Optimization of the Surface Roughness and Chip Compression Ratio of Duplex Stainless Steel in a Wet Turning Process Using the Taguchi Method
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Setup
2.2. Design of Experiments
3. Results and Discussions
3.1. Experimental Results
3.2. Taguchi Analysis
3.3. Analysis of Variance
4. Conclusions
- A cutting velocity of 200 m/min, feed of 0.05 mm/rev, and cutting depth of 1 mm are found to give the lowest surface roughness Ra that is equal to 0.433 µm;
- A cutting velocity of 200 m/min, feed of 0.15 mm/rev, and cutting depth of 0.5 mm are found to give the smallest CCR that is equal to 1.39, indicating the smallest plastic deformation during the material removal process;
- The experimental results proved that additional cooling allows us to achieve better surface roughness quality compared to dry and wet turning;
- The experimental data could be useful in collecting as much data as possible for the use of artificial intelligence techniques, i.e., for the training and validation of models; the lack of data provides overfitted models.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Koyee, R.D.; Heisel, U.; Eisseler, R.; Schmauder, S. Modeling and optimization of turning duplex stainless steels. J. Manuf. Process. 2014, 16, 451–467. [Google Scholar] [CrossRef]
- Shokrani, A.; Dhokia, V.; Newman, S. Environmentally conscious machining of difficult-to-machine materials with regard to cutting fluids. Int. J. Mach. Tools Manuf. 2012, 57, 83–101. [Google Scholar] [CrossRef]
- Sonawane, G.D.; Sargade, V.G. Machinability Study of Duplex Stainless Steel 2205 during Dry Turning. Int. J. Precis. Eng. Manuf. 2020, 21, 969–981. [Google Scholar] [CrossRef]
- Fountas, N.A.; Papantoniou, I.; Manolakos, D.E.; Vaxevanidis, N.M. Implementation of Grey Wolf, Multi-Verse and Ant Lion Metaheuristic Algorithms for Optimizing Machinability of Dry CNC Turning of Annealed and Hardened UNIMAX® Tool Steel. Machines 2024, 12, 156. [Google Scholar] [CrossRef]
- Ulas, H.B.; Ozkan, M.T. Turning processes investigation of materials austenitic, martensitic and duplex stainless steels and prediction of cutting forces using artificial neural network (ANN) techniques. Indian J. Eng. Mat. Sci. 2019, 26, 93–104. [Google Scholar]
- Selvaraj, D.P.; Chandramohan, P.; Mohanraj, M. Optimization of surface roughness, cutting force and tool wear of nitrogen alloyed duplex stainless steel in a dry turning process using Taguchi method. Measurement 2014, 49, 205–215. [Google Scholar] [CrossRef]
- Rajaguru, J.; Arunachalam, N. Coated tool Performance in Dry Turning of Super Duplex Stainless Steel. Procedia Manuf. 2017, 10, 601–611. [Google Scholar] [CrossRef]
- Krolczyk, G.; Legutko, S. Investigations into Surface Integrity in the Turning Process of Duplex Stainless Steel. Trans. FAMENA 2014, 38, 77–82. [Google Scholar]
- Krolczyk, G.; Nieslony, P.; Legutko, S.; Hloch, S.; Samardzic, I. Investigation of Selected Surface Integrity Features of Duplex Stainless Steel (DSS) after Turning. Metalurgija 2015, 54, 91–94. [Google Scholar]
- Krolczyk, G.; Nieslony, P.; Legutko, S.; Stoic, A.; Samardzic, I. Microhardness Changes Gradient of the Duplex Stainless Steel (DSS) Surface Layer After Dry Turning. Metalurgija 2014, 53, 529–532. [Google Scholar]
- Krolczyk, G.; Nieslony, P.; Legutko, S. Microhardness and Surface Integrity in Turning Process of Duplex Stainless Steel (DSS) for Different Cutting Conditions. J. Mater. Eng. Perform. 2014, 23, 859–866. [Google Scholar] [CrossRef]
- Krolczyk, G.; Nieslony, P.; Maruda, R.; Wojciechowski, S. Dry cutting effect in turning of a duplex stainless steel as a key factor in clean production. J. Clean. Prod. 2017, 142, 3343–3354. [Google Scholar] [CrossRef]
- Krolczyk, G.; Nieslony, P.; Legutko, S. Determination of tool life and research wear during duplex stainless steel turning. Arch. Civ. Mech. Eng. 2015, 15, 347–354. [Google Scholar] [CrossRef]
- Koyee, R.D.; Eisseler, R.; Schmauder, S. Application of Taguchi coupled Fuzzy Multi Attribute Decision Making (FMADM) for optimizing surface quality in turning austenitic and duplex stainless steels. Measurement 2014, 58, 375–386. [Google Scholar] [CrossRef]
- Gupta, M.K.; Boy, M.; Korkmaz, M.E.; Yaşar, N.; Günay, M.; Krolczyk, G.M. Measurement and analysis of machining induced tribological characteristics in dual jet minimum quantity lubrication assisted turning of duplex stainless steel. Measurement 2022, 187, 110353. [Google Scholar] [CrossRef]
- Dhananchezian, M.; Priyan, M.R.; Rajashekar, G.; Narayanan, S.S. Study the Effect of Cryogenic Cooling on Machinability Characteristics during Turning Duplex Stainless Steel 2205. Mater. Today Proc. 2018, 5, 12062–12070. [Google Scholar] [CrossRef]
- Cardoso, L.G.; Madeira, D.S.; Ricomini, T.E.P.A.; Miranda, R.A.; Brito, T.G.; Paiva, E.J. Optimization of machining parameters using response surface methodology with desirability function in turning duplex stainless steel UNS S32760. Int. J. Adv. Manuf. Technol. 2021, 117, 1633–1644. [Google Scholar] [CrossRef]
- Parsi, P.K.; Kotha, R.S.; Routhu, T.; Pandey, S.; Dwivedy, M. Machinability evaluation of coated carbide inserts in turning of super-duplex stainless steel. SN Appl. Sci. 2020, 2, 1933. [Google Scholar] [CrossRef]
- Nomani, J.; Pramanik, A.; Hilditch, T.; Littlefair, G. Stagnation zone during the turning of Duplex SAF 2205 stainless steels alloy. Mater. Manuf. Process. 2017, 32, 1486–1489. [Google Scholar] [CrossRef]
- Nomani, J.; Pramanik, A.; Hilditch, T.; Littlefair, G. Investigation on the Behavior of Austenite and Ferrite Phases at Stagnation Region in the Turning of Duplex Stainless Steel Alloys. Metall. Mater. Trans. A 2016, 47, 3165–3177. [Google Scholar] [CrossRef]
- Krolczyk, G.M.; Legutko, S. Experimental Analysis by Measurement of Surface Roughness Variations in Turning Process of Duplex Stainless Steel. Metrol. Meas. Syst. 2014, 21, 759–770. [Google Scholar] [CrossRef]
- Gamarra, J.R.; Diniz, A.E. Taper turning of super duplex stainless steel: Tool life, tool wear and workpiece surface roughness. J. Braz. Soc. Mech. Sci. Eng. 2018, 40, 39. [Google Scholar] [CrossRef]
- Benardos, P.; Vosniakos, G.-C. Predicting surface roughness in machining: A review. Int. J. Mach. Tools Manuf. 2003, 43, 833–844. [Google Scholar] [CrossRef]
- Kundrak, J.; Mamalis, A.G.; Gyani, K.; Bana, V. Surface layer microhardness changes with high-speed turning of hardened steels. Int. J. Adv. Manuf. Technol. 2011, 53, 105–112. [Google Scholar] [CrossRef]
- Faga, M.G.; Priarone, P.C.; Robiglio, M.; Settineri, L.; Tebaldo, V. Technological and sustainability implications of dry, near-dry, and wet turning of Ti-6Al-4V alloy. Int. J. Precis. Eng. Manuf. Technol. 2017, 4, 129–139. [Google Scholar] [CrossRef]
- Chetan; Ghosh, S.; Rao, P.V. Application of sustainable techniques in metal cutting for enhanced machinability: A review. J. Clean. Prod. 2015, 100, 17–34. [Google Scholar] [CrossRef]
- Krolczyk, G.M.; Maruda, R.W.; Krolczyk, J.B.; Wojciechowski, S.; Mia, M.; Nieslony, P.; Budzik, G. Ecological trends in machining as a key factor in sustainable production—A review. J. Clean. Prod. 2019, 218, 601–615. [Google Scholar] [CrossRef]
- Kaladhar, M.; Sahu, G.; Kumar, S.M.; Nag, B.K.; Aditya, V.S.; Kaushik, G.S. Evaluation and Optimization of Machinability Issues in Dry Turning of DSS 2205. J. Vib. Eng. Technol. 2023, 11, 3135–3145. [Google Scholar] [CrossRef]
- Astakhov, V.P.; Shvets, S. The assessment of plastic deformation in metal cutting. J. Mater. Process. Technol. 2003, 146, 193–202. [Google Scholar] [CrossRef]
- Mativenga, P.T.; Abukhshim, N.A.; Sheikh, M.A.; Hon, B.K.K. An investigation of tool chip contact phenomena in high-speed turning using coated tools. Proc. Inst. Mech. Eng. Part B J. Eng. Manuf. 2006, 220, 657–667. [Google Scholar] [CrossRef]
- Schultheiss, F.; Hägglund, S.; Bushlya, V.; Zhou, J.; Ståhl, J.-E. Influence of the Minimum Chip Thickness on the Obtained Surface Roughness During Turning Operations. Procedia CIRP 2014, 13, 67–71. [Google Scholar] [CrossRef]
- Skrzyniarz, M. A Method to Determine the Minimum Chip Thickness during Longitudinal Turning. Micromachines 2020, 11, 1029. [Google Scholar] [CrossRef] [PubMed]
- Krolczyk, G.; Legutko, S.; Gajek, M. Predicting the Surface Roughness in the Dry Machining of Duplex Stainless Steel (DSS). Metalurgija 2013, 52, 259–262. [Google Scholar]
- Aşcıoğlu, M.; Boy, M. Machining characteristics investigations of duplex stainless steel by considering dual effect of chip breaker and cooling conditions. Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci. 2022, 236, 7885–7898. [Google Scholar] [CrossRef]
- DIN EN 10088-1 [LST EN 10088-1:2024]; List of Stainless Steels. Lithuanian Standards Board (LST) Standards: Vilnius, Lithuania, 2024. Available online: https://vb.ktu.edu/permalink/f/1slhar4/LSDPRIMO709521 (accessed on 3 April 2024).
- ISO 4287:1997 [LST EN ISO 4287:2007]; Geometrical Product Specifications (GPS)—Surface Texture: Profile Method—Terms, Definitions and Surface Texture Parameters. Lithuanian Standards Board (LST) Standards: Vilnius, Lithuania, 2007. Available online: https://vb.ktu.edu/primo-explore/fulldisplay?docid=KTU01000094054&vid=KTU&search_scope=KTU&tab=default_tab&lang=lt_LT&context=L (accessed on 3 April 2024).
- Canbolat, A.; Bademlioglu, A.; Arslanoglu, N.; Kaynakli, O. Performance optimization of absorption refrigeration systems using Taguchi, ANOVA and Grey Relational Analysis methods. J. Clean. Prod. 2019, 229, 874–885. [Google Scholar] [CrossRef]
- Felhő, C.; Tesfom, F.; Varga, G. ANOVA Analysis and L9 Taguchi Design for Examination of Flat Slide Burnishing of Unalloyed Structural Carbon Steel. J. Manuf. Mater. Process. 2023, 7, 136. [Google Scholar] [CrossRef]
- Kozik, V.; Barbusinski, K.; Thomas, M.; Sroda, A.; Jampilek, J.; Sochanik, A.; Smolinski, A.; Bak, A. Taguchi Method and Response Surface Methodology in the Treatment of Highly Contaminated Tannery Wastewater Using Commercial Potassium Ferrate. Materials 2019, 12, 3784. [Google Scholar] [CrossRef]
C | Si | Mn | P | S | Cr | Mo | Ni | N |
---|---|---|---|---|---|---|---|---|
0.03 | 1 | 2 | 0.035 | 0.015 | 21–23 | 2.5–3.5 | 4.5–6.5 | 0.1–0.22 |
Parameters | Levels | ||||
---|---|---|---|---|---|
Description | Symbol | Unit | 1 | 2 | 3 |
Cutting velocity | Vc | m/min | 150 | 200 | 250 |
Feed | f | mm/rev | 0.05 | 0.1 | 0.15 |
Cutting depth | ap | mm | 0.5 | 1.0 | 1.5 |
Factors | Data of the Experiment | |||||
---|---|---|---|---|---|---|
Run Order | Cutting Velocity (m/min) | Feed (mm/rev) | Cutting Depth (mm) | Time of Experiment (s) | Material Removal Rate (mm3/min) | Volume of Removed Material (mm3) |
1 | 1 | 1 | 1 | 38 | 3750 | 2375 |
2 | 1 | 2 | 2 | 21 | 15,000 | 5250 |
3 | 1 | 3 | 3 | 15 | 33,750 | 8437.5 |
4 | 2 | 1 | 2 | 29 | 10,000 | 4833.3 |
5 | 2 | 2 | 3 | 17 | 30,000 | 8500 |
6 | 2 | 3 | 1 | 13 | 15,000 | 3250 |
7 | 3 | 1 | 3 | 24 | 18,750 | 7500 |
8 | 3 | 2 | 1 | 15 | 12,500 | 3125 |
9 | 3 | 3 | 2 | 11 | 37,500 | 6875 |
Cutting Conditions | Output Results | ||||||||
---|---|---|---|---|---|---|---|---|---|
Run | Cutting Velocity | Feed | Depth of Cut | Surface Roughness | Chip Evaluation | Max Hardness | |||
m/min | (mm/rev) | (mm) | Ra (µm) | Rz (µm) | Rz1max (µm) | Thickness (µm) | (CCR) | HV | |
1 | 150 | 0.05 | 0.5 | 0.448 | 3.177 | 3.373 | 105.2 | 2.1 | 241.4 |
2 | 150 | 0.1 | 1 | 0.974 | 5.696 | 6.502 | 189.05 | 1.9 | 266 |
3 | 150 | 0.15 | 1.5 | 2.155 | 10.483 | 11.056 | 277.4 | 1.85 | 235 |
4 | 200 | 0.05 | 1 | 0.433 | 3.133 | 3.512 | 116.7 | 2.33 | 256.2 |
5 | 200 | 0.1 | 1.5 | 1.023 | 6.375 | 8.009 | 164.7 | 1.65 | 277.1 |
6 | 200 | 0.15 | 0.5 | 2.637 | 11.993 | 12.854 | 208.33 | 1.39 | 260.7 |
7 | 250 | 0.05 | 1.5 | 0.554 | 3.936 | 4.497 | 98.24 | 1.97 | 248 |
8 | 250 | 0.1 | 0.5 | 0.746 | 4.41 | 5.098 | 160.7 | 1.61 | 248 |
9 | 250 | 0.15 | 1 | 1.885 | 10.473 | 12.541 | 238.6 | 1.59 | 280 |
Run: | Cutting Conditions | ||
---|---|---|---|
Cutting Velocity (m/min) | Feed (mm/rev) | Cutting Depth (mm) | |
Prediction | 250 | 0.05 | 1 |
Level | Vc | f | ap |
---|---|---|---|
1 | 0.1781 | 6.4582 | 0.3658 |
2 | −0.4498 | 0.8588 | 0.6643 |
3 | 0.7229 | −6.8658 | −0.5789 |
Delta | 1.1728 | 13.3240 | 1.2432 |
Rank | 3 | 1 | 2 |
Run: | Cutting Conditions | ||
---|---|---|---|
Cutting Velocity (m/min) | Feed (mm/rev) | Cutting Depth (mm) | |
Prediction | 250 | 0.15 | 0.5 |
Level | Vc | f | ap |
---|---|---|---|
1 | −5.788 | −6.560 | −4.480 |
2 | −4.852 | −4.687 | −5.650 |
3 | −4.685 | −4.077 | −5.194 |
Delta | 1.103 | 2.483 | 1.170 |
Rank | 3 | 1 | 2 |
Source | DF | Seq SS | Adj SS | Adj MS | F | P | Contribution (%) | Significance |
---|---|---|---|---|---|---|---|---|
Cutting velocity | 2 | 2.066 | 2.066 | 1.033 | 0.31 | 0.766 | 0.74 | Non-significant |
Feed | 2 | 268.550 | 268.550 | 134.275 | 39.71 | 0.025 | 95.94 | Significant |
Cutting depth | 2 | 2.527 | 2.527 | 1.263 | 0.37 | 0.728 | 0.903 | Non-significant |
Residual Error | 2 | 6.763 | 6.763 | 3.382 | ||||
Total | 8 | 279.907 |
Source | DF | Seq SS | Adj SS | Adj MS | F | P | Contribution (%) | Significance |
---|---|---|---|---|---|---|---|---|
Cutting velocity | 2 | 2.120 | 2.120 | 1.0598 | 1.81 | 0.356 | 13.74 | Non-significant |
Feed | 2 | 10.046 | 10.046 | 5.0232 | 8.59 | 0.104 | 65.14 | Non-significant |
Cutting depth | 2 | 2.085 | 2.085 | 1.0427 | 1.78 | 0.359 | 13.52 | Non-significant |
Residual Error | 2 | 1.170 | 1.170 | 0.5850 | ||||
Total | 8 | 15.421 |
Taguchi Analysis: Surface Roughness Ra | Taguchi Analysis: CCR | ||||
---|---|---|---|---|---|
S | R-Sq | R-Sq(adj) | S | R-Sq | R-Sq(adj) |
1.8389 | 97.58% | 90.33% | 0.7648 | 92.41% | 69.65% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gyliene, V.; Brasas, A.; Ciuplys, A.; Jablonskyte, J. Optimization of the Surface Roughness and Chip Compression Ratio of Duplex Stainless Steel in a Wet Turning Process Using the Taguchi Method. Machines 2024, 12, 437. https://doi.org/10.3390/machines12070437
Gyliene V, Brasas A, Ciuplys A, Jablonskyte J. Optimization of the Surface Roughness and Chip Compression Ratio of Duplex Stainless Steel in a Wet Turning Process Using the Taguchi Method. Machines. 2024; 12(7):437. https://doi.org/10.3390/machines12070437
Chicago/Turabian StyleGyliene, Virginija, Algimantas Brasas, Antanas Ciuplys, and Janina Jablonskyte. 2024. "Optimization of the Surface Roughness and Chip Compression Ratio of Duplex Stainless Steel in a Wet Turning Process Using the Taguchi Method" Machines 12, no. 7: 437. https://doi.org/10.3390/machines12070437
APA StyleGyliene, V., Brasas, A., Ciuplys, A., & Jablonskyte, J. (2024). Optimization of the Surface Roughness and Chip Compression Ratio of Duplex Stainless Steel in a Wet Turning Process Using the Taguchi Method. Machines, 12(7), 437. https://doi.org/10.3390/machines12070437