Collaborative Production Planning Based on an Intelligent Unmanned Mining System for Open-Pit Mines in the Industry 4.0 Era
Abstract
:1. Introduction
2. Methodology
2.1. Multi-Machine Collaborative Production Planning Model
2.1.1. Description
2.1.2. Objective Functions
2.1.3. Constraints
2.1.4. Collaborative Production Planning Strategy
2.2. Multi-Objective Optimization Algorithm
3. Results: Computational Experiments
3.1. Parameters
3.2. Results
3.3. Optimization
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
AI | Artificial Intelligence |
IoT | Internet of Things |
DT | Digital Twin |
NSGA | Non-dominated Sorting Genetic Algorithm |
NSGA-II | Non-dominated Sorting Genetic Algorithm with elitist strategy |
RMB | RenMinBi |
min | Minute |
3D | Three Dimensional |
etc. | et cetera |
t | ton |
lidar | Light Detection and Ranging |
References
- Wang, L. Considerations on strategic non-metallic mineral resources. Conserv. Util. Miner. Resour. 2019, 39, 1–7. [Google Scholar]
- Bodziony, P.; Patyk, M. The Influence of the Mining Operation Environment on the Energy Consumption and Technical Availability of Truck Haulage Operations in Surface Mines. Energies 2024, 17, 2654. [Google Scholar] [CrossRef]
- Crespo Marquez, A.; de la Fuente Carmona, A.; Antomarioni, S. A Process to Implement an Artificial Neural Network and Association Rules Techniques to Improve Asset Performance and Energy Efficiency. Energies 2019, 12, 3454. [Google Scholar] [CrossRef]
- Hossein, M.N.; Mohammadrezaei, M.; Hunt, J.; Zakeri, B. Internet of Things (IoT) and the Energy Sector. Energies 2020, 13, 494. [Google Scholar] [CrossRef]
- Borro, D.; Zachmann, G.; Giannini, F.; Walczak, K.; Pedrocchi, N. Digital Twin for Industry 4.0. Front. Virtual Real. 2022, 3, 968054. [Google Scholar] [CrossRef]
- Zhironkina, O.; Zhironkin, S. Technological and Intellectual Transition to Mining 4.0: A Review. Energies 2023, 16, 1427. [Google Scholar] [CrossRef]
- Shahmoradi, J.; Talebi, E.; Roghanchi, P.; Hassanalian, M. A Comprehensive Review of Applications of Drone Technology in the Mining Industry. Drones 2020, 4, 34. [Google Scholar] [CrossRef]
- Cacciuttolo, C.; Guzmán, V.; Catriñir, P.; Atencio, E.; Komarizadehasl, S.; Lozano-Galant, J.A. Low-Cost Sensors Technologies for Monitoring Sustainability and Safety Issues in Mining Activities: Advances, Gaps, and Future Directions in the Digitalization for Smart Mining. Sensors 2023, 23, 6846. [Google Scholar] [CrossRef]
- Wojtecki, L.; Iwaszenko, S.; Apel, D.B.; Cichy, T. An Attempt to Use Machine Learning Algorithms to Estimate the Rockburst Hazard in Underground Excavations of Hard Coal Mine. Energies 2021, 14, 6928. [Google Scholar] [CrossRef]
- Xu, W.; Cai, Y.; He, D.; Lin, J.R.; Zhang, F. Fast-lio2: Fast direct lidar-inertial odometry. IEEE Trans. Robot. 2022, 38, 2053–2073. [Google Scholar] [CrossRef]
- Mohamed, E.; Alaa, T.; Aboul, E.H. Bezier curve based path planning in a dynamic field using modified genetic algorithm. J. Comput. Sci. 2018, 25, 339–350. [Google Scholar]
- Fan, H.; Zhu, F.; Liu, C.; Zhang, L.L.; Zhuang, L.; Li, D.; Zhu, W.C.; Hu, J.T.; Li, H.Y.; Kong, Q. Baidu Apollo EM motion planner. arXiv 2018, arXiv:1807.08048. [Google Scholar]
- Kim, J.; Jin, M.; Choi, W.; Lee, J. Discrete time delay control for hydraulic excavator motion control with terminal sliding mode control. Mechatronics 2019, 60, 15–25. [Google Scholar] [CrossRef]
- Feng, H.; Yin, C.B.; Weng, W.W.; Ma, W.; Zhou, J.J.; Jia, W.H. Robotic excavator trajectory control using an improved GA based PID controller. Mech. Syst. Signal Process. 2018, 105, 153–168. [Google Scholar] [CrossRef]
- Chen, J.; Sun, J.; Wang, G. From unmanned systems to autonomous intelligent systems. Engineering 2022, 12, 16–19. [Google Scholar] [CrossRef]
- Li, Y.H.; Fan, R.J.; Yang, L.M.; Zhao, B.; Quan, L. Research status and development trend of intelligent excavators. J. Mech. Eng. 2020, 56, 165–178. [Google Scholar]
- Zhang, L.; Zhao, J.; Long, P.; Wang, L.Y.; Qian, L.F.; Lu, F.X.; Song, X.B.; Manocha, D. An autonomous excavator system for material loading tasks. Sci. Rob. 2021, 6, eabc3164. [Google Scholar] [CrossRef] [PubMed]
- Ding, Z.; Meng, F. Domestic and overseas research status and key technologies of unmanned mine trucks. China Coal 2020, 46, 42–49. [Google Scholar]
- Liu, H.; Pan, W.; Hu, Y.; Li, C.; Yuan, X.W.; Long, T. A detection and tracking method based on heterogeneous multi-sensor fusion for unmanned mining trucks. Sensors 2022, 22, 5989. [Google Scholar] [CrossRef]
- Bakhaev, P.K. Automated control of unmanned truck for transport complex of mining industry. J. Phy. Conf. Ser. 2019, 1333, 052001. [Google Scholar] [CrossRef]
- Teng, S.Y.; Li, L.X.; Li, Y.C.; Hu, X.M.; Li, L.X.; Ai, Y.F.; Chen, L. FusionPlanner: A multi-task motion planner for mining trucks via multi-sensor fusion. Mech. Syst. Signal Process. 2024, 208, 111051. [Google Scholar] [CrossRef]
- Liu, K.; Mei, B.; Li, Q. Design and development of intelligent unmanned construction system for open-pit mine. J. Phys. Conf. Ser. 2024, 2741, 012005. [Google Scholar] [CrossRef]
- Zhang, X.; Guo, A.; Ai, Y.; Tian, B.; Chen, L. Real-time scheduling of autonomous mining trucks via flow allocation-accelerated tabu search. IEEE Trans. Intell. Veh. 2022, 7, 466–479. [Google Scholar] [CrossRef]
- Li, B.; Ouyang, Y.; Li, X.H.; Cao, D.P.; Zhang, T.T.; Wang, Y.N. Mixed-integer and conditional trajectory planning for an autonomous mining truck in loading/dumping scenarios: A global optimization approach. IEEE Trans. Intell. Veh. 2022, 8, 1512–1522. [Google Scholar] [CrossRef]
- Alexandre, R.F.; Campelo, F.; Vasconcelos, J.A. Multi-objective evolutionary algorithms for the truck dispatch problem in open-pit mining operations. Learn. Nonlinear Models 2019, 17, 53–66. [Google Scholar] [CrossRef]
- Zhang, X.Y. Planning and Dispatching Model and Application of Unmanned Mine Truck Flow in Open-Pit Mine Based on Vehicle Road Cooperation. Master’s Thesis, Xi’an University of Architecture and Technology, Xi’an, China, 2022. [Google Scholar]
- Mendes, J.B.; D’Angelo, M.F.S.V.; Maia, N.A.; Veloso, R.R. A hybrid multi-objective evolutionary algorithm for truck dispatching in open-pit-mining. IEEE Lat. Am. Trans. 2016, 14, 1329–1334. [Google Scholar] [CrossRef]
- Zhao, L. Research on Stochastic Optimization Method of Truck Dispatching in Open-Pit Coal Mine Based on Intelligent Travelling Time Forecast. Ph.D. Thesis, China University of Mining and Technology, Beijing, China, 2021. [Google Scholar]
- Bastos, G.S. Decision making applied to shift change in stochastic open-pit mining truck dispatching. IFAC Proc. Vol. 2013, 46, 167–181. [Google Scholar] [CrossRef]
- Patterson, S.R.; Kozan, E.; Hyland, P. Energy efficient scheduling of open-pit coal mine trucks. Eur. J. Oper. Res. 2017, 262, 759–770. [Google Scholar] [CrossRef]
- Bajany, D.M.; Xia, X.; Zhang, L. A MILP model for truck-shovel scheduling to minimize fuel consumption. Energy Procedia 2017, 105, 2739–2745. [Google Scholar] [CrossRef]
- Wang, D.N. Research on Multi-Objective Scheduling Modeling and Algorithm of New Energy Truck in Open Pit Mine Based on Data-Driven. Master’s Thesis, Xi’an University of Architecture and Technology, Xi’an, China, 2022. [Google Scholar]
- Sun, X.Y.; Zhang, H.; Tian, F.L.; Yang, L. The use of a machine learning method to predict the real-time link travel time of open-pit trucks. Math. Prob. Eng. 2018, 212, 149–160. [Google Scholar] [CrossRef]
- Erkan, T.; Salih, R. A new MIP model for mine equipment scheduling by minimizing maintenance cost. Eur. J. Oper. Res. 2010, 207, 1065–1071. [Google Scholar]
- Nakamura, Y.; Taniguchi, E.; Yamada, T.; Ando, N. Selecting a dynamic and stochastic path method for vehicle routing and scheduling problems. Procedia-Soc. Behav. Sci. 2010, 2, 6042–6052. [Google Scholar] [CrossRef]
- Zhang, M.; Gu, Q.H.; Li, F.B.; Yan, B.X.; Liu, D. Research of open-pit mine truck dispatching optimization based on multi-objective genetic algorithm. Met. Mine 2019, 6, 157–162. [Google Scholar]
- Godoy, M.; Dimitrakopoulos, R. Managing risk and waste mining in long-term production scheduling of open-pit mines. SME Trans. 2004, 316, 43–50. [Google Scholar]
- Zhang, C.; Jiang, S. Intelligent dispatching of unmanned truck in open pit mine based on improved ant colony algorithm. J. Anhui Univ. Technol. (Nat. Sci.) 2020, 37, 267–275. [Google Scholar]
- Gu, Q.H.; Zhang, X.Y.; Chen, L.; Xiong, N.X. An improved bagging ensemble surrogate-assisted evolutionary algorithm for expensive many-objective optimization. Appl. Intell. 2022, 52, 5949–5965. [Google Scholar] [CrossRef]
- Srinivas, N.; Deb, K. Multiobjective optimization using nondominated sorting in genetic algorithms. Evol. Comput. 1994, 2, 221–248. [Google Scholar] [CrossRef]
- Deb, K.; Agrawal, S.; Pratap, A.; Meyarivan, T. A fast elitist non-dominated sorting genetic algorithm for multi-objective optimization: NSGA-II. In Proceedings of the 6th International Conference on Parallel Problem Solving from Nature, Paris, France, 18–20 September 2000; Lecture Notes in Computer Science Press: Paris, France, 2000; pp. 849–858. [Google Scholar]
- Deb, K. Multi-Objective Optimization Using Evolutionary Algorithms; John Wiley & Sons, Ltd.: Chichester, UK, 2001. [Google Scholar]
- Yao, J.; Wang, Z.; Chen, H.; Hou, W.; Zhang, X.; Li, X.; Yuan, W. Open-Pit Mine Truck Dispatching System Based on Dynamic Ore Blending Decisions. Sustainability 2023, 15, 3399. [Google Scholar] [CrossRef]
- Smith, A.; Linderoth, J.; Luedtke, J. Optimization-based dispatching policies for open-pit mining. Optim. Eng. 2021, 22, 1347–1387. [Google Scholar] [CrossRef]
Unloading Point a | Unloading Point b | Unloading Point c | |
---|---|---|---|
Loading point A | 1.77 | 2.36 | 1.91 |
Loading point B | 1.26 | 2.01 | 1.94 |
Loading point C | 0.78 | 1.53 | 1.48 |
Loading point D | 1.28 | 1.87 | 1.42 |
Loading point E | 1.50 | 1.83 | 2.20 |
Loading point F | 0.96 | 1.39 | 1.66 |
Full Production Capacity (t) | Unmanned Excavator Idle Time (min) | Unmanned Mining Truck Idle Time (min) | Transportation Cost (RMB) | |
---|---|---|---|---|
No planning | 26,400 | 1055 | 2028 | 20,978 |
Planning of unmanned mining trucks only | 27,150 | 1011 | 1983 | 20,624 |
Collaborative production planning | 27,750 | 973 | 1700 | 21,672 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, K.; Mei, B.; Li, Q.; Sun, S.; Zhang, Q. Collaborative Production Planning Based on an Intelligent Unmanned Mining System for Open-Pit Mines in the Industry 4.0 Era. Machines 2024, 12, 419. https://doi.org/10.3390/machines12060419
Liu K, Mei B, Li Q, Sun S, Zhang Q. Collaborative Production Planning Based on an Intelligent Unmanned Mining System for Open-Pit Mines in the Industry 4.0 Era. Machines. 2024; 12(6):419. https://doi.org/10.3390/machines12060419
Chicago/Turabian StyleLiu, Kui, Bin Mei, Qing Li, Shuai Sun, and Qingping Zhang. 2024. "Collaborative Production Planning Based on an Intelligent Unmanned Mining System for Open-Pit Mines in the Industry 4.0 Era" Machines 12, no. 6: 419. https://doi.org/10.3390/machines12060419
APA StyleLiu, K., Mei, B., Li, Q., Sun, S., & Zhang, Q. (2024). Collaborative Production Planning Based on an Intelligent Unmanned Mining System for Open-Pit Mines in the Industry 4.0 Era. Machines, 12(6), 419. https://doi.org/10.3390/machines12060419