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Abstract: Cable-driven parallel robots (CDPRs) offer significant advantages, such as the lightweight
design, large workspace, and easy reconfiguration, making them essential for various spatial applica-
tions and extreme environments. However, despite their benefits, CDPRs face challenges, notably
the uncertainty in terms of the post-reconstruction parameters, complicating cable coordination and
impeding mechanism parameter identification. This is especially notable in CDPRs with redundant
constraints, leading to cable relaxation or breakage. To tackle this challenge, this paper introduces a
novel approach using reinforcement learning to drive redundant constrained cable-driven robots with
uncertain parameters. Kinematic and dynamic models are established and applied in simulations
and practical experiments, creating a conducive training environment for reinforcement learning.
With trained agents, the mechanism is driven across 100 randomly selected parameters, resulting
in a distinct directional distribution of the trajectories. Notably, the rope tension corresponding to
98% of the trajectory points is within the specified tension range. Experiments are carried out on a
physical cable-driven device utilizing trained intelligent agents. The results indicate that the rope
tension remained within the specified range throughout the driving process, with the end platform
successfully maneuvered in close proximity to the designated target point. The consistency between
the simulation and experimental results validates the efficacy of reinforcement learning in driving
unknown parameters in redundant constraint-driven robots. Furthermore, the method’s applica-
bility extends to mechanisms with diverse configurations of redundant constraints, broadening its
scope. Therefore, reinforcement learning emerges as a potent tool for acquiring motion data in
cable-driven mechanisms with unknown parameters and redundant constraints, effectively aiding in
the reconstruction process of such mechanisms.

Keywords: reinforcement learning; cable-driven robots; reconstruction; unknown parameters

1. Introduction

The cable-driven robot has garnered considerable attention from researchers owing to
its impressive performance [1,2], which includes a high load-to-weight ratio, potential for a
large forming space, high-speed motion, and ease of reconstruction [3–8]. Additionally, the
cable-driven method offers significant flexibility compared to other drive mechanisms. It
is widely employed in robots that require compliance and dexterity, such as multi-cable-
driven continuum robots [9,10]. Particularly noteworthy is its ease of reconfiguration,
which greatly facilitates equipment deployment in practical scenarios. In situations where
robots are unable to be configured based on preset parameters due to terrain limitations or
limited space, on-site parameter identification of the deployed equipment becomes crucial
to ensure the robot’s accurate operation [11,12]. However, when dealing with unknown
parameters, specific challenges arise in terms of parameter identification for cable-driven
robots with redundant constraints. As depicted in Figure 1, when driving a cable-driven
robot with redundant constraints and unknown parameters, ensuring the smooth and
coordinated movement of multiple cables becomes challenging. This situation may lead to
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cables becoming loose or excessively tensioned. Loose cables can alter the mechanism’s
behavior, rendering the acquired data unusable for the parameter identification of the
original mechanism. Conversely, excessive tension in the cables can potentially damage
the robot if protective measures are not in place or halt its movement if such measures
are implemented. Both scenarios impede the acquisition of effective data for parameter
identification, thereby complicating the process of discerning unknown parameters through
the kinematic or dynamic characteristics of cable-driven robots.
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Figure 1. Explanation of the difficulty in driving a cable-driven mechanism with redundant con-
straints of unknown parameters. (a) The presence of unknown parameters presents a challenge to
effectively coordinating and controlling the planar redundant constraint cable-driven mechanism,
leading to cable relaxation. (b) The planar redundant constraint cable-driven mechanism, due to
the presence of unknown parameters and the complexity of collaborative control, is susceptible to
experiencing excessive tension in the cables, which can ultimately lead to cable fracture.

One method to address the aforementioned issue involves securing the end effector
at various positions using auxiliary devices and employing precision instruments like
laser rangefinders to gauge its position [13,14]. Subsequently, the length of each rope is
iteratively adjusted until it is fully tensioned, just enough to maintain the end effector’s
position upon removal of the auxiliary device. However, the complexity of the tension
adjustment process makes this method time-consuming and labor-intensive.

Another approach entails optimizing or modifying the tension distribution of the ropes
based on sensor data in response to instances of rope relaxation or excessive tension during
the operation of the redundant constraint cable drive mechanism. The optimization of
the tension distribution in CDPRs has garnered significant attention from researchers [15].
Geng X et al. [16] proposed the method of using two-dimensional polygons to determine
a feasible set of rope forces, and then determining the optimal tension distribution based
on various optimization objectives. Lim WB et al. [17] introduced the tension hypersphere
mapping algorithm to avoid rope relaxation or excessive tension, avoid iterative calcu-
lations, and meet the requirements of real-time control design and trajectory planning.
Furthermore, an enhanced gradient projection method has been utilized to derive adjustable
tension solutions for each configuration, controllable via manipulation of the introduced
tension-level index [18]. Another contribution involves the proposal of a real-time cable
tension distribution algorithm for non-iterative two-degree-of-freedom redundancy CDPRs,
addressing the imperative for real-time control in adjusting the cable tension for highly
dynamic CDPRs [19].

While researchers have conducted numerous studies on optimizing the tension distri-
bution of CDPRs, the proposed algorithm is not suitable for the specific issues outlined in
this article. This limitation arises from the necessity when applying these methodologies of
utilizing structural matrices, Jacobian matrices, or inverse kinematics of CDPRs, thereby
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requiring prior knowledge of the CDPRs’ parameters. Consequently, these control methods
pose challenges when applied to adjusting the rope tension in CDPRs with unknown
parameters.

Notable advancements in machine learning [20] have offered a promising avenue
for addressing the challenge of the tension distribution in CDPRs with unknown param-
eters. This paper proposes the utilization of reinforcement learning to drive redundant-
constrained CDPRs with unknown parameters. This novel method circumvents the issues
of rope relaxation and excessive tension encountered during the operation of cable-driven
robots with unknown driving parameters. Considering that the driving of CDPRs aims
to collect data for parameter identification, the generated motion trajectory does not nec-
essarily need to be accurate; rather, it should ensure that the rope tension remains within
a specified range. Additionally, the generated trajectory should be distributed as evenly
as possible throughout the workspace to ensure that the acquired data comprehensively
reflect the characteristics of the mechanism, thereby enabling more accurate parameter
identification.

At present, there is relatively little research on using machine-learning methods to
study CDPRs. Xiong H et al. [21] proposed a control framework that combines robust
controllers with a series of neural networks for controlling the direction of fully constrained
cable-driven parallel robots with unknown Jacobian matrices. Piao J et al. [22] introduced
a method for indirectly estimating end-effector forces using artificial neural networks to
address the issue of inaccurate cable tension measurement, especially in CDPRs’ force
control. Nomanfar P et al. [23] proposed using reinforcement learning to control cable-
driven robots, which can avoid solving the complex dynamics of cable-driven robots. This
study used reinforcement learning to control the motion of a rope-driven robot with a
known configuration in a simulation environment. In order to solve the kinematics of
CDPRs with cable wrapped on a rigid body, Xiong H et al. [24] developed a data-driven
kinematic modeling and control strategy. This study indicates that data-driven kinematic
modeling and control strategies can effectively control the CDPRs with cables wrapped
around rigid bodies. Xu G et al. [25] developed a data-driven dynamic modeling strategy for
a planar fully constrained rope driven robot that allows collision. This data-driven dynamic
modeling strategy can simultaneously solve collision and optimal tension distribution
problems. Zhang Z et al. [26] proposed using GNN to solve the forward kinematics (FK)
problem of CDPRs. This study indicates that the proposed CafkNet can learn the internal
topology information of CDPRs and act as an FK solver to accurately solve FK problems.
A distinguishing feature of the present study when compared with prior research lies in
the dynamic nature of the parameters under investigation. Existing research commonly
addresses invariant parameters, whereas this study focuses on parameters that are both
unknown and variable. Specifically, following each reconstruction, the parameters of the
cable-driven robot are uncertain and distinct. Consequently, control methods derived
through learning and training for a specific configuration are inapplicable. On the contrary,
the agents trained through reinforcement learning in this paper can effectively drive any
redundant-constrained CDPRs with unknown parameters, thus better meeting the real-time
requirements of on-site operations.

The structure of this paper is organized as follows: Section 2 establishes the kinematic
and dynamic models of the studied mechanism. Section 3.1 elaborates on the environmental
setup for reinforcement learning utilizing the established dynamic model; Section 3.2
provides a concise introduction to the reinforcement learning Deep Deterministic Policy
Gradient (DDPG) algorithm; and Section 3.3 discusses the methodologies for training
and employing reinforcement learning agents. Section 4 presents the parameters for
the computation and simulation, demonstrating the outcomes of the simulations and
experiments. Section 5 examines the efficacy of extending the proposed method to various
mechanisms. Finally, Section 6 provides the conclusion.
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2. Kinematic and Dynamic Models

The subject of the investigation in this paper is a cable-driven parallel robot featuring
redundant constraints, as depicted by way of an exemplar mechanism in Figure 1. Firstly,
this paper establishes the kinematic and dynamic models of a rope-driven robot to construct
a training environment for reinforcement learning.

In Figure 2, {W} represents the frame coordinate system, while {O} denotes the coordi-
nate system fixed on the moving platform. The pose of the moving platform is described
by the orientation of {O} relative to {W}, represented as [p, θ], where p signifies the position
vector and θ denotes the angle vector. The attachment points between the mobile platform
and the ropes are labeled as B1, B2, . . ., B8, while the winding points between the ropes and
the winches are denoted as A1, A2, . . ., A8. In the coordinate system {O}, the coordinates of
Bi are denoted as bi, where i ranges from 1 to 8. Similarly, in the coordinate system {W}, the
coordinates of Ai are represented as ai, where i ranges from 1 to 8. The length of each rope
is represented by the vector li, where i ranges from 1 to 8. The vector geometric relationship
between the mobile platform and the rack is described as follows:

ai = p + R × bi + li, i = 1, 2, . . . , 8 (1)
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Figure 2. Schematic diagram of the redundantly constrained cable-driven parallel robot studied in
this paper.

Within this context, R is constructed from the rotation matrix calculated from θ. Deter-
mining ai given [p, θ] represents the inverse kinematics problem of the mechanism, whereas
obtaining [p, θ] given ai constitutes the forward kinematics problem of the mechanism.

In the context of the text, the rope is conceptualized as a parallel spring-damping
system capable of exerting unidirectional tension. Here, the deformation coefficient is
denoted as k, and the elongation amount and rate of change of each rope are, respectively,
represented as ei, where i ranges from 1 to 8. The magnitude of the rope tension is defined
as follows:

fi =

{
kei + c

.
ei if ei > 0

0 if ei < 0
i = 1, 2, . . . , 8 (2)
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Here, c denotes the internal damping within the rope. When the elongation amount is
less than 0, the tensile force is 0. The elongation of the rope can be computed based on the
length of the driving rope and the position of the moving platform:

ei = di − (∥l0i − li∥) +
f0i
k

(3)

Here, di represents the length of the driving rope, ||li|| denotes the rope length of
the current pose calculated from Equation (1), ||l0i|| represents the rope length of the
initial pose, and f 0i, where i ranges from 1 to 8, signifies the pre-tension of the rope in the
initial pose.

The dynamic model of the mobile platform can be formulated using the Newton–Euler
equation: {

Fw = M
..
p + c

.
p

To = Io
..
θo +

.
θo × Io

.
θo

(4)

Here, Io denotes the inertial tensor of the mobile platform; Fw represents the combined
force of the rope tension and external load in the coordinate system {W}, and M signifies
the mass of the mobile platform. Additionally, To denotes the tension of the rope and the
torque of the external load on the center of mass of the mobile platform in the coordinate
system {O}, and

.
θo and

..
θo denote the angular velocity vector and angular acceleration

vector of the mobile platform in the coordinate system {O}. The angular acceleration of the
mobile platform in the coordinate system {W} is denoted as

..
θw, and its relationship with

..
θo

is as follows. ..
θw = R

..
θo (5)

The dynamic model of the mechanism encompasses both a rope dynamic model and
a mobile platform dynamic model. The model neglects the mass, lateral vibration, and
mutual interference of the rope. In this context, the length of the driving rope serves as the
system input, with no consideration of the dynamics of the winch. The simulation results
indicate that selecting the length of the driving rope instead of the motor torque is more
conducive to the convergence of the training process for the reinforcement learning agent.

3. Methods
3.1. Environment Settings

In reinforcement learning, the environment encompasses the entities with which the
agent interacts. It receives actions from the intelligent agent, produces corresponding
dynamic responses, and provides feedback to the agent in the form of observation values.
Additionally, the environment generates a reward signal to assess the quality of the agent’s
actions. Through repeated interactions, the agent learns to make appropriate decisions
based on the observed values, refining its behavior-generation strategy to maximize the
long-term cumulative rewards [27]. The environment in this context comprises the dynamic
model of the system and the interface for interaction with the intelligent agent. These inter-
faces are responsible for receiving the agent’s actions, providing feedback on observations,
rewards, and signals for interaction termination.

In this study, the control objective is to generate a suitable sequence of driving rope
lengths, ensuring that the motion posture of the mobile platform is evenly distributed
within the given space and that the rope tension remains within specified limits during
motion. Based on this control task, it is evident that the actions generated by the agent
correspond to the driving rope lengths. The action values can be discrete or continuous.
However, for a mechanism with 8 ropes, discretizing the action space of the 8-dimensional
vector leads to numerous combinations, necessitating significant computational effort in
selecting the optimal action for the agent. Therefore, in practical operation, actions of
continuous variable types are preferred to avoid the combinatorial explosion.
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The reward function governs the spatial distribution of the mobile platform’s motion
posture driven by the intelligent agent. In the article, the design concept of the reward
function is articulated as follows: with the target position as the reference, the closer the
mobile platform approaches the target position, the higher the reward bestowed upon the
agent. Consequently, the agent endeavors to propel the trajectory of the mobile platform
as closely as possible along the line connecting the initial position and the target position.
Moreover, when confronted with multiple target positions, the trajectory of the mobile
platform is steered to distribute near a uniformly planned straight line in space.

Furthermore, the environment encourages the rope tension of the mobile platforms
to converge toward the specified value within the predetermined range during motion,
mitigating tendencies of tension fluctuations toward the boundary of the range. Should
the rope tension surpass the designated range, the environment levies a penalty on the
intelligent agent. The expression of the reward function is delineated as follows:

re = k1
1∥∥Pos − Postarget

∥∥+ δ
−

(
ek2|x−xtarget| + ek3|y−ytarget| + ek4|z−ztarget|

)
− k5e−∥F−Ftarget∥ (6)

where re represents the reward function value, and k1, k2, k3, k4, k5 are the coefficients of
the reward function. Pos denotes the end-effector pose, Postarget represents the target pose,
(x, y, z) are the end-effector position coordinates, (xtarget, ytarget, ztarget) are the target position
coordinates, δ is a small numerical value, F denotes the cable tension, and Ftarget represents
the target tension.

The observations acquired by the intelligent agent from the environment should
encompass adequate information to facilitate the adoption of an optimal strategy. While
greater informational sufficiency in terms of the observation values renders it easier for
the intelligent agent to make optimal judgments, it concurrently complicates the actual
measurement process. In this article, the posture of the mobile platform and the tension
of the rope serve as observation values, obtainable through cameras and tension sensors.
However, a single-step observation value is insufficient to fully map the institutional
configuration A. Consequently, the agent cannot perform optimal actions based solely on
single-step observations. Nevertheless, through multiple rounds of interaction, the agent
can implicitly accumulate adequate information to make optimal decisions. Rewrite the
differential Equation (4) as Ft, pt, θt, A. The algebraic form of the implicit functions for
these variables:

D(Ft, pt, θt, A) = 0 (7)

Similarly, rewrite Equations (2) and (3) as implicit functions as follows:

L
(
Ft, pt, θt, pt+1, θt+1, A

)
(8)

In the above formula, t represents the current time step, and t+1 represents the next
time step, where Ft, pt and θt, respectively, denote the cable tension, end-effector position,
and end-effector orientation at the current time step. Ft+1, pt+1, and θt+1, respectively,
represent the cable tension, end-effector position, and end-effector orientation at the next
time step.

Each observation can be complemented by 6 valid equations derived from Equation
(7). The transition from the current observation to the subsequent one can be governed by
Equation (8), offering 8 valid equations. Ideally, through interacting with the environment
for more than two rounds, the intelligent agent can amass sufficient information to refine
its strategy.

In accordance with the control task requirements, a constraint mandates that the rope
tension remains within the specified range. Furthermore, a potential constraint dictates
that the posture of the mobile platform should also fall within the designated range.
Correspondingly, the termination condition of the environment is set to the detection of the
rope tension or posture surpassing the specified range.
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3.2. Deep Deterministic Policy Gradient

To address the control problem with a continuous action space, the Deep Deterministic
Policy Gradient (DDPG) algorithm presents itself as a suitable choice [28,29]. The DDPG
adopts an actor–critic architecture, comprising two actor networks (actor network and
target actor network) and two critic networks (critic network and target critic network).
The actor network models the behavioral strategies of intelligent agents, denoted as µ,
parameterized by θµ:

at = µ
(
st
∣∣θµ

)
(9)

where at represents the action values output by the actor network, and st denotes the
current state. The selection of a behavior based on the current state in the fitting of a critic
network, denoted as qt, is determined by θQ:

qt = Q
(
st, at

∣∣θQ
)

(10)

The target actor network, denoted as µ’, and the target critic network, denoted as
Q’, share identical structures with their respective actor and critic counterparts. They are
parameterized by θµ

′ and θQ
′ to mitigate the training variance. Throughout the training

process, the agent performs actions based on the deterministic policy network, denoted
as µ(s). The DDPG introduces random noise to this behavior to enhance the agent’s
exploration ability:

at = µ
(
st
∣∣θµ

)
+ Noise (11)

Execute action at to obtain reward rt and next state st+1, and store (st, at, rt, st+1) in
the experience replay buffer for subsequent updates of the critic and actor. The quality of
strategy µ(s), denoted as J, can be evaluated by the expected value of the initial state:

J =
∫

ρ(s)Vµ(s)ds (12)

where Vµ(s) denotes the expectation of the rewards obtainable by taking action according
to the current policy µ(s) given the state s, and ρ(s) is the probability density function of
the state. Substituting Equations (9) and (10) into Equation (12) results in:

J =
∫

ρ(s)Q
(
st, µ

(
st
∣∣θµ

)∣∣θQ
)
ds (13)

According to the chain rule of differentiation, taking the gradient of Equation (13)
allows for the determination of the update direction of the actor network:

∇J
(
θµ

)
= Eµ

[
∇Q

(
aµ

)
∇µ

(
θµ

)]
(14)

∇J(θµ) ≈
1
N∑∇Q

(
aµ

)
∇µ

(
θµ

)
(15)

where N denotes the size of the mini-batch randomly sampled from the experience replay
buffer, containing experiences (st, at, rt, st+1). In Equation (14), Eµ represents the expected
cumulative return obtained by intelligent agents following strategies µ. This expected
cumulative return indicates the effectiveness of the strategy. Specifically, Equation (14)
represents the gradient of the cumulative expected return with respect to the parameters
θ. However, due to the difficulty of calculating the probability distribution of µ and Q in
this formula, it is also challenging to directly compute their corresponding gradient with
respect to θ. In practical applications, the average gradient of µ and Q relative to θ is often
used as a substitute for the expected value. Consequently, the right side of Equation (14) is
approximately equal to the right side of Equation (15). The updating of the critic network
is accomplished by minimizing the loss function L:

L =
1
N∑

[(
y − Q

(
st, at

∣∣θQ
))2

]
(16)
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Here, y represents the value function objective, which is the sum of the current reward
value and the discounted long-term reward. The discount factor is denoted as γ, and y is
expressed as:

y = r + γQ′
(

si+1, µ′
(

si+1

∣∣∣θ′µ)∣∣∣θ′Q) (17)

where γ is the discount factor. To mitigate the training variance, the target actor and target
critic are updated smoothly at each time step using the actor and critic:

θ′µ = τθµ + (1 − τ)θ′µ (18)

θ′Q = τθQ + (1 − τ)θ′Q (19)

where τ is the update coefficient. This dictates the appropriate update intensity for θ′µ and
θ′Q. Another approach to mitigate the training variance is to update θ′µ and θ′Q periodically
by assigning them the values of θµ and θQ at specified intervals.

The Algorithm 1 of DDPG is as follows.

Algorithm 1 Deep Deterministic Policy Gradient (DDPG)

1. Initialize actor network µ and critic network Q with random weights θµ and θQ
2. Initialize target networks µ′ and Q′ with weights θµ

′ = θµ and θQ
′ = θQ

3. Initialize replay buffer R
4. for episode = 1 to M do
5. Initialize a random process N for action exploration
6. Receive initial state s1
7. for t = 1 to T do
8. Select action
9. at = µ

(
st
∣∣θµ

)
+ Noise

10.
Execute action at and observe reward rt and new state st+1, Store transition (st, at, rt, st+1) in
R

11. Sample a random minibatch of N transitions (si, ai, ri, si+1) from R
12. Set
13. yi = ri + γQ′(si+1, µ′(si+1|θ′µ)|θ′Q)
14. Update critic by minimizing the loss:
15. L = (1/N)∑ [(y − Q(st, at

∣∣θQ ))
2
]

16. Update the actor policy using the sampled policy gradient:
17. ∇J

(
θµ

)
≈ (1/N)∑∇Q

(
aµ

)
∇µ

(
θµ

)
18. Update the target networks:
19. θ‘

µ = τθµ + (1 − τ)θ‘
µ

20. θ′Q = τθQ + (1 − τ)θ′Q
21. end for
22. end for
23. return actor network µ and critic network Q

3.3. Training and Driving

As depicted in Figure 3, throughout the training phase, the agent lacks knowledge of
the dynamic model governing the rope mechanism. Through observation of the current
pose and rope tension of the moving platform, as well as the subsequent pose and rope
tension after executing the prescribed driving rope length, the agent acquires insights into
the mechanism’s dynamic model. Leveraging rewards and termination signals, the intelli-
gent agent iteratively refines its behavioral strategy, aiming to maximize the accumulated
returns obtained. The ultimate objective of training is to cultivate an intelligent agent
capable of effectively driving the cable-driven mechanism to any unknown coordinate Ai.
Effective driving entails ensuring that the movement posture of the mobile platform is
as evenly distributed as possible within the given space and that the tension of the rope
remains within the specified range during the movement process.
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To alleviate the training complexity and enhance the convergence speed, a practical
approach involves maintaining the constant value of Ai while reducing the constraints.
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The direct notion to enable the intelligent agent to effectively maneuver the mechanism
of Ai at any unknown coordinate is to randomly generate Ai in each training round,
thereby eliminating the agent’s reliance on a specific Ai value for mechanism control.
However, empirical evidence suggests that employing the method of randomly generating
Ai can significantly impede the training convergence. Conversely, keeping Ai constant
considerably streamlines the training process. Nonetheless, this approach engenders a
challenge: the intelligent agent remains effective solely for rope mechanisms within a
certain range rather than arbitrary configurations, specifically the neighborhood of Ai that
remains unaltered during training. This issue is easily addressed, and we will elucidate
how to extend this range to any interval in future studies.

Strict constraints make it easier for agents to terminate training, resulting in the
sparsity of effective rewards, which leads to slow learning rates for agents. During actual
training, constraints on the upper and lower boundaries of the force and the pose of the
moving platform are simplified to solely encompass the maximum load-bearing capacity.
In this way, the intelligent agent can more easily manipulate the mobile platform and learn
to optimize the tension distribution and attitude space distribution through the reward
function. Due to the absence of mandatory lower force boundaries and the mechanism’s
nonlinear dynamic characteristics, the strategy network is predisposed to converge toward
a local optimal solution. This manifests during the mechanism’s operation by the intelligent
agent: certain ropes may slacken, denoted by tension changes to 0. To rectify the rope
slackness, a proportional compensator is incorporated during the driving process. When
the rope tension falls below the specified value, the compensator outputs a driving rope
length proportional to the disparity between the given tension and the detected tension.
Conversely, when the rope tension surpasses the specified value, the compensator’s output
is set to 0.

Moreover, aside from integrating a compensator into the driving process, another
significant disparity between the training and driving processes lies in the differing termi-
nation conditions. During the training process, the termination condition is simplified as
tension exceeding the given maximum value to reduce the complexity of the training. In the
final driving process, comprehensive constraints should be used as termination conditions,
including the rope tension exceeding the specified range or the platform posture exceeding
the specified range.

4. Results

Tables 1 and 2 present the dynamic model of the cable-driven mechanism and the
parameters utilized during the training process of the intelligent agent, respectively.

In Table 1, ‘m’ represents the mass of the moving platform, ‘I’ denotes the inertia tensor
of the moving platform, ‘k’ signifies the elastic coefficient of the rope, and ‘c’ stands for
the damping coefficient. During training, the tangent points of the rope and winch are
positioned near the four top corners of the rack. The rack takes the form of a rectangle,
with ‘la’, ‘wa’, and ‘ha’ denoting the length, width, and height of the rectangle, respectively.
∆h represents the difference between the height of the tangent point between the four
upper ropes and the winch and the height of the tangent point between the lower ropes
and the winch. ‘lb’ and ‘wb’ represent the length and width of the rectangle where the
connection point between the lower rope and the moving platform is situated. ‘db’ refers
to the z-coordinate size of the connection point between the lower rope and the moving
platform in the moving platform coordinate system, while ‘hb’ denotes the z-coordinate size
of the connection point between the upper rope and the moving platform, with its x and
y coordinates set to 0. The ‘Ai’ of the institution remains unchanged during training, but
the ‘Ai’ of the institution driven by the trained agent is randomly generated. The random
generation method entails randomly selecting coordinates in the cube space centered on the
‘Ai’ used during training, with the size of the cube’s edge taken as ‘drnd’. ‘Pos0’ represents
the initial pose of the moving platform, while ‘Posb’ specifies the constraint space for the
pose of the moving platform, with the boundaries of each dimension in the constraint space
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given by ‘Pos0i ± Posbi’, where ‘i = 1,2, . . .,6’. ‘Fmin’ and ‘Fmax’ denote the minimum and
maximum values of the tension of the rope to be ensured during the final driving process.

Table 1. Parameters for the dynamic model of the cable-driven mechanism.

Parameters Value

m (kg) 6
I (kg·m) [4.8156215 0 0;0 4.8088715 0; 0 0 0.0182061]
k (N/m) 104

c (N·s/m) 103

[la, wa, ha, ∆h] (m) [2,2,1.5,0.05]
[lb, wb, db, hb] (m) [0.3,0.2,0.01,1.8]

drnd (m) 0.5
Pos0 (m, rad) [0 0 0.75 0 0 0]
Posb (m, rad) [0.8,0.8,0.8,pi/3,pi/3,pi/3]

[Fmin, Fmax](N) [10,150]

Table 2. Parameters for training agents.

Parameters Value

CriticLearnRate 10−3

ActorLearnRate 10−3

Action(m)
Ts(s)

[−0.003, 0.003]
0.025

Tf(s) 5
MiniBatchSize 256
BufferLength 106

NoiseVariance 0.3
NoiseVarianceDelayRate 10−6

DiscountFactor 1
TargetSmoothFactor 10−3

Table 2 displays the parameter values associated with the training agents. ‘Action’
refers to the length of the driving rope output by each agent, ranging from −0.003 m to
0.003 m. ‘Ts’ represents the sampling time of the intelligent agent in the environment, while
‘Tf’ denotes the runtime of the simulation, which also serves as the maximum duration
of each episode. The maximum number of time steps per episode is determined by ‘Ts’
and ‘Tf’. The range of the running trajectory of the moving platform is determined by the
maximum number of time steps and the range of actions.

The Postarget of the reward function is set to four different coordinates, namely (0.8,
0, 0.75), (0, 0.8, 0.75), (0.4, -0.4, 0.75), and (−0.4, −0.4, 0.75). Four agents are trained with
different driving directions for these four different Postarget. The value of Ftarget in the
reward function is 20, and the values of k1, k2, k3, k4 and k5 are 100, 20, 20, 20, 20 and 0.1,
respectively.

The cumulative rewards obtained by the intelligent agent throughout the training
process are illustrated in Figure 5. The training process terminates after 800 episodes.
Using a CPU model i7-8700k with six threads running in parallel, the training time is
approximately 30 min, demonstrating a satisfactory training speed. In this article, the
simulation and testing of the algorithm were carried out using TensorFlow-2.8.0. The
DDPG intelligent agent was implemented utilizing the TF-Agents library. Ultimately,
the agents were exported to a C# environment to enable motion control of a physical
cable-driven parallel robot within the C# framework.
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Figure 5. Training process for the agent. Each episode depicts one driving process of the mechanism
using the agent. The cumulative reward obtained during the driving process serves as the reward
value for that episode.

After terminating the training, an agent is employed to conduct driving tests on
randomly generated Ai mechanisms to assess the agent’s generalization capability. The
target point coordinates for the driving are (0, 0.8, 0.75). Figure 6 depicts the pose and
rope tension of the mobile platform during the driving process. Figure 6a–c represent
results without the tension compensator driving, while Figure 6d–f depict results with
the tension compensator driving added. It is evident that regardless of the presence of a
compensator, the agent ensures the movement of the platform toward the target point with
minimal turning angles. Upon adding a compensator, the tension, initially below the set
minimum value, increases to near the set minimum value, ensuring all the ropes in the
drive are tensioned. Furthermore, there are observable changes in the mobile platform’s
pose before and after adding the compensator. However, multiple driving tests indicate
that the addition of a compensator does not lead to significant changes in the pose, thereby
maintaining the pose constraints.

Figure 7 presents the results of multiple drives for several mechanisms with randomly
selected parameters. For 100 randomly configured mechanisms, 4 trained intelligent agents
were employed for the driving. In Figure 7a, the spatial distribution of the driving trajecto-
ries is depicted, illustrating the evident directionality of the driving trajectories generated by
each agent for different unknown mechanisms, which facilitates the generation of uniformly
distributed trajectories in space. The stronger the directional tendency of the trajectories
generated by the agents, the better the assurance of a uniform spatial distribution of the
trajectories. This can be achieved by setting relatively uniform target points. Conversely,
if an agent’s driving trajectories lack obvious directionality, the trajectories generated by
different agents may cluster in a corner of space, rendering the acquired data unable to
fully reflect the characteristics of the mechanisms, thereby impeding accurate parameter
identification.

Figure 7b illustrates the statistical distribution of 100 driving trajectory points. In the
simulation setup, the maximum data sampling limit for a single drive is set to 200. The
actual number of valid points obtained depends on when the intelligent agent violates
the constraint conditions during the mechanism’s operation. Specifically, if the tension
and terminal platform of the mechanism driven by the intelligent agent remain within
the specified range throughout the entire motion process, 200 data points can be collected.
If the constraint conditions are violated at the beginning of the driving phase, leading
to premature termination, only a small amount of data will be collected. In the 100 tests
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conducted, only 2 trajectory data points were below 150. According to the results, the
number of effective data points accounts for 98% of the total planned data points. The
results suggest that utilizing trained intelligent agents to operate a rope mechanism with
randomly selected parameters can yield ample motion data.
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Figure 6. Simulation results of driving cable-driven robots with unknown parameters using trained
agents. (a) Variation in the end-effector position during the driving process. (b) Variation in the
end-effector orientation during the driving process. (c) Variation in the cable tensions during the
driving process. (d) Variation in the end-effector position during the driving process with the
tension compensator. (e) Variation in the end-effector orientation during the driving process with the
tension compensator. (f) Variation in the cable tensions during the driving process with the tension
compensator.
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Figure 7. Results of driving a cable-driven robot with 100 unknown parameters using 4 trained
agents. (a) Spatial distribution of the mechanism’s trajectory during the driving process. (b) Statistical
results of the effective sampling points during the driving process. (c) Variation of the end-effector
orientation during the driving process.
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Figure 7c delineates the angular distribution of the mobile platform during testing. It
can be observed that α and β fall within the range of −0.2 to 0.2 radians, while γ ranges
from −0.5 to 0.5 radians. The minimal angular rotation of the mobile platform during
operation does not induce interference among the ropes, thereby affirming the validity of
disregarding the assumption of rope interference in the mechanism’s dynamic modeling.

The experimental setup employed in this study comprises an eight-rope six-degree-
of-freedom redundant constrained rope driving mechanism, as depicted in Figure 8. The
driving elements of this mechanism consist of 86-step motors and rope pulley systems. The
end moving platform is constructed with a rectangular plate affixed to a perpendicular
rod. The tension sensors are connected in series between the rope and the end moving
platform. Data acquisition is facilitated through a data acquisition card, with tension
readings from the eight ropes transmitted to the host computer via the RS485 bus. To
mitigate the impact of the sensor weight, conduct a zero-tension program at the origin
position of the end platform before initiating each operation of the rope mechanism. The
end platform’s pose is determined through a monocular vision system, which operates on
the principle of acquiring the external parameters of the camera relative to the target. A
detailed methodology regarding the construction and operation of the monocular vision
system is provided in the Supplementary Materials. The monocular vision system used in
this study consists of an industrial camera fixed on the frame and a calibration disk fixed
on the end platform. Sampling occurs at a rate of 30 frames per second, enabling accurate
and real-time pose estimation.
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Figure 8. The cable-driven parallel robot used in the experiment. (a) The cable-driven parallel
robot system. (b) The tension sensor used for measuring the cable tensions. (c) The winch of the
cable-driven robot. (d) The monocular camera fixed on the frame.

Figure 9 presents the experimental outcomes of driving the trained agent within a
physical system. By selecting target points (0.8, 0, 0.75) and (0, 0.8, 0.75) to navigate the
rope device, Figure 9a,b exhibit the actual driving results. Evidently, the end platform
is successfully propelled toward the vicinity of the target point along a coarse trajectory.
Despite the modest motion accuracy of the mechanism, this outcome is deemed satisfactory
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due to the discernible directional trajectory, which facilitates the acquisition of ample
effective sampling data for the subsequent mechanism parameter calibration.
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Figure 9. Results of driving the cable-driven mechanism using trained agents. (a) Results of driving
the cable-driven mechanism toward the target point (0.8, 0, 0.75). (b) Results of driving the cable-
driven mechanism toward the target point (0, 0.8, 0.75). (c) Variation of the cable tensions during the
driving process toward the target point (0.8, 0, 0.75). (d) Variation of the cable tensions during the
driving process toward the target point (0, 0.8, 0.75).

Figure 9c,d depict the measured tension values of the rope along the trajectory. Notably,
the rope tension remains below 110 N throughout the entire movement process, falling
below the prescribed threshold of 150 N. Thanks to the tension compensator introduced in
Section 3, the minimum tension of each rope remains around 10 N, effectively preventing
rope relaxation. The initial tension of the rope is established by the pre-tension force
applied to the end platform at the origin. From Figure 9c,d, it can be observed that the
initial tension and pre-tension of the two driving processes are not identical, indicating
the robustness of the trained intelligent agent against minor variations in the pre-tension
within the mechanism.

The experimental results indicate that employing reinforcement learning to drive
CDPRs with unknown parameters effectively facilitates the collection of motion data
essential for subsequent parameter identification.

5. Discussion

The simulations and experiments conducted above have configured parameters Ai
within specified ranges. When the range of Ai values expands, the efficacy of the obtained
agent’s driving capabilities diminishes, potentially rendering it ineffective. This article
presents an extension of the method used to accommodate mechanisms with arbitrarily



Machines 2024, 12, 372 16 of 20

configured parameters Ai in space. Figure 10a illustrates the configuration of the mech-
anism in both the simulation and experiment settings mentioned previously. The light
blue cube symbolizes the random value space of Ai in the driving tests. In Figure 10c,
the trajectory during the driving test of agent1 trained with target position values (0.8, 0,
0.75) is depicted. The mechanism configuration in Figure 10b is obtained by rotating the
configuration shown in Figure 10a around the z-axis by −45◦. Similarly, the target pose is
obtained by rotating the target pose by 45◦ around the z-axis. Agent1′ is then trained using
the mechanism configuration shown in Figure 10b. Subsequently, agent1′ is employed to
drive the mechanism with randomly selected values of Ai within the red cube, resulting in
the trajectory distribution depicted in Figure 10d.
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Figure 10. Results of driving the mechanism with rotated parameters using reinforcement learning.
(a) Range of parameter values before rotation. The blue area represents the spatial range of the
randomly selected mechanism coordinates. (b) Range of parameter values after rotation. The red
area represents the spatial range of the randomly selected mechanism coordinates. (c) Randomly
select 100 sets of parameters from the blue area in (a), and employ reinforcement learning to drive the
mechanisms corresponding to these parameters, resulting in a trajectory distribution. (d) Randomly
select 100 sets of parameters from the red area in (b), and employ reinforcement learning to drive the
mechanisms corresponding to these parameters, resulting in a trajectory distribution.

A comparison between Figure 10c,d reveals a strikingly similar trajectory distribution,
albeit with spatial rotation. This aligns with the intuitive expectation that irrespective of
transformations in the mechanism’s coordinate system relative to the world coordinate sys-
tem, as long as the intelligent agent can perceive changes in the pose and rope tension of the
end platform relative to the mechanism’s coordinate system, effective driving is achievable.
However, the driving trajectory undergoes similar transformations to the mechanism’s
coordinate system. Though agent1 may struggle to drive the mechanism configured by
Ai in the red cube space, it can still be driven through subsequent transformations. For
instance, for the mechanism depicted in Figure 10b, rotating the end platform pose coor-
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dinates around the z-axis by 45◦ and transferring these rotated coordinates and the rope
tension to the intelligent agent trained in Figure 10a can yield an effective driving trajectory.
Finally, rotating the driving trajectory around the z-axis by −45◦ produces the trajectory
of the mechanism driven by the agent in Figure 10b. It is essential to note that while the
transformation of the mechanism in Figure 10b relative to Figure 10a is understood, in
reality, the coordinate relationship between the mechanism and Figure 10a remains un-
known. This challenge can be addressed by employing a finite number of transformations
to rotate Figure 10a and cover the entire space. Simulation experiments demonstrate that
for a 2 m × 2 m × 2 m rack mechanism, each agent can effectively drive the mechanism
with Ai values within a 1 m × 1 m × 1 m configuration cube. This indicates that only a
limited number of transformations are required to fully encompass the configuration space
of interest. Various transformations can be attempted to practically drive the mechanism.
Given that these transformations span the entire space, effective driving operations cor-
responding to each transformation can be identified to drive and sample any mechanism
with unknown parameters.

An alternative approach to extending the proposed method to mechanisms with
arbitrary parameters involves discretizing the space into effective red cube subspaces, as
illustrated in Figure 10b. A set of intelligent agents can then be trained for each scenario
using the method described in this article. Subsequently, different intelligent agents can be
tested to drive the mechanism in practice.

To verify the universality of the method for redundantly constrained cable-driven
mechanisms, simulations were conducted on the spatial eight-rope mechanism and the
planar four-rope mechanism illustrated in Figure 11. As can be seen from Figure 11b,d,
the driving trajectory exhibits clear directionality and both generate sufficient effective
motion data. This confirms the method’s applicability to other redundantly constrained
cable-driven mechanisms.

Machines 2024, 12, x FOR PEER REVIEW 19 of 21 
 

 

 
Figure 11. Results of driving different cable-driven mechanisms using reinforcement learning. (a) 
Another type of 8-cable, 6-DOF cable-driven parallel robot. (b) Trajectory distribution of the robot 
in (a) driven by reinforcement learning. (c) Planar 4-cable, 3-DOF cable-driven parallel robot. (d) 
Trajectory distribution of the robot in (c) driven by reinforcement learning. 

In fact, attempts were made to apply the method to under-constrained cable-driven 
parallel robots; however, the results indicated challenges in addressing the rope relaxation 
issues during driving through simple compensatory measures. This forms part of our 
future research plans, aiming to leverage reinforcement learning for effectively driving 
under-constrained cable-driven parallel robots with unknown parameters. 

6. Conclusions 
This paper proposes employing reinforcement learning to drive redundant 

constrained cable-driven robots with unknown parameters. A dynamic model of the 
cable-driven robot is established, and this model is utilized to construct an environment 
for interaction with the reinforcement learning agent. A method is adopted during 
training to reduce the constraints and increase the proportional compensators during 
driving, thereby reducing the training difficulty and improving the convergence speed. 
Using the trained reinforcement learning agent, the cable-driven mechanisms 
corresponding to 100 randomly generated parameter sets are driven, resulting in the 
simulated trajectories demonstrating a distinct directional spatial distribution. The 
driving results show that the rope tension corresponding to 98% of the trajectory points is 
within the specified tension range. Driving experiments conducted on a physical cable-
driven setup demonstrate that the rope tension remains within the specified range 
throughout the driving process, successfully maneuvering the end platform near the 
designated target point. The simulation and experimental results indicate that this method 
effectively drives redundant constrained cable-driven robots with unknown parameters 
to produce directed trajectory distributions and ample sampled data, validating the 
proposed approach. The application of this method extends from mechanisms with 
parameters randomly selected within a given region to those with parameters arbitrarily 
selected, and from specialized configurations of cable-driven robots to various 

Figure 11. Results of driving different cable-driven mechanisms using reinforcement learning.
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(d) Trajectory distribution of the robot in (c) driven by reinforcement learning.
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In fact, attempts were made to apply the method to under-constrained cable-driven
parallel robots; however, the results indicated challenges in addressing the rope relaxation
issues during driving through simple compensatory measures. This forms part of our
future research plans, aiming to leverage reinforcement learning for effectively driving
under-constrained cable-driven parallel robots with unknown parameters.

6. Conclusions

This paper proposes employing reinforcement learning to drive redundant constrained
cable-driven robots with unknown parameters. A dynamic model of the cable-driven robot
is established, and this model is utilized to construct an environment for interaction with the
reinforcement learning agent. A method is adopted during training to reduce the constraints
and increase the proportional compensators during driving, thereby reducing the training
difficulty and improving the convergence speed. Using the trained reinforcement learning
agent, the cable-driven mechanisms corresponding to 100 randomly generated parameter
sets are driven, resulting in the simulated trajectories demonstrating a distinct directional
spatial distribution. The driving results show that the rope tension corresponding to
98% of the trajectory points is within the specified tension range. Driving experiments
conducted on a physical cable-driven setup demonstrate that the rope tension remains
within the specified range throughout the driving process, successfully maneuvering
the end platform near the designated target point. The simulation and experimental
results indicate that this method effectively drives redundant constrained cable-driven
robots with unknown parameters to produce directed trajectory distributions and ample
sampled data, validating the proposed approach. The application of this method extends
from mechanisms with parameters randomly selected within a given region to those
with parameters arbitrarily selected, and from specialized configurations of cable-driven
robots to various configurations of redundant constrained cable-driven robots. Thus,
reinforcement learning emerges as a powerful tool for facilitating the rapid reconstruction of
cable-driven robots. In future research, to enable the operation of under-constrained cable-
driven parallel robots with unknown parameters, we will employ reinforcement learning
agents to interact with the robot and predict its tension distribution space. Subsequently,
we will plan a path within this tension distribution space to achieve effective control of the
under-constrained cable-driven parallel robot with unknown parameters.
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camera and a target; Table S1: Parameters for neural network.
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