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Abstract: Predictive maintenance (PdM) is the most suitable for production efficiency and cost
reduction, aiming to perform maintenance actions when needed, avoiding unwanted failures and
unnecessary preventive actions. The increasing use of 4.0 technologies in industries has allowed the
adoption of recent advances in machine learning (ML) to develop an effective PAM strategy. Then
again, production efficiency not only considers production volumes in terms of pieces or working
hours, but also product quality (PQ), which is an important parameter to also detect possible defects
in machines. In fact, PQ can be used as a parameter to predict possible failures and deeply affects
manufacturing costs and reliability. In this context, this study aims to create a product performance-
based maintenance framework through ML to determine the optimal PdM strategy based on the
desired level of product quality and production performance. The framework is divided into three
parts, starting from data collection, through the choice of the ML algorithm and model construction,
and finally, the results analysis of the application to a real manufacturing process. The model has
been tested within the production line of electromechanical components. The results show that the
link between the variables representing the state of the machine and the qualitative parameters of the
production process allows us to control maintenance actions based on scraps optimization, achieving
an improvement in the reliability of the machine. Moreover, the application in the manufacturing
process allows us to save about 50% of the costs for machine downtime and 64% of the costs for scraps.

Keywords: predictive maintenance; product quality; machine learning; maintenance costs; industry 4.0

1. Introduction

Maintenance, production, and product quality are strictly interconnected concepts [1].
Industries’ target is to produce high-quality products with flexible productions at minimum
costs. Maintenance has been seen as a necessary and inconvenient activity for many years,
and nowadays is still mainly seen as a cost, as it requires time, manual labor, and spare parts,
as well as production loss. However, maintenance should be seen as a tool to improve and
maintain production effectiveness and efficiency, even if all its benefits are not so easy to
quantify [2,3]. Maintenance strategies aim to reduce equipment failure, decrease production
shutdowns, and improve production efficiency and equipment effectiveness. The main
maintenance strategies are corrective maintenance, i.e., when maintenance action occurs
after failure; preventive maintenance (PvM), i.e., when maintenance action occurs before
failure with a predetermined frequency; and predictive maintenance (PdM), i.e., when
maintenance action occurs before failure following the condition monitoring of equipment.
PdM is always receiving more attention since it allows us to carry out maintenance actions,
if it is necessary when a breakdown is more likely, and consequently, it allows us to reduce
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costs related to spare parts and to improve the scheduling of production and downtime
for maintenance.

The increasingly widespread use of Industry 4.0 technologies (I14Ts) allowed the
collection of large amounts of data from manufacturing processes, which can be used for
PdM and failure prediction [4], in particular, for monitoring the health state of machinery.
In fact, within I4T, the data that modern industrial machinery can collect and communicate
are allowing a constant evolution of predictive maintenance strategies (PMSs) to anticipate
possible machine failures or increase the mean time between maintenance—MTBM [5]. The
prediction of such behaviors can be achieved with artificial intelligence (AI) techniques
using machine learning (ML) algorithms. The machine’s health state can be approximated
with the use of ML, which will help reduce machine downtime and maintenance costs,
while making the maintenance frequency as low as possible [6].

In order to achieve efficient and effective production, maintenance activities, pro-
duction planning, and quality control should be integrated with each other. The goal
of maintenance is not just limited to warrant the continuity of production, minimizing
downtime, and optimizing stops, but also to maintain, as much as possible, good product
quality (PQ) [7]. A product can also be characterized by specific levels of performance, and
this concept is especially suitable for those products in which the PQ specifications are
defined by international standards. According to the concept of fitness for use, these levels
may be discriminable, even at the commercial level, due to differences in the performance
they request for certain areas of use. Consequently, PQ parameters should be related to a
machine’s operating parameters, in order to define machinery health state through PdM.
The work of Chen and Jin [8] proposed a quality-reliability chain in order to investigate the
relationship between production machinery reliability and product quality, proving that
product quality improvement may orient maintenance actions and strategies. Thus, the
PQ parameters should also be one of the entry data options that an AI model can consider
when defining PdM strategy.

This work aims to investigate the use of models based on Al techniques that allow us to
determine the optimal PdM strategy based on the desired level of quality and performance
of the final product. It proposes a new product performance-based maintenance framework,
which guides researchers and practitioners in ML applications with the goal of combining
performance and quality parameters in order to optimize the PdM strategy. Moreover,
with PdM strategy optimization, it is expected to reduce the total number of failures and,
consequently, reduce unnecessary maintenance actions, downtime, and scraps; the costs
related to this aspect are discussed to demonstrate the benefits of the PAM application.
Compared to previous works, this paper aims to combine data obtained with I4T and the
desired level of quality, to carry out optimal PdM strategies through ML algorithms, in
order to improve efficiency and reduce costs.

The paper is organized as follows: Section 2 presents the literature review analysis
related to predictive maintenance, product quality, and machine learning; then Section 3
will present the research methodology and the framework, while Section 4 is about the
framework’s application and case study. Finally, a cost analysis is presented in Section 5,
while the conclusion and further research are discussed in Section 6.

2. Literature Review

As explained above, the aim of this work is to propose a new tool to guide PdM
implementation through the use of ML algorithms, based on the data derived from I4T and
taking into account product quality. The following sections analyze these aspects in detail.

2.1. Predictive Maintenance

Preventive maintenance (PvM) is a common strategy for scheduling maintenance
actions to avoid failures. Although an effective strategy, it is not optimal in terms of
cost and often leads to unnecessary exchanges and unwanted failures [9]. Instead, the
main objective of predictive maintenance is to detect failures in advance by periodically
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monitoring the condition of processes, machines, materials, and products in manufacturing
systems to develop just-in-time maintenance actions. This strategy allows us to maintain
equipment availability, quality, and safety, and reduces costs associated with breakdowns
and unnecessary maintenance activities [10,11].

For this purpose, predictive maintenance uses the actual operating conditions of
equipment, materials, and systems to optimize manufacturing operations. Thermography,
tribology, vibration and process parameter control, and visual inspections are tools used
by traditional predictive maintenance approaches to determine the actual operational
conditions of critical plant systems and to identify potential faults.

The resulting production data are used to plan all maintenance activities as required.

Predictive maintenance can be divided into two specific subcategories [12]:

- Statistics-based predictive maintenance. Develop statistical models using information
generated from all failures to estimate the remaining useful life (RUL) of monitored
components and enable the development of PvM plans.

- Condition-based predictive maintenance related to the study of wear processes of
mechanical parts. Wear processes are believed to be associated with changes in
mechanical behavior that can lead to mechanical failure.

2.2. 14T and Machine Learning

Predictive maintenance requires an adequate amount of data from the manufacturing
process to be effective. Data availability is often the main drawback of PdM strategy
implementation in manufacturing systems. The greater the amount of data, the higher
the accuracy of the health status of the system and the prediction of pending failures.
Using integrated sensors, predictive maintenance avoids the unnecessary replacement
of equipment, reduces machine downtime, identifies the main cause of the error, and
therefore saves costs by improving efficiency. Unlike conventional preventive maintenance,
predictive maintenance planning activities are based on data collected by sensors and
analysis algorithms [13,14]. The PdM strategy can be divided into three key phases [15,16]:
data acquisition, usually carried out automatically; data processing, where the dataset is
cleaned and analyzed; and the maintenance decision-making phase, where maintenance
action is planned. Machine learning (ML) approaches can support the application of PdAM
strategies [17,18] as they are a useful tool for analyzing data and monitoring operational
models. ML is a selection of different algorithms aimed at analyzing and processing
data for the purposes of clustering, classification, and prediction [19]. The final goal of
ML approaches is to look for complex relationships in the data that can be difficult to
capture with current tools, detect errors as they occur, and determine greater accuracy
when predicting the RUL of a system [20]. ML techniques applied to PdM strategies are
of increasing interest in both academia and the industry as they demonstrate interesting
modeling and predictive capabilities, even in highly complex and heterogeneous problem
domains [21]. Several authors, in recent years, have proposed maintenance models using
machine learning. Rivas et al. [22] created a model to establish the RUL of a machine
through a recurrent neural network; Jimenez et al. [23] presented an approach to optimize
the sensors in a condition monitoring system employing ultrasonic waves and to classify
some features through machine learning and a neural network. Sangje Cho et al. [24]
describe a hybrid machine learning approach that combines unsupervised learning and
semi-supervised learning for the lack of data relating to the state of the machine or the
maintenance history in the amount of data available in modern manufacturing companies.
Salmaso et al. [25] use a DOE step before the usual big data analytics and machine learning
modeling phase to reduce the difficulty of finding causal relationships among variables.

All these models, and many others, are fundamentally based on data collection.
Big manufacturing companies are able to collect and process huge quantities of both
from manufacturing processes and from control activities, but also from top levels of
management. This trend is strictly connected to the integration of Industry 4.0 technologies
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into production [26], and these data, especially those from manufacturing processes, may be
a good baseline for the implementation of predictive maintenance [4] and ML approaches.

I4T mainly focuses on the manufacturing sector. This is because it is the sector most
involved in the efficiency and sustainability of industrial processes, including mainte-
nance [27]. Internet of Things and big data used in manufacturing companies provide large
amounts of data from manufacturing processes exploitable for predictive maintenance or
failure prediction [28]. In this context, thanks to certain I4Ts, it is possible to collect and
monitor data for the entire use of a product [29]. The last decade was abundant in these I4Ts,
such as radio-frequency IDentification (RFID) [30], optoelectronic sensors, micro-electro-
mechanical system (MEMS) and wireless telecommunications, and product embedded
information devices (PEIDs), to cite a few. Such developments in information technology
have enhanced the progress in the maintenance sector, enabling network bandwidth, data
collection and retrieval, data analysis, and decision support capabilities for large time-series
of databases, allowing the diagnosis of the state of degradation of the product [31]. There-
fore, the use of this information may provide the opportunity to improve the efficiency
of product maintenance procedures, since it is possible to diagnose the product’s status,
predict product anomalies, and perform proactive maintenance [32]. Paolanti et al. [21,33]
define three types of approaches based on the data, model, and hybrid. They also explain
that the data-based approach is usually defined as data mining or machine learning. In this
context, Wang et al. [34] and Susto et al. [35] used historical data for learning to evaluate the
behavior of the system. These data are used in a sustainable manner in areas where data
availability increases, for example, in the industrial sector [21,36]. This approach can be
classified into (i) supervised, where information relating to errors or faults is present in the
modeling dataset, and (ii) non-supervised, where information on the logistics and/or the
process is available, but of which there are no maintenance data. The model-based approach
uses an analytical model to figure out the behavior of the system, while the hybrid one
combines supervised and unsupervised learning. The possibility of obtaining information
about maintenance depends on the choice of the existing maintenance management policy,
and, whenever possible, supervised solutions are preferred [37]. However, the solutions
based on machine learning techniques seem to be among the most used, as shown by Heng
et al. [38] and Su et al. [39], which carry out a maintenance analysis for the production
of semiconductors.

2.3. Quality and Maintenance

The efficiency of manufacturing systems is, of course, strongly related to the availabil-
ity of production systems. Another important parameter is the quality of the throughput. In
fact, the most used efficiency index in the world, the OEE index, considers both availability
and quality. In order to reduce defective products, PAM of production systems can help to
keep machinery in good condition to carry out the standard outputs; maintenance should
be used jointly with sampling the output to screen out defective units. Kuo [40] investi-
gated the machine maintenance and quality control problem, using a Markov decision
process, to carry out the optimal maintenance and quality control strategy to minimize
total costs. The work of Colledani and Tolio [41] analyzed the relationship between the
production rate of conforming products and the progressive deterioration of machines
and preventive maintenance. Rivera-Gomez et al. [42], instead, focused on the optimal
production plan and schedule determination, considering both maintenance and produc-
tion quality, in order to minimize costs; Ait-El-Cadi et al. [43] proposed an integrated
production, maintenance, and quality control policy with a dynamic sampling plan. Many
studies investigate the relationship between preventive or predictive maintenance and
production quality rate, using models and tools to minimize costs and optimize planning
and schedule activities [7,44,45]. The ever-increasing diffusion of I4T in industries leads to
an increasing number of connected machines, systems, equipment, and goods on the shop
floor. This is providing new opportunities, especially in production system analysis and
modeling. In this context, PAM and PQ can be analyzed jointly with the use of 14T and ML
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algorithms. Tambe et al. [46] developed an integrated approach to optimize maintenance,
quality control, and production scheduling, using simulated annealing (SA) and genetic al-
gorithm (GA) approaches. Spendla et al. [47] described an approach to build a data storage
platform that integrates maintenance parameters and process quality to support analysis
and decision phases. Sezer et al. [48] developed Industry 4.0 low-cost architecture focusing
on PdM, which was able to predict machining quality through the recursive partitioning
and the regression tree model techniques; finally, Zhou et al. [49] propose an ML approach
for monitoring the quality of welding. Despite the widespread use of I4T in industries
and the increased confidence in using machine learning algorithms for the definition of
production planning, scheduling, and maintenance strategies, the use of these available
data in combination with the production quality rate is still poor. In particular, many works
investigate joint models for maintenance activities and production planning problems
considering PQ, but few of them use novel techniques, such as ML algorithms based on
data derived by I4T; Tercan and Meisen [50] provide a review of scientific publications
concerning the prediction of quality based on process data. Figure 1 represents the main
research area of this study, showing a lack of studies that consider 14T, ML algorithms,
maintenance, and PQ at the same time (gray area).

Kagsrmann et al (2013)
Papadopoulos et al (2021)

14T

Figure 1. Domains and references in the literature review [2,4-12,16,19,22-25,29,40-42,44-48,51-67].

According to the literature analysis, this study aims to investigate the use of ML
algorithms to perform optimal PdM strategies considering PQ.

This analysis highlights the gap between the use of maintenance data through ML
and the real-time control of product quality through a single framework; furthermore,
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appropriate PdM strategy approaches may be finalized to improve at the same time the
efficiency and reliability of the manufacturing system and the PQ. These approaches should
relate certain PQ features to the maintenance status of the machine and, through data
collection and monitoring with I4T, dynamically define the appropriate PdM strategy.
This paper focuses on how a model integrates the key PQ variables in the PAM strategy
and investigates the quality deviation that characterizes the PQ level, based on the co-effect
between manufacturing system component reliability and product quality. The optimal
maintenance strategy is determined by optimizing the quality cost, the repair cost, mainte-
nance cost, and the interruption cost simultaneously, through a fuzzy real-time agent.

3. Research Methodology and Framework

Based on the existing literature, this study attempts to answer some basic questions
about the connection between PdM and PQ.

The first research question aims to address the feasibility of a model that considers PQ
parameters as potential variables for PAM. The basic investigation focuses on the potential
relationships of machine data with predictive maintenance indicators and PQ.

RQ;: How can product quality parameters influence the problem of predictive maintenance?

The second research question aims to investigate the potential impact of PAM accord-
ing to a certain level of PQ. This part of the research has been carried out by investigating the
real-world ability of the model to “learn” from the PQ data and to suggest the optimal PdM.

RQ: May we improve the MTBM and decrease maintenance and production
costs through PQ optimization?

The goal of our research framework (Figure 2) is to incorporate product quality into
the management of maintenance activities and to implement a suitable PAM according
to a variable threshold that describes the quality level the manufacturing process must
guarantee. The framework can be divided into three main steps, which provides the input
variables’ definition, the predictive analysis model’s definition, and finally, validation
and utilization.

STEP 1 — Input variables definition

=== ===

Machine parameters | Machine
T status —"
| parameters

. Correlation between
I machine status and ———
product quality

IN-OUT variables.
definition

I Product

measurement

Input/Output ML
Matrix comparison

Modelling

MLtechniquel |

MLtechnique2 |

M technique3 |

STEP 3 — Results and main findi

7“(12 |

|
! Maintenance actions
|
|

Data from production process - Model Application to '
T Production Process Results Analysis
. Performance
| ] and cost improvement
|_and castimprovement

Figure 2. Research framework.
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3.1. Step 1. Input Variables” Definition

The first step aims to define a set of variables concerning the machine status and
PQ according to the application case. In this step, it is necessary to take into account
the machine parameters that can be related both to the continuity of the process and the
compliance of the product with the quality requirements, and to define PQ variables that
follow, in a timely manner, the variations in the quality rate of the process. This step
is finalized to relate the PdM to the PQ parameters or, in other words, to define which
parameters will be the input and output of our model. It is important to define which
parameters are important to establish the health of the machine; these can vary depending
on the machines, industrial sector, or products. We can have physical parameters, such
as temperature or pressure, or dynamic parameters, such as vibrations. For example, the
work of Moreno et al. [68] used torque and speed as the input data to monitor the industrial
system; instead, in the work of Bachraty et al. [69], the input parameters are depth of
cut, cutting speed, and feed. The other important variable that we need to define is the
quality variable; this one can be generally described as defected products, or can be more
detailed by defining products that need to be reworked or products that are wasted. Once
all variables have been defined, they are classified as input variables (if they represent
machine status) or output variables (if they describe the quality rate).

3.2. Step 2. The Predictive Analysis Model’s Definition

Once the input-output data are defined, in the second step, the model structure is
defined through combining the monitoring of the variables that represent the machine’s
status and the prediction of the quality rate, elaborated by artificial intelligence techniques;
the model will enable us to select the maintenance strategy according to the desired level
of product quality. Different ML techniques are explored to build a model able to learn
the behavior of the system and to detect the potential relations between the performances
of the machine and the PQ parameters. In this phase, the comparison of the forecast
phase, in terms of accuracy, is used between different ML techniques, each trained with the
same input/output matrix defined in step 1, to validate the algorithm choice. There are
many ML algorithms that can be used for this kind of system. For example, in the work
of Caldas [56], the random forest algorithm is applied to the predictive maintenance of
an electrical substation; Roque et al. [57] use the gradient boosting technique to perform
failure detection in rotating machines through machine learning. The choice of which ML
algorithm should be considered depends on the characteristics of the considered application,
the available data, and the desoldered accuracy. The work of Shawkat et al. [58] proposed
a new framework for learning algorithm assessment and selection, based on empirical
results. Also, the work of Singh et al. [59] can be used to individuate the most interesting
and suitable algorithms; it proposes a detailed review and classification of ML algorithms
based on accuracy, speed of learning, complexity, and risk of over fitting measures. Finally,
the work of Pistorious et al. [60] proposes a useful evaluation matrix for ML algorithm
choice based on efficiency criteria, such as accuracy, model complexity, and scalability. In
particular, they consider the following parameters: accuracy, training time, prediction time,
resource consumption, stability, comprehensibility, scalability, complexity, and number of
hyperparameters.

The final output of this step is the model that will be used to monitor the system and
prevent failures.

3.3. Step 3. Validation and Results

The final step of the research framework is the application of the model in reality
and the validation of the results. The input data are based on the values obtained from
the process; the output includes the maintenance actions suggested by the implemented
model and the impacts on the performances deriving from the process in terms of cost,
maintenance parameters, and quality rate.
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4. Framework Application and Case Study

In this section, the research framework was applied to a real case study. The company
produces electromechanical breakers, it has 10 production lines distributed on 5 different
plants, and a production capacity of about 1.3 million pcs per year.

For the application, a production line for the assembly of power transformers was chosen.

4.1. Implementation of Step 1

In this part, input variables need to be defined. The production cycle of the power
transformers assembly line has the following operations (Figure 3):

Assembly

h 4

Soldering > » Dry oven

Vaccum N Final _| Insulation .| Functional
assembly test g test

mixer

Figure 3. Production flow.

Assembling the primary and secondary cores in the case.
Soldering the input cable.

Application of resin in a vacuum chamber mixer.

Resin drying.

Assembling the output connection.

Insulation test.

Functional test (check the output current).

NG L=

In this manufacturing process, the vacuum mixer machine is the most critical in terms
of impact on the product quality rate; the impact of this operation on the total waste
generated by the manufacturing process is about 85%, while the remaining part is due to
soldering (operation #2). This operation concerns the manufacture of a resin layer between
the cores of the current transformer that should guarantee the electrical insulation of the
product, and it is made by a vacuum mixer machine, where the working cycle is composed
of three phases: loading, degassing and dosing.

During this operation, the vacuum pressure in the tanks and in the chamber is signifi-
cant for the success of the phase and then for the product quality, because the vacuum cast-
ing needs to create an insulating layer without voids, bubbles, and/or porosity (Figure 4).

—ad

Figure 4. Bubbles on the insulating layer.

After the final assembly, the insulation of the product is tested at a high voltage
according to the customer’s specifications.

Since the product quality in our case study is related to operation #3, this study focused
on the maintenance in the mixer machine that runs this operation, and specifically of the
vacuum pumps (VPs) that perform the working cycle.

Vacuum pumps have the function of decreasing the pressure of a gas in a certain
volume. Consequently, they must remove some gas particles from the volume.

The VPs in our mixer machine consisted of two primary parts: an electric motor and a
vacuum pump. The predictive maintenance and condition monitoring of vacuum pumps is
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the main topic of many papers; Mooney and Shelley [61] summarize how pump predictive
maintenance evolves through the use of networked monitoring systems. Konishi and
Yamasawa [70] considered the issue of process by-products accumulating in the pumping
system. Deposits within the pump cause friction, exceeding current limits and blocking the
pump; an ARMAX model was used to predict the vacuum pump motor current. Twiddle
et al. [62] tested the condition monitoring of a dry vacuum pump through a fuzzy logic
scheme to identify mechanical inefficiency and exhaust system blockage through exhaust
pressure. Butler et al. [63] uses artificial neural networks to estimate the degradation and
RUL (remaining useful life) of the pump, using as inputs pump process data regarding all
the steps in the pump cycle. Muhaimin and Ghazali [64] described a method for detecting
vacuum leaks through thermography, based on IR thermography image analysis to detect
leaks represented by a cold spot. Vinogradov and Kostrin [71] investigate the aspects related
to oil characteristics to be monitored to establish the correct frequency of oil replacement; a
visual color scale is used to determine the oil condition and maintenance action. In contrast
to these results, our study used predictive maintenance as a methodology to investigate
possible pump failure after the IA model predicted a deviation in product quality connected
to a difference of one or more parameters with respect to the normal operating ranges of
the machine.

The machine that performs operation#3 in our production cycle is equipped with 4
pumps (Figure 5):
1.  Resin drum pump VP1.
2. Resin tank pump VP2.
3.  Hardener tank pump VP3.
4. Dosing chamber pump VP4.

Tanks pump VP2 - VP3

Resin drum pump VP1

Dosing chamber pump VP4

Figure 5. Vacuum pumps in the mixer machine.

The vacuum level in the loading, degassing, and dosing phases ensures that the
mixture is able to guarantee the insulation of the product. The lack of reliability of the
pumps could be the cause of insufficient pressure in the tanks and in the dosing chamber,
thus affecting the quality of the final product.
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The pressures can be monitored by the control panel and are stored in the machine
control unit. A typical maintenance indicator for vacuum pumps is the engine temperature
that is stored in the machine control unit. Therefore, the parameters that allow us to define
the machine’s status are pressure and temperature for each VP; the inputs of our model are
presented in Table 1.

Table 1. Machine status input variables.

Variable Description Unit of Measure
P1 Resin tank pressure mB
P2 Hardener tank pressure mB
P3 Resin degassing pressure mB
P4 Vacuum chamber pressure mB
T Pump 1 temperature °C
T, Pump 2 temperature °C
T3 Pump 3 temperature °C
Ty Pump 4 temperature °C

The first pass yield (FPY) was chosen as the PQ variable; this index represents the
percentage of pieces that do not need to be reworked, with respect to total daily production.

4.2. Implementation of Step 2

Step 2 concerns the prediction analysis, where the FPY is estimated based on the input
variables, and a decision stage and a decision phase, which suggest a maintenance action
based on the output of the previous stage (Figure 6).

Input variables Predicted output
Machine status »  Predictive stage > Decision stage » Maintenance action

Figure 6. Model structure.

To choose the best ML technique to implement the predictive phase, the accuracies
of a naive Bayes classifier (NBC), a nearest-neighbor classifier (NNC), and a bagged tree
classifier (BTC) were compared because, from the literature review previously analyzed,
it emerged that they are the most commonly used techniques for classification problems.
Cakir et al. [72] compared popular ML algorithms in the design of an IoT condition-based
monitoring system.

The NBC is both a supervised learning method and a statistical method for classi-
fication [73] and is used as a classifier in commercial and open source antispam e-mail
filters [74]. This classification is based on the Bayes theorem and allows us to determine
uncertainty by calculating probabilities of outcomes.

The NNC is a supervised learning technique used for pattern recognition [65]; this
type of classifier has been used for demand forecasting production planning [66], and also
as a reference system to compare other classifiers. A NNC needs, in the design stage, a
set of prototype vectors, a classification rule, and a neighborhood proximity measure. The
prototypes are symbolic data used by the classifier to attribute class labels. NN classification
essentially consists of selecting the label of the nearest neighbor of an unknown input vector.

The bagged tree classifier (BTC) uses bagging or bootstrap aggregations to improve
the variance reduction in the prediction function [75], and finds its main applications in
statistical classification, predictions, and decision tree systems [76]. Random forests consist
of several decision-making trees, which work as a group of de-correlated and averaged
trees [67]. Averaging many noisy but roughly unbiased models allows us to reduce the
variance and to use the ability of trees to capture complex interaction structures in the data.
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The NBC, NNC, and BTC were trained through the MATLAB Classification Learner
App with an 8 x 150 matrix input matrix and a 1 x 150 output matrix, representing the
observation of 150 working days:

pl .. Pl
IN =
tho...

OUT = [FPY! ... FPY™]

The pressure values of the pumps and the dosing chamber were stored on the machine
control unit, the temperature values of the pumps were read by sensors and stored on the
machine control unit, and the FPY index was calculated automatically by a line performance
software, where operators enter data on daily production and non-compliant pieces.

The FPY output variable has been classified according to 3 categories:

1. FPY <90%.
90% < FPY < 95%.
3. FPY > 95%.
Figure 7 shows the confusion matrix for the NBC trained thorough the IN and
OUT matrices:

N

1 46.2% 15.4% 38.5% 46.2% 53.8%

156.0% 15.0% 15.0%

True Class
N

25%

1 2 3 TPR FNR
Predicted Class

Figure 7. Confusion matrix for the naive Bayes classifier.

In this case, the FNR is high for classes 1 and 2 (representing, respectively, FPY =2
and FPY = 1). This indicates that the naive Bayes classifier should not predict the correct
output when the input variables should suggest an FPY index in these two classes.

In the scatter plot (ps vs. t4) in Figure 8, the yellow, orange, and blue dots represent,
respectively, FPY = 1, FPY = 2, and FPY = 3. In addition, the yellow and orange dots overlap
in some areas of the plot (X represents incorrect predictions).

This indicates the NNC is unable to predict the right output. The overall accuracy for
the NBC is 75%.

Figure 9 shows the confusion matrix for an NNC (K = 1) trained with IN and
OUT matrices.

In this case, the FNR is better for classes 1 and 2 (representing, respectively, FPY =2
and FPY = 1), but the accuracy is lower in the prediction of class 3; the scatter plot (Figure 10)
shows overlapping for classes 1 and 2.
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Figure 8. Scatter plot for the naive Bayes classifier (p4 vs. t4).
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Figure 9. Confusion matrix for the nearest neighbor classifier.
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Figure 10. Scatter plot for the nearest neighbor classifier (p4 vs. t4).
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The overall accuracy for the NNC is 88%.

For the BTC, the best accuracy result (91%) was obtained, with 30 as the number of
learners (the number of decision trees in the random forest) and 151 splits (the depth of the
decision tree); Figure 11 displays the confusion matrix for the BTC.

Model 1

23.1%

35.0%

35.0%

True Class
n

2.5%

1 2 3 TPR FNR
Predicted Class

Figure 11. Confusion matrix for the bagged tree classifier.

In this case, the FNR is better for class 3 with respect to the NBC and NNC.
The scatter plot (Figure 12) shows overlapping for classes 1 and 2, and displays the
confusion matrix for the BTC.

Predictions: model 1

67
66 -
65 -
L]
64 L
x
63 -
o
62 - °
61 ® x
60 - X .
L]
L]
59 - ° o X
° 14 2t «
58 - ¢ X o &k
| | 1 1 | | 1 1 | | 1
12 125 13 135 14 145 15 155 16 16.5 17

p4
Figure 12. Scatter plot for the bagged tree classifier (p4 vs. t4).

We compared the overall accuracy of the naive Bayes classifier and nearest neighbor
classifier with that of the BTC (Table 2).
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Table 2. Accuracy comparison among ML techniques.

Model Accuracy
naive Bayes Classifier (NBC) 75%
Nearest Neighbor Classifier (NNC) 88%
Bagged Tree Classifier (BTC) 91%

The latter was chosen as the predictor of our model.

The predictive phase was completed by combining the bagged tree classifier (BTC)
with a fuzzy inference engine (FIE). Variables that describe the state of the machine were
used as the inputs of the BTC and FIE, and the predicted FPY (BTC output) represents an
additional input to the FIE to determine the appropriate maintenance action for each pump
(Figure 13).

Vacuum h | Corrective actions and PM
» FIE2 _ .
pump2 4 > S inspections for VP2
[ [
p2,t2
Vacuum  PLU | HE1 | _ Corrective actions and PM
pump 1 ‘ _4 = "I inspections for VP1
l pltl
FPY
—> BTC
\
A
pdt4
V p4.t4 —y‘ . .
acuum ' FE 4 . Corrective actions and PM
pump 4 - inspections for VP2
p3,t3
Vacuum P ¢ HE3 | Corrective actions and
pump 3 b = PM inspections for VP3

Figure 13. Model flow.

In summary, the BTC elaborates a prediction, based on the machine status, of the
quality rate of the process, and the FIE suggests which corrective action should be carried
out on the process according to the BTC output and to the machine status parameters. This
strategy uses the BTC to predict the behavior of the system and the objectivity of the fuzzy
rules to decide the action to be taken [77].

In more detail, the FIE receives as an input normalized the pressure and temperature
of each VP the and normalized FPY level estimated by the BTC, and elaborates a criticality
index I¢ according to a set of rules (Figure 14).
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Figure 14. FIE flow.

The rules are designed to assess whether FPY index deviation is caused by human
error or an actual anomaly in the pump. In the first case, a low-pressure value (VL), not
corresponding to an increase in temperature (L), and an FPY =2 (M) indicate a setup error
(Ic = M), as expressed by the following rule:

if (Pressure is VL) and (Temperature is L) and (FPY is M) then (Ic is M) 1)

In the second case, the pressure drop combined with a high temperature (VH), and an
FPY =1, leads to a high I¢ (H):

if (Pressure is VL) and (Temperature is VH) and (FPY is L) then (Ic is H) 2)

Through the index value, a corrective action (after defuzzification) is suggested to the
user as follows:

e Ic =L — noaction.
e Ic =M — setup error—check the pump’s setup.
e Ic =H — possible engine failure—check the temperature in the vacuum pump’s engine).

This portion of the study responds to the need, expressed through RQ)j, to include the
quality parameters of the product within the problem of predictive maintenance. In fact,
the prediction of the FPY is used, together with the operating parameters of the machine,
as one of the variables that guides the decision of the model with respect to the choice of
maintenance actions.

4.3. Implementation of Step 3

In step 3, we analyze how the model predicts the quality rate and suggests a mainte-
nance action through 3 different cases:

1.  The parameters of all VPs are in the normal operating range:

[ 8 mB T
7 mb
8 mB 0.33
IN = 1288?(1:3 — = FPYestimated = 3— = FlEjngexes = 8;3
29°C 039
28°C
[ 45°C ]

In this case, no action is required on VP;, VP;, VP3, or VP;.
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2. The pressure of VP4 is low:

[ 8 mB T
7 mb
8 mB 0.33
IN = 12%?2 — = FPYestimated = 2— — FIEjngexes = 8;;
29°C 0.67
28 °C
[ 45°C]

In this case, the FIE suggests checking the pressure setup of VP4 (the low pressure
may be caused by an operator error).
3.  The pressure of VP, is low and the temperature is high:

[ 8 mB T
7 mb
8 mB 0.33
IN = 12%?2 — = FPYestimated = 1— = FlEjpgexes = ggg
29 °C 0.83
28 °C
| 61 °C |

The FIE considers the association between the pressure drop and the temperature
increase as an anomaly that causes the failure of the pump; the suggested action is to
inspect the overheated area with a thermographic camera (Figure 15).

Figure 15. Thermographic inspection of a VP.

In case 1, the model evaluates the input data as an optimal situation; in case 2 the low
pressure, not being correlated to an increase in engine temperature, is judged as a setup
error by the operator. In case 3, the temperature increase is considered as a signal of a
possible pump failure.

The model was applied to the manufacturing process for a period of 6 months, corre-
sponding to an observation period of 150 working days, each with two shifts.

During this period, 46 anomalies were detected in the 4 vacuum pumps, of which
32 were considered to be resolved with checking the machine parameters, and 14 were
evaluated as possible pump failures.

Table 3 shows the difference between real events and the predicted events in the
2 categories of anomalies.
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Table 3. Real events vs. predicted events.

Setup Errors Possible Failures
Predicted 32 14
Real 31 13
Not predicted 0 1

In summary, 96.9% of setup errors were correctly predicted by the model, and 92.8% of
possible failures were reported and confirmed by a thermographic inspection of the vacuum
pump. In one case, failure was not even predicted (with serious damage to the pump),
because the anomaly had not generated an increase in temperature, and consequently the
model was not able to anticipate failure.

An interesting result concerns the variations in MTBF and FPY by comparing the
“before PAM” data and the period of the first application of the model to the manufacturing
process, i.e., “after PAM”. Table 4 shows the results and benefits, referring to a period of
150 days, in terms of number of maintenance events (NMEs), MTBM, MTTR, availability A,
and FPY, where the MTBM is calculated as [78] in (3):

MTBM — Up‘tzme 3)
Number of maintenance events
and availability as in (4):
MTBM
A= MTBM + MTTR @)

Table 4. Process parameters during data collection and model application.

Before PAM After PdAM %
Operating time 1248 h 1313 h +5.2%
NME 33 27 —18.2%
MTBM 37.8h 48.6h +28.6%
MTTR 168 min 101 min —39.9%
A 93.10% 96.6% +3.55%
FPY 96.4% 98.7% +2.3%

The comparison shows an evident improvement in the MTBM (from 37.8 to 48.6 h)
(Figure 16).

MTBM vs week
60

50

40

30

MTBM

20

10

01234567 89510111213141516171819202122232425

Week
e BefOre-PMS e After-PMS

Figure 16. MTBM comparison between data collection and model application.

At the same time, the optimization of the FPY index (Figure 17) confirms that the inclu-
sion in the model of a production quality index, which must be monitored and optimized,
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effectively leads to an improvement in the continuity of operation of the machine (avail-
ability increases from 93.1% to 96.6%), when this index is dependent on some operating
parameters of the machine itself (RQ,).

FPY index

99.0%
98.0%
97.0%
96.0%
95.0%
94.0%
93.0%
92.0%
91.0%
90.0%

Before-PMS After-PMS

Figure 17. FPY comparison between As-Is phase and model application.
Calculated as [78] in (1): the naive Bayes classifier and nearest neighbor classifier.

5. Cost Analysis

Finally, this section aims to evaluate the costs that can be reduced by the application
of a PAM model considering PQ. The total cost of the situation before the framework’s
application is calculated in the case study and compared with the result achieved after the
framework’s application. The total cost, Costtort, is calculated as the sum of cost related
to the lack of production during machine downtime, Costpr; the cost of maintenance
interventions, Costyy; the cost of the time necessary for the reworking of waste pieces,
Costg; and the cost related to the implementation of the AI model, Costaj, in a certain
period, T (usually one year), as expressed in (5):

Costror = Costpr + Costys + Costg+Costay [€/T) o)
The “Cost of Downtime (CostpT)” is expressed as:
Costpr = (K; * NME % MTTR) [€/T] ©6)

where K is the missed production hourly cost, NME corresponds to the number of main-
tenance events in the considered period, T, and the MTTR parameter is the mean time to
repair (Table 5).

Maintenance cost is calculated as the number of maintenance events that happened in
the considered period multiplied by the average maintenance hourly cost (Ky), the MTTR,
and the average cost of spare parts, Costsp sy, multiplied by the number of maintenance
events in the considered period.

Costy = (Kp * NME * MTTR) + Costgp_ay * NME [€/T] (7)
The scraps cost is evaluated as:
Costg =(K3 * (1 — FPY) « V+«RWT) [€/T] (8)

where Kj is the manual labor hourly cost, V is the production during the considered period,

FPY is defined as the “First Pass Yield First Pass Yield”, i.e., the percentage of pieces that

don not need to be reworked, and finally, RWT is the reworking time needed for each piece.
Finally, the “Cost of Implementation (Costay)” is:

Costar =Ky + K5 [€/ T] 9)
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where K; is the depreciation cost for the implementation of the model (sensors, software,
thermographic tools, etc.) and K5 is the managing cost of the tools referring to the consid-
ered period, T.

Cost evaluation is applied to the case study, and Table 5 summarizes the used data
referring to the observation period of T = 150 days.

Table 5. Data for cost calculation.

Constant Description Value
Ky Average missed production hourly cost 220 EUR/h
K Average maintenance hourly cost 80 EUR/h
K3 Average manual labor hourly cost 29 EUR/h
A\ Production volume 27,000 pes/T
RWT Reworking time 410 s/piece
Ky Implementation cost 1.520 EUR/T
Ks Managing cost of the tools 2.160 EUR/T
Costsp Ay Average cost of spare parts 165 EUR/T
NME Number of maintenance events 33 (Before PdM) 27 (After PAM)
MTBM Mean time between maintenance 37.8 h (Before PdAM) 48.6 h (After PAM)
MTTR Mean time between repair 168 min (Before PdM) 101 min (After PAM)
FPY First pass yield 96.4% (Before PdM) 98.7% (After PAM)

In Table 6, the costs of the data collection phase and the period of first application of
the model to the manufacturing process are reported (T = 150 days).

Table 6. Cost comparison between “Before PAM” and “After PAM”.

Before PAM After PdM %
Costpr (EUR/T) 20,291.04 9980.82 —50.81%
Costp; (EUR/T) 7392.00 3639.99 —50.76%
Costgp (EUR/T) 5445.00 4455.00 —18.18%
Costg (EUR/T) 3209.55 1159.00 —63.89%
Cost 41 (EUR/T) 0 3680.00 /
Costt (EUR/T) 36,337.59 22,914.81 —36.93%

The application of the model to the manufacturing process allows us to save about
50% of the cost for machine stops and 64% of costs for scraps (Figure 18).

Costs
40000

35000
30000

25000

w 20000
10000
-
0
Before-PMS After-PMS

MCost_DT WCost_ M MCost_SP MCost_S M Cost Al

Figure 18. Cost comparison between data collection and model application.
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N - |

Sc = 100%
Tc = 41.1°C

6. Discussion

The application of the framework to a real case study demonstrates the utility of
linking the PQ parameter to the PdM definition using ML models. The results show the
benefits not only in terms of time and performance, as the MTBM and the FYP increase by
about 28.6% and 2.3%, respectively, but also the economic ones in terms of saving about 37%
less of the total cost. Also, the operating time and the NME improve, the MTTR decreases
by about 40%, and the overall availability increases from 93.1% to 96.6%. The first step,
i.e., the data collection, is the most time consuming, if 14Ts are not implemented yet. After
that, the choice of the ML algorithm and the model construction depends on the criticalities
of the system.

The application of the model to the production line of electromechanical components
allows us to respond to the RQs:

e  RQjq: the relation of machines’ data to predictive maintenance indicators and PQ is
implemented through a prediction stage of the quality rate based on the machine
variables and a “decisional” stage through fuzzy logic;

e  RQjp: the link between the variables that describe the status of the machine and the
qualitative rate of the manufacturing process allows us to control maintenance actions
based on scraps optimization, achieving an improvement in the operation of the
machine. Moreover, this results in an estimated saving of about 50% of the costs for
machine downtime and 64% of the costs for scraps.

To verify that the developed framework is of general application, it was also tested
on a different production process; specifically, how it worked on a CNC turning process
was verified.

According to the results of the study by [79], one of the machine parameters that can
affect the quality of the final product (in terms of dimensions and surface roughness) is the
cutting speed; based on the results of the experiments reported in this research, variations
in the cutting speed impact the heat gradient between the tool and raw material, causing
dimensional and roughness variations in the product.

The emulsion system of CNC lathes has the function of delivering cutting oil to the
tools to avoid overheating and control tool wear; this system, however, is also one of the
components most vulnerable to failures in this type of machines [80].

Based on these considerations, the model has been trained with a matrix, built through
150 working shifts of observation, which has as input variables the cutting speeds Sc and
Tc (expressed as percentage override [0-150%]) and the temperature in the cutting chamber,
and as output the FPY rate, classified according to three categories:

e  FPY < 50%.
50% < FPY < 90%.
e  FPY >90%.

Also, in this application, the model predicts the quality rate and suggests a mainte-
nance action through three different cases:
Sc and T are in the normal range:

Sc = 100%

IN= {TC =315°C

} — FPYestimated = 3 — FlEindexes = [0-33] — no action

Sc and T are high:

IN = {TSCC—:\’;S%E? ‘ZOC} — FPYegtimated = 2 — FlEindexes = [0.66] — check cutting speed
Tc is high:

] — FPYegtimated = 1 = FlEindexes = [0.83] — check emulsion system
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This second application shows how the framework works correctly on a different
production process, after having trained the system with a matrix in which the input
variables are the system parameters that directly impact the quality of the final product.

The use of the model on the turning process was carried out for a period of 6 weeks
on five machines, with the results shown in Table 7.

Table 7. Results of model application to turning process.

Machine 1 Machine 2 Machine 3 Machine 4 Machine 5
Anomalies in the emulsion system 2 1 12 0 0
Wrong cutting-speed setting 4 5 2 2 1
FPY 84% 88% 75% 98% 96%

Preliminary data show a link between the number of anomalies found in the emulsion
system and the decrease in FPY, in particular for machine 3 (which has the highest number
of working hours); however, the link between machine performance, product geometry,
and the type of material processed should be investigated with more data, and it should be
taken into account that the machines have different characteristics (speed, bar channel, and
control module). The analysis must also be completed with the evaluation of the costs.

7. Conclusions and Further Research

Predictive maintenance is of course a strategic tool to optimize production, reducing
the machine’s downtime and scraps. With respect to preventive maintenance, it allowed us
to maximize the RUL of components through the continuous monitoring of the production
system’s behavior, reducing not only the failures, but also unnecessary maintenance activi-
ties. The high use of I4T in industries has made it possible to considerably improve PdM
applications, making available a large amount of data that can be used as the input for AL
Al with the application of different ML algorithms, is a novel and successful tool applied
in PAM. An important parameter that can be considered for maintenance prediction is the
quality of the product. In fact, machines can continue to work without failures, but produce
more and more scraps; this can be a signal of an imminent failure.

To combine the PQ parameter and PdM, this study proposed a new framework, with
the aim of guiding practitioners and the research on this issue. According to the results of
the literature review, the novelty of the approach adopted in this framework is the possibil-
ity of managing the process performance in an integrated way, both in terms of the number
and duration of stops and quantity of waste pieces. The identification of a link between the
state of the machine and the quality of the pieces produced makes it possible, through the
use of ML techniques, to obtain a combined improvement in production continuity and the
quality rate, with savings on the overall costs of the production process. The framework
has been applied to a real case study and a costs analysis has been carried out.

The results are encouraging, as it is possible to obtain an indication of the predictive
maintenance action to anticipate possible failures related to the state of the machine and
the production quality rate, and achieve a saving of about 37% of actual costs.

The application of the model to the production line leads to the assertion that, when
there is a link between the variables that describe the operating status of the machine
and the qualitative parameters of the production process, it is possible to control mainte-
nance actions on the basis of the optimization of waste, obtaining, at the same time, an
improvement in the operation of the machine and cost optimization.

In the Industry 4.0 context, the model can be used as a tool to improve the maturity of
the company in data collection and data handling. In fact, the model requires collecting
data in a structured way, identifying critical components, and, through data analysis, basing
decisions on the data. So, according to the classification presented in [81], this scenario
represents an intermediate level of maturity for data handling and allows one to jump to
an advanced level if the continuous improvement loop is implemented.
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7.1. Managerial Implications

This research resulted from industrial activities aimed at developing a framework for
the management of maintenance activities in relation to quality targets. The model has
been developed through ML to support maintenance manager and production manager
in planning of maintenance actions according to the real-time monitoring of machine
parameters and a prediction of quality rate, with the goals of guaranteeing the continuity
of production flow and a low percentage of not-compliant pieces.

From a managerial perspective, this study and its activities have addressed the mu-
tual effect of machine performances and quality requirements based on the process data,
supporting the company in evaluating the impact of maintenance costs and quality costs
within a single framework. This is not mandatory but may be added if there are patents
resulting from the work reported in this manuscript.

7.2. Future Research
Future research will address the following points:

o  The use of additional machine variables that make the prediction of failures more accu-
rate and can exploit, with a continuous improvement loop, the knowledge generated
by the analysis of maintenance interventions data.

e  The use of ML in step 1 of the research framework as a tool to detect the correlation
between machine parameters and the quality rate of the process.

e  The inclusion in the comparison with other ML techniques and an analysis of how the
configuration parameters of these techniques affect the behavior of the model in terms
of prediction accuracy.

e  The introduction of a second output variable representing the product’s performance
in the prediction stage.

The application of the framework to different types of production processes.
Comparison of the accuracy of the prediction phase considering the use of the fast
Fourier transform (FFT).
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Nomenclature

Abbreviation Description

PdM Predictive Maintenance

ML Machine Learning

PQ Product Quality

14Ts Industry 4.0 Technologies

PMSs Predictive Maintenance Strategies
MTBM Mean Time Between Maintenance
Al Artificial Intelligence

RUL Remaining Useful Life

RFID Radio-Frequency IDentification
MEMS Micro-Electro-Mechanical System
PEIDs Product Embedded Information Devices
SA Simulated Annealing

GA Genetic Algorithm
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VPs Vacuum Pumps

FPY First Pass Yield

NBC Naive Bayes Classifier

NNC Nearest Neighbour Classifier

BTC Bagged Tree Classifier

FIE Fuzzy Inference Engine

NMEs Number of maintenance events
Costror Total cost

Costpr Machine downtime

Costpp Cost of maintenance interventions
Costg Scraps cost

Cost a1 Cost related to the implementation of the Al model
Costpr Cost of downtime

Costsp Ay Cost of spare parts

K1 Average missed production hourly cost
K2 Average maintenance hourly cost
K3 Average manpower hourly cost
K4 Implementation cost

K5 Managing cost of the tools

\Y% Production volume

RWT Reworking time

MTTR Mean time between repair
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