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Abstract: In this paper, a 150 W small wind power generator which has a permanent magnet syn-
chronous generator type is proposed with a new straight shape stator and rotor to reduce the cogging
torque. The advantages of the proposed structure are introduced through a comparison between the
basic and the proposed models. By comparing the pole slot combination of the proposed generator,
the combination with optimal cogging torque characteristics was selected. The electromagnetic
characteristics of the proposed shape are analyzed for design variables using a finite element analysis
of ANSYS 2021 R1 Maxwell. The final model of the proposed structure is designed by consider-
ing the cogging torque and electromagnetic characteristics of the generator. The electromagnetic
and structural simulations of the final model are performed to satisfy the required performance of
the generator and mechanical safety. To verify the FEA results of the final model, a prototype is
manufactured, experimented, and compared with the FEA results.

Keywords: cogging torque; electromotive force; permanent magnet synchronous generator; total
harmonic distortion; wind power generator

1. Introduction

Recently, problems such as fossil fuel depletion, environmental pollution, and global
warming issues are becoming more serious every year. Interest in producing electricity
from renewable resources and cases of its application are increasing [1,2]. Representative
renewable resources include solar power and wind power. Wind power generation has the
advantage of being environmentally friendly, low production costs, and an infinite resource.
Compared to solar power generation, wind power generation has the advantage of lower
unit installation costs and lower production costs per unit for the same capacity [3,4].
Wind power generation systems are applied in a variety of ways, from large-scale power
generation in offshore areas and small-scale in portable machines [5–7].

Generators using PM (permanent magnet) are widely used for wind power generators
due to their advantages such as high energy density, high efficiency, and small size [7–9].
Small-scale PM generators have a simple structure and are often designed with a strong
internal rotor. Generators require a tooth and slot structure to wind the coils on the stator.
Due to the tooth structure, a spatial permeance difference occurs, which causes cogging
torque. Since wind power exceeding cogging torque is required for the generator to operate,
cogging torque reduction is necessary for the generator to operate in light winds [10,11].

Various studies are being conducted to reduce the cogging torque of wind power
generators [12–14]. Since cogging torque is inversely proportional to the size of the LCM
(least common multiple) of the number of poles and the number of slots, the cogging
torque can be reduced by applying fractional slot concentrated winding (FSCW) with the
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number of slots per pole being one or less [15,16]. The cogging torque can be reduced by
adjusting the spatial permeance difference through stator and rotor skew, the pole arc ratio
of PMs, and tapering [17–22]. Research is also being conducted to reduce cogging torque by
optimizing the length of the slot opening, which is the main cause of spatial permeability
differences, or by adding magnetic wedges [23,24]. To reduce the cogging torque, the LCM
is mainly changed by selecting the pole slot combination, or the generator shape design
variables are optimized to reduce the spatial permeance difference.

In this paper, a new generator structure for reducing cogging torque is introduced. The
advantages of the proposed structure are discussed by a comparison with the basic model
which has the arc shape of the stator and permanent magnet. By comparing the pole slot
combinations for the proposed structure, the number of poles and slots with small cogging
torque and high EMF (electromotive force) characteristics is selected. Using ANSYS 2021
R1 Maxwell, FEA for the electromagnetic design of the proposed model is conducted and
the final shape of the proposed model is designed. The electromagnetic and structural
simulation results of the final model are shown, and a comparison between the basic and
final models is conducted. The final model of the proposed generator was manufactured,
and the comparison with FEA and experiment results was performed to verify the FEA.

This paper is organized as follows. In Section 2, the definition and equation of cogging
torque are introduced, and it is discussed how to reduce cogging torque through equations.
In Section 3, the specifications and proposed shape for the small wind generator are
introduced. In Section 4, the design method of the proposed model is discussed, and a
comparison with the FEA results and experiment results of the prototype is conducted to
verify the final model. Finally, Section 5 presents the conclusion.

2. Definition and Equation of Cogging Torque

Cogging torque is energy variation according to magnet angular position. Because the
energy change in the PM and core is negligible than the airgap, the magnetostatic energy
can be written as shown in Equation (1) [25]:

W(α) ≈ W(α)airgap =
1

2µ0

∫
V P2(θ)Fm

2(θ, α)dV

=
Lstk
4µ0

(
R2

2 − R1
2
)∫ 2π

0 G2(θ)B2(θ, α)dθ

(1)

where µ0 is the permeability of air, θ is the rotational angle, P(θ) is the airgap permeance
function, Fm(θ, α) is the airgap MMF (magnetomotive force) function, α is the rotational
angle of rotor, Lstk is the stack length, R1 and R2 is PM and stator radius, G(θ) is the relative
airgap permeance function, and B(θ) is the flux density function. Through Equation (1), the
cogging torque can be derived from Equation (2):

T(α) =
πLstk
4µ0

(
R2

2 − R1
2
) ∞

∑
0

nNLGanNL BanNL sin nNLα (2)

where n is the harmonic order, NL is the LCM of the number of poles and slots, GanNL and
BanNL are the design coefficients of stator teeth and PM. As shown in Equation (2), to reduce
cogging torque, it is necessary to reduce GanNL by changing the stator shape, such as teeth
notching or asymmetric shoe, or BanNL, by changing the rotor shape, such as PM shaping
or adjusting the pole arc ratio. However, this method can significantly reduce EMF, output,
and efficiency. In this paper, a new stator and rotor structure is proposed that significantly
reduces cogging and does not reduce EMF significantly compared to basic structures.

3. Specifications and Shape of Proposed Generator

In this section, the specifications of the target generator are introduced. The structures
of the basic and proposed models are compared. The electromagnetic field characteristics
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of the basic and proposed models are confirmed and the advantages of the proposed model
over the basic model are shown.

3.1. Specifications of Generator

Small wind power generators require not only high efficiency and low THD (total
harmonic distortion) because it may be linked to the prevailing power source, but also low
cogging torque for starting in light winds. Table 1 shows the required specifications of the
target small wind power generator.

Table 1. Specifications of target generator.

Parameter Value Unit

Power 150 W
Voltage 20 V

Base Speed 2000 RPM
Cogging Torque 15 mNmpk-pk

THD of EMF (Line-Line) 5 %

3.2. Comparison of Base and Proposed Models

As can be seen in Equation (2), the cogging torque can be reduced by reducing G and
B by applying a new structure. The structure proposed in this paper has a straight shape
and has effects such as tapering and pole arc ratio. Figure 1a,b show the basic and pro-osed
model of a small wind power generator. For comparison, the total usage of PMs for both
models is the same. The basic model, as shown in Figure 1a, has a ring type PM.
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Figure 1. Shape of wind power generators (a) basic model (b) proposed model.

It has a circular shoe shape to maintain a constant airgap length, but the permeance
decreases sharply at the slot opening between the stator teeth which causes cogging torque.

Considering the sudden change in spatial permeance, the proposed model as shown
in Figure 1b selected the PM as a straight shape. The shoe of the teeth was also changed
to have a constant airgap length according to the shape of the PM. Due to these changes
in the rotor and stator shapes, the two coefficients in Equation (2) change. Figure 2 shows
the waveforms of the airgap flux density and cogging torque of the two models. As can be
seen in Figure 2a, the proposed model does not have large changes in airgap flux and has
smaller cogging torque characteristics than the basic model, as shown in Figure 2b.

Since the permeance of the proposed structure according to position appears sinu-
soidally compared to the basic model which has large permeance changes between teeth,
the proposed structure has small values of GanNL and BanNL. As can be seen in Equation
(2), the cogging torque of the proposed structure is smaller than that of the basic model for
the same size.

Figure 3 shows the EMF waveform and FFT (fast Fourier transform) results of the two
models. The basic model is superior in terms of EMF and THD characteristics.
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Figure 4 shows the flux lines of the basic and proposed models. The basic model has 
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Figure 4 shows the flux lines of the basic and proposed models. The basic model has a
large leakage flux between PMs, but the proposed model has a smaller leakage flux than
the basic model due to the gap between PMs.
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As shown in Figure 3a,b, the EMF appears high because the length of the air gap is
constant and small, but in the proposed model, the air gap length varies depending on the
angular position and the average air gap length is larger than the basic model.

Table 2 shows the characteristics of the basic and proposed models. When the power is
the same, the efficiency of the proposed model is 0.2%p less than the basic model. However,
the THD of the two models is the same, and the cogging torque of the proposed model is
significantly reduced compared to the basic model. In this paper, the proposed model was
selected to reduce the cogging torque, and an additional design was conducted to improve
the efficiency and THD.

Table 2. Characteristics of the basic and proposed models.

Parameter Basic Model Proposed Model Unit

Power 156.8 157.2 W
Efficiency 91.2 90.9 %

EMF 22.5 20.5 Vrms
THD of EMF (Line-Line) 1.3 1.3 %

Cogging Torque 280.7 16.2 mNmpk-pk

4. Electromagnetic Design of Proposed Wind Generator

In this section, tendencies according to the design variables of the proposed structure
are analyzed using FEA through ANSYS 2021 R1 Maxwell, and the final model is derived.
The characteristics of the proposed structure according to the pole slot combination are
compared. Design variables that can be selected in the proposed structure are introduced,
each tendency is analyzed through FEA, and design points are determined to derive the
final model.

4.1. Pole Slot Combinations

Wind power generators generally adopt a fractional slot concentrated winding (FSCW),
where the number of slots per pole per phase is less than 1 for small cogging torque
and high power density. Table 3 shows the winding factor according to the pole slot
combination. The pole slot combination with a high winding coefficient must be selected
to achieve high power density. As shown in Equation (2), the other factor is the LCM of
the number of poles and slots. The higher number of the LCM, the smaller the cogging
torque appears [26]. In this paper, generally used representative pole slot combinations
(10P12S, 14P12S, 14P18S, and 16P18S) were selected, and the corresponding EMF, THD,
and cogging torque characteristics were confirmed. For equal comparison, the amount of
PMs used and the equivalent number of turns for each model were selected to be the same.
Figure 5 shows the characteristics according to the pole slot combination. Figure 5 shows
that the 14P12S model has a high EMF, low THD, and cogging torque. In this paper, the
14P12S combination was selected, and shape variable design was performed.

Table 3. Winding factor according to pole slot combination.

Nslot\Npole 4 6 8 10 12 14 16

6 0.866 - 0.866 0.5 - 0.5 0.866
9 0.617 0.866 0.945 0.945 0.866 0.617 0.328
12 - - 0.866 0.933 - 0.933 0.866
15 - - 0.621 0.866 - 0.951 0.951
18 - - - 0.647 0.866 0.902 0.945
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4.2. Airgap

Figure 6 shows the design variables of the proposed model. In the proposed model,
the PM has a straight shape, so the maximum rotor radius is from the origin to the PM
vertex. Therefore, as shown in Figure 6, the minimum airgap length (gmin) from the PM
vertex to the center of the shoe is selected.
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4.3. Magnet

When the rotor outer diameter is fixed, the maximum PM width is determined by the
PM thickness. Equations (3) and (4) represent the PM width according to the rotor outer
diameter and PM thickness, and is the maximum PM width that can be selected when the
pole arc ratio is 1:

Wm =

(
2k

1 + k2

)
√√√√Tm

2 − (1 + k2)

(
Tm

2 − Dro
2

4

)
− Tm

 (3)

k = tan

(
am

180deg
Npole

)
(4)

where Wm is the PM width, Tm is the PM thickness, Dro is the rotor outer diameter, αm is
the pole arc ratio, and Npole is the number of poles. As the PM thickness increases, the
maximum width that can be selected decreases.

As shown in Equation (3), Tm and Wm are inversely proportional. Because the length
of the permanent magnet occupied by one pole varies depending on Tm, characteristics
such as cogging torque change. Figure 7 shows the characteristics of the proposed model
according to PM thickness. Design is required at a point where the cogging torque is
minimum, the target EMF is satisfied, and the THD is small. When inserting the PM of the
proposed model into the rotor, if the PM has a rectangular shape, it may scatter when the
generator is driven. Therefore, a structure is adopted in which the rotor core can support
the PM through a small additional length (Wm1) of about 0.2 mm of the inner side of the PM.
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As shown in Equations (3) and (4), the shape of the permanent magnet changes
depending on the pole arc ratio, affecting the electromagnetic field characteristics. Figure 8
shows the characteristics of the proposed model according to the pole arc ratio. As the
pole arc ratio increases, the use of PMs and EMF increases. Moreover, there is an optimal
point for THD and cogging torque. The optimal design point is selected by considering the
cogging torque, EMF characteristics, the usage of the PM of the basic model, and constraints
as shown in Figure 8.
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4.4. Rotor Core

Figure 9 shows the flux line according to the magnet insertion depth. In Figure 9a,
because of lack of iron between the PMs, the leakage flux between the PMs flows through the
air. In Figure 9b, because of the core between the PMs, the leakage flux flows through iron.
As can be seen in Figure 9, when a PM is inserted into the rotor core, the electromagnetic
characteristics may vary depending on the insertion depth because of leakage flux between
the PMs. Because the average air gap length and leakage flux change depending on the PM
insertion depth, there is an optimal point for cogging torque and EMF.

Figure 10 shows the cogging torque and EMF characteristics according to the PM
insertion depth (Tr). Because the average air gap length and leakage flux change depending
on the PM insertion depth, there is an optimal point for cogging torque and EMF, as shown
in Figure 10. Considering design constraints, a point was selected that maximizes EMF and
has low cogging torque for high efficiency.
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4.5. FEA Results of Final Model 
The design of the final model is carried out based on the design variable analysis con-

ducted in the previous chapters. Table 4 shows the value of design variables for the final 
model. Figure 11a shows the final shape of the proposed model, Figure 11b shows the mesh 
plot for FEA analysis, and Figure 11c shows the magnetic flux density distribution. 

Table 4. Value of design variables. 

Variable Value Unit 
PM Thickness (Tm) 4.5 mm 

PM Width (Wm) 8.9 mm 
Additional Inner PM Width (Wm1) 0.2 mm 

Pole Arc Ratio (αm) 0.83 mm 
PM Insertion Depth (Tr) 1.5 mm 

Figure 9. Flux line according to Tr: (a) Tr = 0 mm (b) Tr = 3 mm.
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4.5. FEA Results of Final Model

The design of the final model is carried out based on the design variable analysis
conducted in the previous chapters. Table 4 shows the value of design variables for the
final model. Figure 11a shows the final shape of the proposed model, Figure 11b shows the
mesh plot for FEA analysis, and Figure 11c shows the magnetic flux density distribution.
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Table 4. Value of design variables.

Variable Value Unit

PM Thickness (Tm) 4.5 mm
PM Width (Wm) 8.9 mm

Additional Inner PM Width (Wm1) 0.2 mm
Pole Arc Ratio (αm) 0.83 mm

PM Insertion Depth (Tr) 1.5 mm

Since PMs may scatter due to stress when driving a generator, it is necessary to analyze
the stress. Figure 11d is the structural simulation result of the proposed model rotor. In
general, the safety factor is the index of the mechanical reliability and is calculated as
Equation (5) [27]:

Safety Factor =
Yield Stress

Maximum Working Stress
(5)

In general, the generator is safe from stress if the safety factor exceeds 2. The safety
factor of the final model is about 19.6, which confirms that it is safe from stress. Table 5
shows the design results of the basic and final model. The size and output power of the
two models are the same. In the final model, THD increased by 0.1%p and the efficiency
decreased by 0.2%p, but cogging torque was significantly reduced by 96% compared to the
basic model.

Table 5. Design results of the basic and final models.

Parameter Basic Model Final Model Unit

Stator Outer Diameter 87 87 mm
Stack Length 20 20 mm

Power 156.8 156.8 W
Voltage 20.5 20.1 Vrms

Base Speed 2000 2000 RPM
Cogging Torque 280.7 11.7 mNmpk-pk

THD 1.3 1.4 %
Copper Loss 4.5 5.6 W

Core Loss 7.1 6.6 W
Magnet Loss 0.7 0.4 W

Efficiency 91.2 91.0 %

4.6. Manufacture and Experiment Verification

To verify the FEA results, the prototype of the final model was manufactured. Figure 12
shows the manufactured prototype.
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No-load experiments were conducted on the prototype at 1600 RPM. Figure 13a,b
show the prototype’s EMF waveform of the no-load and load FEA results, and Figure 13c
shows the EMF waveform of no-load. The FEA and experiment of EMF were 8.21 V and
8.03 V, respectively. Load experiments were conducted on the prototype at 2000 RPM. The
value of the load resistance was adjusted so that the power of the generator was more than
150 W. The output, terminal voltage, and efficiency were measured by load experiments.
Table 6 shows that the FEA and experiment results of the wind power generator. For the
same power, the terminal voltage and efficiency errors of both models are less than 1%.
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Table 6. FEA and experiment results of the wind power generator.

Parameter FEA Experiment Unit

Power 156.8 160.4 W
EMF (@1600 RPM) 8.21 8.03 Vrms

Voltage 20.1 20.0 V
Efficiency 91.0 90.8 %

5. Conclusions

In this paper, a small wind turbine structure with a straight shape to reduce the
cogging torque is proposed. The proposed model is compared to a basic model with ring
type and its advantages are shown. The final model is derived by selecting and analyzing
variables for the design of the proposed structure. The final model is compared to the basic
model and shows a significant reduction in cogging torque. A prototype has been created,
and the validation of the study is verified through comparison with the experiment and
FEA results.
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