
the RUL by computing the time to absorption of the HMM model defined in Figure 9. The
detailed mathematical formulation together with its demonstration can be found by the
reader in Appendix A. Equation (19) reports directly the matrix formulation used for MTTF
computation [37].

MTTF =
1
∆

∣∣∣∣∣∣∣∣∣
0 P01 ... P0l
1 a11 ... a1l
...

...
. . .

...
1 al1 ... all

∣∣∣∣∣∣∣∣∣ (19)

As it can be observed, the MTTF depends on the initial condition probabilities. If
the initial state is known, the P0i probability becomes 1, otherwise an initial probability
distribution [P01, ..., P0l ] has to be defined. In the present work, Equation (19) was used in
an iterative way to estimate the absorption time at each time t. Given a discrete observation
sequence (HIC), the trained HMM model is used to obtain the posterior state probabilities
(P(Si)) by applying the Viterbi algorithm [34]. The vector P(Si) is used as the initial
probability vector to compute the absorption time Ta given the present degradation state.
Following a similar approach proposed by Shahin et al. [38], the new modified matrix
equation is presented in Equation (20):

Ta(t) =

∣∣∣0 P(Sj)(t)
1 P(Sj|Sj−1)

∣∣∣
|P(Sj|Sj−1)|

(20)

Since Equation (20) computes the average time the system spends in each hidden
state, Tf is constant if the degradation state does not change. To take into account the fact
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that the bearing already spent time in the current degradation state, the estimation from
Equation (20) is corrected with a time counter, dt:

RULt = Ta(t)− dt(t); (21)

3. Application to Simulated Data

The performance of the algorithm was first tested on a synthetic dataset. In this section,
the simulation set-up as well as the obtained results are described.

3.1. Simulation Set-Up

The model used for synthetic data generation consists of a 5 Degrees of Freedom (DoF)
lumped parameters model capable of reproducing the bearing non-stationary vibration
behaviour. As previously described by the authors [39,40], the chosen model is made
of a set of motion equations to represent the inner ring, outer ring and bearing housing
displacements and a set of equations coming from the Hertzian contact theory used to
compute the contact force of the touching surfaces. This model includes a non-stationary
degradation profile which allows us to take into account the evolution of surface defects
that affect the bearing functioning. Figure 11 shows a scheme of the proposed model, while
Figure 12 shows the structure of the simulation loop. In the presented scheme the orange
blocks represent the model input parameters, the blue blocks represent the output and the
red blocks represent the coupled variables computed during the simulation.

Figure 11. 5 DoF bearing model [39,41].

Figure 12. Simulation block diagram [39].

The proposed model can simulate a great variety of simulation scenarios characterised
by different defect shapes and degradation evolution profiles. In this particular case, a
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rectangular defect was considered on the Outer Ring whose width evolves over time with
a linear profile. This very simple scenario was chosen because the objective of the synthetic
data generation is not simply to produce bearing vibration signals similar to real ones but
it is also to generate a meaningful dataset that can test the performance of the proposed
algorithm. By choosing this simple scenario, the authors are able to generate vibration
signals whose content is known in detail, reducing the dataset uncertainty level. This
choice will ease the interpretation of the obtained results and will allow the identification
of possible algorithm problems. A complete list of all the utilised bearing parameters is
provided in Tables 2 and 3.

Table 2. Bearing parameters [39,42].

Sym Quantity Value Sym Quantity Value

ms Shaft Mass 3.2638 kg Kb Load Deflection Factor 1.89 × 1010 N/m1.5

mp Bearing Box Mass 6.638 kg ϕslip Ball Slip Angle 0.01 rad
mR Resonator Mass 1 kg nb Ball Number 9
Rs Shaft Damping 1.3768 × 103 Ns/m Dp Pitch Diameter 3.932 × 10−2 m
Rp Bearing Box Damping 2.2107 × 103 Ns/m Db Ball Diameter 7.94 × 10−3 m
RR Resonator Damping 9.4248 × 103 Ns/m c Bearing Clearance 0 m
Ks Shaft Stiffness 7.42 × 107 N/m α Contact Angle 0°
Kp Bearing Box Stiffness 1.51 × 107 N/m Fy Vertical Force 5500 N
KR Resonator Stiffness 8.8826 × 109 N/m ωs Shaft Speed 600 rpm

Table 3. Defect parameters.

Sym Quantity Value Sym Quantity Value

B Defect Width 20 × 10−4 m λ Ratio of ϕ1 to ∆ϕd 0.2
H Defect Depth 6 × 10−4 m k Order of the Defective Ball 9
B f Defect width at failure 0.0165 m tdeg Failure time [1.3–3.04] h
t1 Degradation beginning instant [1.3–1.5] h

The rotational speed and the vertical load reported in Table 2 were selected during the
model validation process [39]. The vertical load is in the order of magnitude of previous
reusable rocket engines. For example, the SSME liquid oxygen turbopump bearings were
submitted to this kind of radial loads [43]. The typical rotational speed of reusable rocket
engines are much higher, ranging from 20,000 rpm to 90,000 rpm. The selected rotational
speed for data generation, 600 rpm, is quite far from the classical nominal LPRE one, but
given that the model has not been validated yet on higher speed simulation conditions, it
was decided to first test the proposed algorithm on a lower rotational speed for which the
correct vibration generation has been ensured before. Later on, with a transfer learning
approach, the proposed methodology and model will be adapted to real rocket engine
vibration signals. Table 3 includes all the parameters used to model the bearing surface
defect. The defect is represented by a rectangular shape of width B and depth H. At the
beginning of the simulation, no defect is present and a healthy signal is obtained. At time t1
the degradation appears. The value of H is fixed, while the value of B increases over time as
shown by the plots in Figure 13. The time tdeg is the moment when B becomes wide enough
so that two bearing balls fall inside the defect simultaneously. This produces an interference
in the contact forces that cancel each other out or are amplified in an unpredictable way.
The authors estimated that this is the time at which failure occurs and used this value as
reference to asses the precision of the RUL estimation.
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Figure 13. Degradation profile—evolution of the bearing defect width over time.

3.2. Computation Set-Up

The Multi-Level MB-HMM scheme from Figure 9 needs an a priori definition of the
number of branches. In this case a MB-HMM model composed of two branches was chosen
as presented in Figure 14. The available data were split in two groups of 30 signals and each
branch was trained separately using the Baum–Welch algorithm. The transition matrices,
A1 and A2, are 4 × 4 matrices since four hidden states were selected. The HI discretization
was performed using six intervals. Thus the emission matrices, B1 and B2, are 4 × 12
matrices. Equation (22) shows the initialisation matrices A0 and B0.

A0 =


0.7 0.3 0 0
0 0.7 0.3 0
0 0 0.7 0.3
0 0 0 1

; B0 =


1/6 1/6 1/6 1/6 1/6 1/6 0 0 0 0 0 0
1/6 1/6 1/6 1/6 1/6 1/6 0 0 0 0 0 0
1/6 1/6 1/6 1/6 1/6 1/6 0 0 0 0 0 0

0 0 0 0 0 0 1/6 1/6 1/6 1/6 1/6 1/6

; (22)

The initial transition matrix A0 has the same structure as previously presented in
Equation (16). The values on the diagonal were set to 0.7 and the other to 0.3 following the
initial assumption that it is more probable to stay in the current state than transitioning.
This hypothesis is in line with the proposed left-to-right HMM structure.

A bootstrap approach was selected to conduct the algorithm training and testing. One
signal is selected from the training datasets and put aside. This signal is the testing signal.
The remaining ones are processed and used to train the Multi-Level MB-HMM model.
When the latter is ready, the testing signal is divided in segments whose length is equal
to the length of a mission. A loop was implemented to retrieve a segment, chain it to the
previous segments and compute the RUL. This approach reproduces the real-life scenario
in which the reusable LPRE performs multiple missions and at the end of each mission the
bearing SoH is verified.

The observed computation time to perform one loop is only a few minutes. Since the
proposed method is applied off-line the observed computation time is not an issue. Of
course, the RUL estimation process should be as quick as possible in order to avoid delays
in the maintenance planning. Given an usual turnaround times of days or weeks in the
case of reusable launchers, a computational time of some minutes is acceptable. The most
time-consuming step is the wavelet decomposition, which is logical since the vibration
signals are quite long. The rest of the steps concerning the HI construction and the RUL
computation are fast. In particular, the authors have observed very quick RUL estimation
times, 1 s ≤ tc,av ≤ 6 s. This time includes the MB-HMM training, the HI decoding and
the RUL estimation. From a theoretical point of view, the computational complexity of the
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training, decoding and RUL computation is directly linked to the size of matrix A and matrix
B. The Baum–Welch training algorithm as an asymptotic complexity of iter × O(N2t) and
the decoding algorithm has an asymptotic complexity of O(N2t), where iter is the number
of iterations, N is the number of states and t is the time steps. The computation of the
determinant has an asymptotic computation complexity of O(n3) where n is the matrix size.
Even though the presented asymptotic complexity is not very fast, the fact that the proposed
HMM model has a minimised size compensates for that and in the end the computation
time has an order of magnitude of a few seconds. Indeed, thanks to the reduced size of the
A and B matrices the computation speed is increased for both algorithm training and testing.
This aspect highlights the computation efficiency of the proposed algorithm, which is one
of its main strengths. The interesting aspect of the proposed approach is that a complex
degradation phenomenon could be approached with a small model. Indeed, given N = 4
and M = 12, a total of 48 parameters was estimated during the learning step, which is small
compared to AI approaches characterised by hundreds of parameters.
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Figure 14. MB-HMM model.

3.3. Results and Discussion

Following the simulation set-up presented in the previous section, 116 bearing vi-
bration signals were generated. Figure 15 shows, as an example, the vibration signal
number 10. By looking at the figure, it is possible to clearly distinguish the vibration pro-
duced during the nominal functioning of the bearing and the vibration produced during its
degraded operation. Starting from t = 1.3 h , the signal magnitude increases in a gradual
way until t = 2.78 h when its behaviour becomes random. When the magnitude becomes
unpredictable, failure is reached.
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Figure 15. Example of a generated vibration signal, t1 = 1.3 h, tdeg = 1.48 h.
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The described signal was processed with the MODWPT and the obtained sub-signals
were used to compute the family of health indicators whose plots are reported in
Figure 16a–h. The analysis of these figures reveals that the higher energy density can
be found at the lower frequencies, between 0 and 3.2 kHz. The first and second frequency
bands are the most affected by the degradation. The health indicators in Figure 16a,b show
clear signs of variation all along the bearing life. The other health indicators all show an
abrupt decrease in energy at t1 and remain constant before and after. As a consequence,
they are not good candidates for RUL estimation and prediction.
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(d) f b4: [4.68–6.25] kHz.
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(f) f b6: [7.81–9.37] kHz.
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(g) f b7: [9.37–10.93] kHz.
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(h) f b8: [10.93–12.5] kHz.

Figure 16. Relative energy health indicators computed for Signal 10 (Figure 15).

All the obtained HI underwent the failure detection step. Figures 17 and 18 show the
result of the DCS statistical test for the HIs from Figure 16a and Figure 16b, respectively.
The results concerning the other frequency bands are not reported here since no failure
could be detected. In both Figures 17 and 18 the upper plot shows the concerned health
indicator together with the detected failure. The lower plot reports the DCS statistical
indicator (orange) and the decision function (blue). As can be observed, the DCS presents
picks of different amplitude over time and the highest do not always corresponds to the
time instant when failure occurs. Anyway, the failure is properly detected, showing that
the combination of DCS statistical test described in Section 2.2.4 is capable of correctly
performing the detection step even in such difficult conditions.
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Figure 17. DCS statistical test applied to the HI from the frequency band [0–1.56] kHz.
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Figure 18. DCS statistical test applied to the HI from the frequency band [1.56–3.12] kHz.

Figure 19a,b shows the results of the HI discretization. As before, all the available
health indicator were treated but only the ones concerning the lower frequency are reported
since the other did not present interesting features. In both Figure 19a,b, the upper plot
shows the two discrete sequences, HId,1 and HId,2, and the lower plot shows the final
discrete sequence, HIC. The HId,1 indicator (blue) is the result of a quantisation of the
initial health indicator considering six intervals of equal distance. As can be noticed, the
relative energy increase is still noticeable but the failure instance is less visible. Increasing
the number of the quantisation intervals could help, but, at the same time, it would increase
the size of the HMM B matrix. The introduction of the HId,2 secondary discrete HI allows
us to construct a better final discrete sequence where the regions before and after failure
are visible. Two examples of the obtained HIC discrete sequences are presented in green in
Figure 19a,b to prove that the proposed discretization technique enhances the degradation
profile contained in the initial HI.
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Figure 19. HI discretization, Signal 10.

All the available synthetic signals were treated like Signal 10 and the obtained discrete
sequences were used to perform the MB-HMM training. Figure 20 shows some of the used
training sequences. In the figure, the different degradation speeds can be easily observed.
The models, λ1 and λ2, were obtained by applying the Baum–Welch training algorithm
and they are reported here. Equations (23) and (24) concern the fast dynamic branch:

A1, f b1 =


0.9975 0.0025 0 0

0 0.7905 0.2095 0
0 0 0.9977 0.0023
0 0 0 1

 (23)

B1, f b1 =


0 0 0.70596 0.2940 3.130 × 10−35 0 0 0 0 0 0 0
0 0 4.2728 × 10−5 0.9998 0.0002 0 0 0 0 0 0 0
0 0 1.5316 × 10−49 0.0519 0.9481 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0.2414 0.7586 0

 (24)

Equations (25) and (26) concern the slow dynamic branch:

A2, f b1 =


0.9978 0.0022 0 0

0 0.9216 0.07839 0
0 0 0.9987 0.00126
0 0 0 1

 (25)

B2, f b1 =


0 0 0.75091 0.2491 7.3028 × 10−36 0 0 0 0 0 0 0
0 0 4.2725 × 10−10 0.9986 0.0114 0 0 0 0 0 0 0
0 0 2.6067 × 10−79 0.0576 0.9423 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0.2063 0.7937 0

 (26)
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Figure 20. Training sequences: fast dynamic (red) and slow dynamic (blue).

Figure 21 and Table 4 illustrate the final results for Signal 10. Figure 21 shows the
estimated RUL (red), the real RUL (black), the error margins at +30% (cyan), −30% (brown)
and the mission duration limit (green). The estimated RUL is represented with round
markers while the other variables are reported with solid lines. This different graphical
representation is to underline the fact that the RUL is estimated at the end of each mission
and not with a real-time approach. By looking at the figure, it is possible to notice that
the RUL is predicted in an accurate way all along the bearing life. Table 4 reports the
data concerning the selection of the level (frequency band presenting the best degradation
profile) and the selection of the HMM model (fast or slow). Both the correct frequency
band, f b1, and the correct branch in the MB-HMM model, “Fast”, are selected. Moreover, it
is possible to notice how the posterior probability of the selected HMM model increases
mission after mission. This result shows that the proposed algorithm lowers the uncertainty
in the model selection step as time goes on. Indeed, the sequences retrieved after each
mission are chained, thus a longer sequence containing all the bearing history is provided
to the algorithm which can perform a better informed choice. The mean average percentage
error was computed to give an indication of the RUL estimation accuracy. In this case, it
is equal to 2.5%. This result highlights the good prediction capabilities of the proposed
MB-HMM model.
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Figure 21. RUL estimation for Signal number 10.

The proposed algorithm was tested as well with other synthetic signals. In particular,
Figure 22 shows the low frequency HICs for signals 20, 30, 90 and 110. Signal 10 is
reported as well as a reference case. Signals 20 and 30 are both characterised by a slow
degradation dynamics. In particular, signal 31 presents the slowest fast degradation among
the simulated ones. Signals 90 and 110 are characterised by slow degradation dynamics.
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Table 4. Signal 10: posterior probability of the selected HMM model for frequency bands f b1 to f b8.

Mission fb1 Dynamic fb2 to fb8

1 0.6281 Fast 0

2 0.7892 Fast 0

3 0.7885 Fast 0

4 0.8471 Fast 0

5 0.9140 Fast 0

6 0.9470 Fast 0

7 0.9678 Fast 0

8 0.9806 Fast 0
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Figure 22. Tested sequences.

Figure 23 and Table 5 report the obtained results concerning signal 20. In this case, the
RUL estimation error is higher than what is observed in Figure 21. The RUL is underesti-
mated from mission 1 to mission 9 and respects the −30% error limit until mission 7. The
computed percentage error is 21.67%.

This result can be justified by considering the HMM model from a practical point of
view. In particular, the focus should be put on the transition matrix A1, f b1. By definition
each element is the probability of passing from one state to another and its inverse is the
mean duration of the hidden state itself. The HMM model captures the average behaviour
based on the training data set which is provided. As a consequence, when the λ1 model is
used for RUL prediction, it will work perfectly for signals that are very close to the average
behaviour and it will be less accurate for signals that are far from the detected dynamic.
Based on these remarks, the results presented in Figure 23 can be explained by the fact
that the signal is characterised by a slower dynamics than the one detected in the training
dataset. As a result, the HMM underestimates the RUL. However, given a mission duration
of 0.5 h, the fact that towards the end the RUL estimation is less precise does not bother the
decision-making process. Indeed, the bearing would have been already discarded or sent
to maintenance.

Figure 24 and Table 6 report the obtained results concerning signal 30. This signal was
generated considering the slowest of the fast degradation dynamics. As a consequence,
even if the correct health indicator and HMM model are selected, the RUL estimation
respects the margins at ±30% until mission 5, so only for half of the bearing life. The
obtained percentage error is equal to 38.72%. As before, this result is motivated by the fact
that HMM models capture the average degradation dynamics and they cannot properly
decode and predict sequences that are too far from it. A possible solution to this issue
could be the definition of additional branches in the MB-HMM model. Consequently,
intermediate dynamics could be taken into account, improving the RUL estimation.
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Figure 23. RUL Estimation for signal number 20.

Table 5. Signal 20: posterior probability of the selected HMM model for frequency bands f b1 to f b8.

Mission fb1 Dynamic fb2 to fb8

1 0.6280 Fast 0

2 0.7892 Fast 0

3 0.7885 Fast 0

4 0.8471 Fast 0

5 0.9289 Fast 0

6 0.9580 Fast 0

7 0.9755 Fast 0

8 0.9858 Fast 0
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Figure 24. RUL estimation for signal number 30.

Figure 25 and Table 7 report the obtained results concerning signal 110. As for signal
10, both the frequency band and the HMM branch are correctly selected. Except for a
couple of hesitations, the proposed methodology is able to clearly recognise that the current
degradation dynamic is the slow one.

Similarly to observations for signals 30 and 20, when the degradation rate becomes
faster, the algorithm accuracy decreases. This is the case for signal 90, which is far from
the training sequences. Figure 26 and Table 8 show that the frequency band selection
is correct but that towards the bearing end-of-life, the model selection becomes critical.
As shown in this table, the fast dynamic is chosen instead of the slow one, provoking a
strong underestimation of the RUL. Again, it occurs when the RUL is close to the mission
duration limit. Since this signal falls in the region between the two training datasets it is
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not surprising that the algorithm has difficulties in selecting the correct degradation branch
model in the MB-HMM. In general, a conservative behaviour is observed: the model has
the tendency to classify a slow dynamic as “Fast” while the opposite rarely happens. This
aspect is very promising and proves that the present methodology can be considered for
later application in real rocket engine data. The percentage error is directly affected by the
algorithm hesitation and the computed values are 110% for signal 90 and 27.31% for signal
110. This aspect will be addressed first in future works since the method precision and
performance directly depends on it. The obtained percentage errors prove it clearly.

Table 6. Signal 30: posterior probability of the selected HMM model.

Mission fb1 Dynamic fb2 to fb8

1 0.6399 Fast 0

2 0.7975 Fast 0

3 0.7970 Fast 0

4 0.8229 Fast 0

5 0.8273 Fast 0

6 0.8873 Fast 0

7 0.9282 Fast 0

8 0.9550 Fast 0

9 0.9721 Fast 0

Table 7. Signal 110: posterior probability of the selected HMM model for frequency bands f b1 to f b8.

Mission fb1 Dynamic fb2 to fb8

1 0.5415 Fast 0

2 0.6903 Slow 0

3 0.9023 Slow 0

4 0.9605 Slow 0

5 0.9710 Slow 0

6 0.9530 Slow 0

7 0.9247 Slow 0

8 0.8813 Slow 0

9 0.8180 Slow 0

10 0.7311 Slow 0

11 0.6220 Slow 0

12 0.5011 Fast 0

13 0.8740 Slow 0
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Figure 25. RUL estimation for signal number 110.
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Figure 26. RUL estimation for signal number 90.

Table 8. Signal 90: posterior probability of the selected HMM model for frequency bands f b1 to f b8.

Mission fb1 Dynamic fb2 to fb8

1 0.5424 Fast 0

2 0.6900 Slow 0

3 0.9026 Slow 0

4 0.9607 Slow 0

5 0.9196 Slow 0

6 0.8750 Slow 0

7 0.8108 Slow 0

8 0.7240 Slow 0

9 0.6163 Slow 0

10 0.5042 Fast 0

11 0.6242 Fast 0

12 0.9494 Slow 0
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4. Application to Experimental Data

The methodology previously applied to the synthetic dataset is here re-proposed and
applied to some real experimental data coming from the XJTU-SY bearing dataset.

4.1. XJTU-SY Test Bench Set-Up

As described by Wang et al. [32], this dataset was provided by the Institute of Design
Science and Basic Component at Xi’an Jiaotong University (XJTU), Xi’an, China and the
Changxing Sumyoung Technology Co., Ltd. (SY), Changxing, China. A total of 15 LDK
UER204 bearings were tested under three different operating conditions reported in Table 9.

Table 9. Testing conditions—XJTU-SY dataset.

TC1 TC2 TC3

RadialLoad (kN) 12 11 10
Rotating Speed (rpm) 2100 2250 2400

The bearings were charged radially and the vibration was recorded using two ac-
celerometers of type PCB 352C33 placed on the vertical and horizontal directions. The
sampling frequency was set to Fs = 25.6 kHz, the sample duration to ds = 1.28 s and
the sampling interval to ps = 1 min. At the end of each experiment, an inspection was
conducted which revealed the faulty bearing component (Inner ring, Outer ring, Cage and
Ball). The computation setup defined for this study case is similar to the one defined for
synthetic signals. A MB-HMM model composed of two branches was chosen as previously
presented in Figure 14. The available data were split in two groups of eight signals (fast
dynamics) and five signals (slow dynamics). Each branch was trained separately using
the Baum–Welch algorithm. The transition matrices, A1 and A2, are 4 × 4 matrices since
four hidden states were selected. The HI discretization was performed using four intervals.
Thus the emission matrices, B1 and B2, are 4 × 8 matrices.

4.2. Results and Discussion

The methodology presented in Section 2 was applied to all the signals in the dataset.
The results obtained for Bearing 1–3 are presented here. Figure 27a–h shows the HIs
obtained after the application of the wavelets decomposition. By looking at the plots, it can
be observed that the lower frequency bands are again the most sensitive to the presence
of degradation. In particular, the first frequency band, [0–1.6 kHz] presents a very clear
degradation profile.

Going further, Figure 28a,b shows the discrete sequences used for the MB-HMM
training of the first frequency band. The figure contains the fast sequences (red) and the
slow sequences (blue). The available training signals presented much more variability with
respect to the previously available synthetic data. Now, the obtained discrete sequences
present very different profiles. As a result, it is more difficult for the HMM model to
learn the parameters of the A and B matrices. To achieve the same accuracy as before, a
larger dataset should be used. Anyway, even if the dataset size has a very important role,
providing high quality sequences can compensate in the case of small datasets like the
chosen one. The obtained models λ1 and λ2 are reported hereafter.

Equations (27) and (28) concern the fast dynamic branch, b = 1:

A1, f b1 =


0.9875 0.01253 0 0

0 0.9908 0.00919 0
0 0 0.9906 0.0094
0 0 0 1

 (27)
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B1, f b1 =


0.9518 0.04823 8.7285 × 10−9 9.5273 × 10−148 0 0 0 0
0.0023 0.6988 0.2989 1.1724 × 10−15 0 0 0 0

0.00117 0.0061 0.7761 0.2166 0 0 0 0
0 0 0 0 0.00238 0.0795 0.7073 0.2108

 (28)

Equations (29) and (30) concern the slow dynamic branch, b = 2:

A2, f b1 =


0.9994 0.0006 0 0

0 0.9991 0.0009 0
0 0 0.9985 0.0015
0 0 0 1

 (29)

B2, f b1 =


0.4149 0.5843 0.00078 0 0 0 0 0
0.8594 0.1406 4.5603 × 10−10 0 0 0 0 0

1.03901 × 10−44 0.2094 0.7662 0.024403 0 0 0 0
0 0 0 0 0 0.4078 0.5668 0.02539

 (30)
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Figure 27. Relative energy health indicators computed for Bearing 1–3.
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Figure 28. Training sequences.

Figure 29 and Table 10 include the RUL estimation results of Bearing 1–3. The first
thing to be noticed is that during the first three missions, the algorithm does not detect the
presence of degradation. As a result, the estimated RUL is a fixed value corresponding
to the expected duration of three missions, in this case 1.5 h. Starting from mission 4, the
degradation is properly detected and the right branch from the trained MB-HMM model
is selected. The predicted RUL respects the defined ±30% error margins. The posterior
probability reported in Table 10 oscillates between 0.64 and 0.67 instead of showing an
increasing trend like before. The computed mean percentage error is 24.4%. This aspect
can be explained considering the strong variability of the training sequences. Indeed, since
the training sequences are quite different from each other, it is more difficult for the HMM
decoding algorithm to select the appropriate model with a low degree of uncertainty. This
aspect can be resolved by increasing the training dataset size or by selecting an appropriate
family of sequences to be given as inputs. Anyway, the purpose of the present work
is to develop a complete chain from data collection to RUL estimation and to show its
capabilities with respect to synthetic and experimental data. The presented results confirm
that the proposed methodology can be effectively applied in both cases. These results are
promising and motivate the authors to continuing exploring this approach to improve
its robustness.
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Figure 29. RUL Estimation for Bearing 1–3.
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Table 10. Posterior probability of the selected HMM model.

Mission fb1 Dynamic fb2 to fb8

1 [] [] 0

2 [] [] 0

3 [] [] 0

4 0.6453 Fast 0

5 0.6675 Fast 0

6 0.6597 Fast 0

5. Conclusions

In the context of reusable rocket engines, a complete PHM methodology is proposed
to estimate the RUL of the turbopump bearing. The final objective consists in helping
the decision process concerning the maintenance planning and execution between one
mission and another. The proposed methodology consists of a data-driven off-line approach
collecting monitoring data at the end of the mission and using it to infer about the bearing
health condition. The proposed approach is composed of five main steps: data collection,
HI construction, HI classification, Multi-Level MB-HMM training and RUL estimation.

The bearing is surveyed with accelerometers which record the bearing vibration during
its functioning. After that, the obtained signals are processed using the MODWPT and used
to extract a new and effective HI. The proposed HI is the nodal energy, or relative energy,
which effectively captures different kinds of bearing degradation and allows us to isolate it
in the frequency domain without losing information from the time domain. In particular, a
recurrent degradation profile is identified and proposed to perform RUL prediction. Even
thought the relative energy has already been the object of previous work, the authors
propose a detailed interpretation of it linked to fatigue degradation phenomena.

The diagnosis and prognosis tasks are performed using HMM statistical models.
Based on a detailed analysis of the available datasets, HIs are categorised according to their
sensitivity to the presence of degradation and according to their degradation rate. Then,
two HMM models are trained and later they are used to categorise each HI and discard
the ones that are not useful. In addition to that a new type of Multi-Level Multi-Branch
physics-defined HMM model is proposed to perform RUL estimation which takes into
account different degradation rates that may affect the bearing. The parameters of the
model have been carefully defined according to a qualitative degradation profile composed
of four main stages: the Nominal stage, Crack Initiation, Crack Propagation and Failure.
The introduction of fatigue models in the definition of the HMM structure allowed us to
reduce the number of parameters to be estimated to an optimal one. At the same time the
correct representation of the hidden degradation process is ensured.

The final RUL estimation is performed as the computation of the MC absorption time.
The detailed calculation and demonstration were provided which were not available in the
literature, at least according to the authors’ knowledge.

The proposed methodology was applied to a synthetic dataset and to an experi-
mental dataset. In both cases, the results proved the capability of the algorithm to accu-
rately estimate and predict the bearing RUL. Given the strong understanding of all the
blocks composing the present methodology, all the results characterised by lower accu-
racy could be justified. Their analysis revealed the strong features and the limits of the
proposed approach.

In conclusion, an end-to-end off-line methodology was developed which can effec-
tively estimate the Bearing RUL and is compatible with the demanding field of reusable
LPREs. The obtained results are promising and further investigation will concern the
algorithm robustness improvement.
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Appendix A

As explained in [37], the MTTF is obtained starting from the Laplace transform of the
Markov chain probabilities, L(s), computed in s = 0 :

MTTF = L(0) =
N

∑
i=1

Li(O) (A1)

In Equation (A1), i is the state index, i = 1, ..., l, with l the number of transient states.
Starting from the system of equations that describes the variation of the probabilities over
time, it can be proven that:

L(s) = P0[sI − Al ]
−1 (A2)
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where Al is a l × l sub-matrix of the transition matrix A. A transient state is a state from
which it is possible to go out. It is different from an absorbent state from which it is not
possible to leave. For s = 0 Equation (A2) becomes:

MTTF = P0[−Al ]
−1 = −P0[Al ]

−1 (A3)

Equation (A3) can be rewritten taking into account the following definition of A−1
l :

[Al ]
−1 =

(−1)i+jdet(Alji)

det(Al)
(A4)

where Alji is the co-factors matrix.
Let us now consider a system with four states: 3 transient states and one absorbent

state. Al is a 3 × 3 matrix. The MTTF can be computed using Equation (A3) as follows:

MTTF = −
l

∑
j=1

[
P01 P02 P03

]
·

c1j
c2j
c3j

 (A5)

The vector
[

P01 P02 P03

]
contains the initial probability distribution and the matrix,

while

c11 c12 c13
c21 c22 c23
c31 c32 c33

 contains the co-factors of Al . Equation (A5) can be rewritten us-

ing sums:

MTTF = −
(

P01

( l

∑
j=1

c1j

)
+ P02

( l

∑
j=1

c2j

)
+ P03

( l

∑
j=1

c3j

))
= −

l

∑
i=1

P0i

( l

∑
j=1

cij

)
(A6)

So for any Al matrix :

MTTF = −
l

∑
i=1

P0i

( l

∑
j=1

cij

)
(A7)

By applying the definition in Equation (A4) it is obtained that:

MTTF = − 1
∆

l

∑
i=1

P0i

( l

∑
j=1

(−1)i+jdet(Alji)
)
= − 1

∆

l

∑
i=1

( l

∑
j=1

P0i (−1)i+jdet(Alji)
)

(A8)

where ∆ is the Al matrix determinant, det(Al). The obtained formulation can be further
rewritten until a clean and easy to use form is obtained. Let us thus focus on the product
inside the sums. Such product can be rewritten as the determinant of matrix Al where the
jth line has been replaced by the vector [0...P0i...0], where P0i is the initial probability of
state i. By developing, it is obtained:

MTTF = − 1
∆

l

∑
i=1

l

∑
j=1

∣∣∣∣∣∣∣∣∣∣∣∣

a11 ... a1i ... a1l
...

...
...

0 ... P0i ... 0
...

...
...

al1 ... ali ... all

∣∣∣∣∣∣∣∣∣∣∣∣
= − 1

∆

l

∑
j=1

l

∑
i=1

∣∣∣∣∣∣∣∣∣∣∣∣

a11 ... a1i ... a1l
...

...
...

0 ... P0i ... 0
...

...
...

al1 ... ali ... all

∣∣∣∣∣∣∣∣∣∣∣∣
(A9)
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= − 1
∆

l

∑
j=1

1 ·

∣∣∣∣∣∣∣∣∣∣∣∣

a11 ... a1i ... a1l
...

...
...

P01 ... P0i ... P0l
...

...
...

al1 ... ali ... all

∣∣∣∣∣∣∣∣∣∣∣∣
= − 1

∆

l

∑
j=1

1 · (−1)j−1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

P01 ... P0i ... P0l
a11 ... a1i ... a1l
...

...
...

aj−1,1 ... aj−1,i ... aj−1,l
aj+1,1 ... aj+1,i ... aj+1,l

...
...

...
al1 ... ali ... all

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
= (A10)

Knowing that:
(−1)+1 · (−1)j−1 = (−1)j (A11)

It is possible to write:

MTTF =
1
∆

l

∑
j=1

1 · (−1)j

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

P01 ... P0i ... P0l
a11 ... a1i ... a1l
...

...
...

aj−1,1 ... aj−1,i ... aj−1,l
aj+1,1 ... aj+1,i ... aj+1,l

...
...

...
al1 ... ali ... all

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
(A12)

Knowing that:

(−1)j = (−1)j−1+1 = (−1)j · (−1)−1 · (−1)+1 = (−1)j · (−1)+1 · (−1)+1 = (−1)j+2 (A13)

The previous formulation becomes:

MTTF =
1
∆

l

∑
j=1

1 · (−1)j+2

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

P01 ... P0i ... P0l
a11 ... a1i ... a1l
...

...
...

aj−1,1 ... aj−1,i ... aj−1,l
aj+1,1 ... aj+1,i ... aj+1,l

...
...

...
al1 ... ali ... all

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
(A14)

MTTF =
1
∆

l+1

∑
j=2

1 · (−1)j+1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

P01 ... P0i ... P0l
a11 ... a1i ... a1l
...

...
...

aj−1,1 ... aj−1,i ... aj−1,l
aj+1,1 ... aj+1,i ... aj+1,l

...
...

...
al1 ... ali ... all

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
(A15)

MTTF =
1
∆

l+1

∑
j=1

bj,1 · (−1)j+1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

P01 ... P0i ... P0l
a11 ... a1i ... a1l
...

...
...

aj−1,1 ... aj−1,i ... aj−1,l
aj+1,1 ... aj+1,i ... aj+1,l

...
...

...
al1 ... ali ... all

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
(A16)
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bj,1 =

{
0 i f j = 1
1 i f 2 ≤ j ≤ l + 1

(A17)

In conclusion, the MTTF can be easily computed:

MTTF =
1
∆

∣∣∣∣∣∣∣∣∣
0 P01 ... P0l
1 a11 ... a1l
...

...
. . .

...
1 al1 ... all

∣∣∣∣∣∣∣∣∣ (A18)
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