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Abstract: Air conditioning contributes a high percentage of energy consumption over the world. The
efficient prediction of energy consumption can help to reduce energy consumption. Traditionally,
multidimensional air conditioning energy consumption data could only be processed sequentially
for each dimension, thus resulting in inefficient feature extraction. Furthermore, due to reasons
such as implicit correlations between hyperparameters, automatic hyperparameter optimization
(HPO) approaches can not be easily achieved. In this paper, we propose an auto-optimization parallel
energy consumption prediction approach based on reinforcement learning. It can parallel process
multidimensional time series data and achieve the automatic optimization of model hyperparameters,
thus yielding an accurate prediction of air conditioning energy consumption. Extensive experiments
on real air conditioning datasets from five factories have demonstrated that the proposed approach
outperforms existing prediction solutions, with an increase in average accuracy by 11.48% and an
average performance improvement of 32.48%.

Keywords: energy consumption prediction; time series; hyperparameter optimization; reinforcement
learning

1. Introduction

In recent years, with the rapid development of the global economy, building energy
consumption has shown a steady increase, where air conditioning contributes around
50–60% [1]. Therefore, predicting the energy consumption of building air conditioning
systems is crucial for reducing the total amount of energy consumption. Traditional en-
ergy consumption prediction (ECP) methods including autoregression(AR) [2], structural
time series models [3]—which usually need strong domain expertise to build appropriate
models—or require extensive crossvalidation computations over a large set of parame-
ters [4].

Some deep learning-based ECP methods are capable of learning complex data rep-
resentations and learning function forms in a data-driven manner [5], thereby reducing
the need for manual feature engineering and model design. Bai et al. [6] proposed using
Temporal Convolutional Networks (TCNs) for sequence modeling to enhance the learning
ability for time series data. However, with the scale and dimensionality of the collected air
conditioning energy consumption datasets increasing, these existing ECP methods usually
have low efficiency [7] when they sequentially extract features from time series data when
training prediction models.

Additionally, deep learning-based ECP methods also contain many hyperparameters
that need to be dynamically optimized, which requires a decent amount of time. Traditional
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manual tuning or grid search methods are often inefficient and time-consuming [8]. Evolu-
tion strategies, Bayesian optimization, Hyperband, and reinforcement learning [9] may be a
good help for such problem. However, the existing hyperparameter optimization methods
face limitations in capturing implicit correlations among multiple hyperparameters [10].

To address the above challenges, we propose a reinforcement learning based auto-
optimized parallel prediction (RL-AOPP) approach for air conditioning energy consump-
tion, which can extract data features in parallel during the prediction process and achieve
the automatic optimization of model hyperparameters. In RL-AOPP, a prediction model
based on a multidimensional temporal convolutional network (MTCN) is employed to
extract the features of multidimensional data in parallel, thus preserving their temporal
relationships. Another model of RL-AOPP is a deep reinforcement learning-based HPO
model, which can progressively optimize decision-making strategies through interaction
with the environment in the complex hyperparameter search space of the prediction model,
thus achieving an efficient and accurate HPO process.

The contributions of this paper are as follows:

1. We propose an innovative reinforcement learning based auto-optimized parallel
prediction approach for air conditioning energy consumption.

2. We design a multidimensional causal expansion convolutional network with enhanced
activation function, thus achieving efficient extract timing characteristics in large scale
air conditioning datasets.

3. An HPO model is designed based on an improved actor network and a differential
value sample pool construction module, which can improve the convergence speed of
the model.

4. We evaluate our approach using real datasets from five air conditioning factories,
and the results indicate that the proposed approach outperforms existing prediction
methods in terms of accuracy and performance.

2. Related Work

In this section, we will introduce prior research on time series data prediction and
hyperparameter optimization.

2.1. Time Series Data Prediction

Time series data exhibit characteristics such as periodicity, trend, and irregularity along
the temporal dimension [11]. Chaerun et al. [12] compared the effectiveness of machine
learning and deep learning in ECP. Lyu et al. [13] proposed a multistep prediction method
based on Long Short-Term Memory (LSTM), which successfully captured the periodicity
and temporal patterns. Ewees et al. [14] employed a Heap-Based Optimizer (HBO) to
train a LSTM network and further enhanced the predictive capability of the original LSTM
model. Abbasimehr et al. [15] introduced a hybrid model that combines LSTM networks
with multihead attention mechanisms, thus facilitating the precise prediction of intricate
nonlinear time series data.

To further enhance the learning capability for time series data, Bai et al. [6] proposed
the utilization of TCN for series modeling. Experimental results indicated that TCN outper-
formed typical recurrent networks such as LSTM and exhibited longer effective memory.
Bian et al. [16] introduced the TCN-BP model, which can extract the latent relationship
between time series data and non-time series data. Limouni et al. [17] introduced a hybrid
model LSTM-TCN, thus achieving more accurate power prediction. Huang et al. [18] de-
vised a convolutional differential network based on temporal subsequence, which enhances
the predictive capability of TCN. Liu et al. [19] introduced a short-term load prediction
approach grounded in TCN and dense convolutional networks.

These existing approaches can only sequentially extract feature information when
facing multidimensional temporal data, thus leading to low training efficiency.
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2.2. Hyperparameter Optimization

Well-performing hyperparameter configurations [8] are necessary for efficient pre-
diction. Bayesian optimization serves as an approximate method and finds extensive
application in HPO. Snoek et al. [20] applied Bayesian optimization to the process of
hyperparameter tuning, thus enhancing the performance of CNN in classification tasks.
Feurer et al. [21] introduced a hyperparameter-free ensemble model based on Bayesian
optimization, which reduces optimization time.

Due to latent mapping relationships between hyperparameters and models, the above
methods perform poorly in finding the optimal configuration of hyperparameters. There-
fore, some researchers consider abstracting the HPO process into a Markov decision pro-
cess [22] to introduce reinforcement learning. For instance, Jomaa [23] proposed a rein-
forcement learning approach to sequentially optimize hyperparameters, thus eliminating
the need for heuristic acquisition functions. Liu [24] proposed a reinforcement learning
optimization method for efficient hyperparameter tuning, which reduces the search space
and improves efficiency.

However, the long sequence dependency of time series prediction makes the return
signal of reinforcement learning sparse and delayed, which makes it difficult to learn
optimal hyperparameters [25] for time series prediction scenarios.

3. Design of the Reinforcement Learning-Based Auto-Optimized Parallel
Prediction Approach

In this section, we first introduce the overall architecture of the RL-AOPP. Then, we
separately introduce the prediction model, the hyperparameter optimization model, and
the detailed workflows of RL-AOPP.

3.1. Architecture

Time series data differ from other types of data, as they exhibit characteristics such
as periodicity, trend, and irregularity in the temporal dimension. Currently, mainstream
time series prediction methods still face challenges when dealing with complex time
series data, especially air conditioning energy consumption. On the one hand, the dataset
collected by sensors has a complex structure and spans a large time dimension, which
leads to the feature information among multiple variables becoming blurred or even
disappearing during model training. On the other hand, the original network structure of
temporal convolutional networks cannot simultaneously handle multidimensional data
inputs and struggles to fully extract the latent information among multivariate time series,
thus resulting in the poor predictive ability of the algorithm. Therefore, we propose a
time series prediction model called MTCN, which addresses the challenges in handling
multidimensional data and relieves the phenomenon of disappearing correlations among
multiple variables.

However, several layers in the MTCN structure may lead to performance issues such
as vanishing or exploding gradients during model training. To address this, we propose
an activation function called Parameter Softplus (PSoftplus), which not only effectively
mitigates the aforementioned problems but also improves model performance.

Furthermore, the time series prediction methods involve many hyperparameters. Due
to the unclear mapping relationships between hyperparameters and models, it is necessary
to continuously adjust hyperparameters based on the accuracy of the model. This process
consumes a lot of time and computational resources. Therefore, an HPO model called
Differential Sampling and Long Short-Term Memory-Based Deep Reinforcement Learning
(DSLD) has been designed, which has been integrated with the MTCN model to achieve
HPO during the model prediction process.

The architecture of RL-AOPP is shown in Figure 1, which mainly includes a prediction
model MTCN and a hyperparameter optimization model DSLD. The two models are inte-
grated by using hyperparameter combinations and accuracy values as the signal quantities
for communication.
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Figure 1. The Architecture of RL-AOPP Framework.

The MTCN consists of the residual blocks and a fully connected layer. The residual
blocks in the MTCN are designed to enable the working of time series data prediction. The
fully connected layer is responsible for implementing conversion from the input dimension
to the output dimension. The main components of the residual blocks include multidi-
mensional causal dilation convolution, a PSoftplus activation function, and a residual
connection. To achieve parallel feature extraction, we use multiple multidimensional causal
dilation convolutions, which bring many layers in the MTCN. Philipp et al. [26] proved that
excessive layers can lead to gradient explosion or the vanishing phenomenon. Psoftplus
can standardize the output means to around zero, thereby alleviating the above problem.
The introduction of the residual connection allows the network to pass information across
layers, thus making the training of deep networks more effective.

The DSLD mainly includes two parts. The first part consists of a differential value
experience sample pool (DS-POOL), which can reduce the correlation among the input
samples. The remaining part contains four modules: the actor network, the critic network,
and two target networks that are created on the policy network and value network, respec-
tively. The model update process primarily involves updating the parameter values of
the above four modules. The policy network is updated by maximizing the cumulative
expected reward value—the maximum return—while the value network is updated by
minimizing the error between the output value and the target value as much as possible.
The parameter update of the target network adopts a soft update method and introduces a
soft interval update coefficient. The update is carried out by weighting the original target
network parameters and the new corresponding network parameters.

The overall workflow of the RL-AOPP framework is shown in Figure 1:

• The DLSD completes the initialization of hyperparameters and prepares the multidi-
mensional energy consumption data (1.1).

• The data are fed into the causal dilated convolutional network for feature extraction
and processed nonlinearly by the PSoftplus activation function (1.2).
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• The results are passed to the next layer of the network through the residual structure (1.3).
• After updates through multiple residual blocks, the output is generated by the fully

convolutional network (1.4).
• After each iteration of the model training, the final accuracy value is passed to the

DSLD model as a reference for the next iteration (1.5–1.6).
• The DSLD model sorts the interacted samples according to their value and stores them

in the DS-POOL (2.1).
• When the number of samples in the buffer pool reaches the maximum limit, the

DSLD model will perform one round of internal parameter updates of the network
structure (2.2–2.5).

• After the action decision network makes a decision, the hyperparameter configuration
in the decision content is passed to the MTCN model (1.1).

In the subsequent iterations, the MTCN model will use this hyperparameter configu-
ration to train.

3.2. Design of the Parallel Prediction Model

To improve the performance of data feature extraction, we propose multidimensional
causal dilated convolution (MCDC), which consists of multidimensional convolution ker-
nels (MCKs). Because the MCKs can retain the temporal characteristics of one-dimensional
data, we can consider it as composed of multiple one-dimensional convolution kernels,
with the number of these kernels determined by the number of features in the data sample.
During the sliding process of the multidimensional convolution window, the convolution
process of the kernel that corresponds to each dimension is independent. Consequently,
the MCKs can receive data from all dimensions in parallel, thus achieving full coverage of
the data features.

To explain the structure of the MCKs, suppose that the energy consumption dataset
has m-dimensional features and a sample length of n, i.e., X =

{
xi,j|1 ≤ i ≤ m, 0 ≤ j ≤ n

}
.

The dimension of the convolutional kernel is m, and the length is k. In addition, the
weight of the convolutional kernel is set to wh, where h ∈ [1, k]. In each single layer,
after the data pass through the convolution operation of the current window of the MCK,
a feature matrix with a corresponding dimension of m ∗ (n − k + 1) can be output, i.e.,
O =

{
oi,j|1 ≤ i ≤ m, 0 ≤ j ≤ n− k + 1

}
. By traversing the feature matrix, we calculate the

convolution result Oi,j at each position, which is given by the Equation (1). The final output
is the feature matrix O after the convolution operation.

Oi,j =
k

∑
h=1

xi,j+h−1 × wh (1)

The MCKs can not only extract temporal information but also ensure that the correla-
tions between multivariables will not become blurred or even disappear due to multiple
convolution operations while extracting multivariable feature information. This is because,
during the actual training process, the input data undergo multiple convolution operations
through multidimensional dilated causal convolution, which means that the information
received by higher-level computing units contains the information extracted from the
initial input. In other words, all the inputs have already undergone convolution operations
from the beginning, thus highlighting the main features. Then, the higher-level network
eventually extracts the temporal information and multidimensional feature information of
the data samples.

In the scenario where MCDC is not applied, the data need to be entered sequentially.
As shown in Figure 2a, each computing unit will only calculate the input content at the
current moment and receive the next input in sequence. For multidimensional data such
as air conditioning energy consumption time series datasets, traditional computational
processing is very time-consuming. To address the above problem, we proposed the MCK,
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which follows the parallel method in Figure 2b. Each dimension of data is no longer input
separately, which can achieve parallel processing of multidimensional time series data.

(a) sequential (b) parallel

Figure 2. The processing flow of the calculation unit in MTCN: (a) The convolutional kernel first
extracts features from the red region, and only in subsequent iterations does it sequentially extract
features from the blue and purple regions. (b) Within a single iteration, the kernel can extract features
in parallel from red, blue, and purple regions while preserving the original temporal characteristics
of the data.

To solve the problem of gradient explosion or vanishing caused by too many layers in
the network, we propose PSoftplus as the activation function. Firstly, we shift the Softplus
downward to achieve negative output values for some input data, thus lowering the overall
mean. Then, we set the coefficient λ to alleviate the problem of gradient vanishing [27].
When the input x > 0, λ adjusts the curve slope of the function image. When x < 0, it
affects the saturation position of the function. The formula for the PSoftplus activation
function is shown in Equation (2).

PSo f tplus(x) = λ(ln (ex + 1)− k) (2)

Among them, if λ > 0, λ can adjust the slope of the function graph curve for positive
values, and for negative values, it can affect the saturation position of the function. The
larger the value of λ, the more the function is greater than zero, which will to some extent
alleviate the problem of gradient disappearance. To ensure that the improved activation
function can cross zero, PSo f tplus(0) is set to 0, as shown in Equation (3). By solving
Equation (3), it shows that k = ln2.

PSo f tplus(0) = λ(ln (e0 + 1)− k) = 0 (3)

PSo f tplus(x) = λ(ln (
ex + 1

2
)) (4)

The equation for the PSoftplus is shown in Equation (4), and the function figure is
shown in Figure 3.
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Figure 3. PSoftplus activation function.

In the backpropagation process of the MTCN convolutional neural network, the actual
gradient values reaching the bottom layer after layer-by-layer computation will become
smaller or larger. The rate of this change is determined by the derivative of the activation
function, which is calculated based on the number of computations. Assuming the number
of computations during the training process is n, the formula for calculating the rate of
change of the network gradient is shown in Equation (5).

Vgrad =

(
−λ

e−x + 1

)n
(5)

Equation (5) proves that the parameter λ determines the gradient propagation speed
and affects the network training performance.

EPSo f tplus(x) = ∑ ωλ ln (
ex+ + 1

2
) + ∑ ωλ ln (

ex− + 1
2

) (6)

To explain why the improved activation function alleviates the mean shift problem, we
assume that the actual input values set of the activation function is x, and we use the set ω
to represent the probability of the corresponding input value. In addition, the input values
contain positive and negative values, which we represent as x+ and x−, respectively. The
PSoftplus activation function is shown in Equation (6). Compared to the Softplus function,

the parameters ω and λ are always greater than zero, and ln ( ex−+1
2 ) < 0, which makes the

mean output of the PSoftplus function closer to zero.

3.3. Design of the Reinforcement Learning-Based Hyperparameter Optimization Model

In this section, we first provide a detailed introduction to the DSLD hyperparameter
optimization model, including the design of the actor network and the DS-POOL. Then,
we introduce the implementation details of the RL-AOPP framework.

3.3.1. Markov Decision Process and Construction of Actor Network

The hyperparameter optimization problem refers to selecting a specific value for each
hyperparameter of the model to be optimized within its search space, thus combining them
into a set of hyperparameter combinations and applying them to model training. For the
ECP problem to be solved in this paper, the goal of hyperparameter optimization is to
find a set of hyperparameter settings in the hyperparameter search space that minimizes
the error and maximizes the accuracy of the final trained prediction model. The objective
function can be expressed as Equation (7).

α′ = arg min
α∈Λ

L(M(Dtrain, α), Dvalid) (7)
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In this equation, Dtrain is the training set, Dvaild is the validation set, M(Dtrain, α) is the
model obtained by training on the training set Dtrain with hyperparameter configuration α,
and L is the loss function of M in this task.

We can formulate the hyperparameter optimization problem in ECP as a Markov
decision process (MDP). In this process, an optimal value needs to be determined for each
hyperparameter of the model, thus ultimately obtaining an optimal hyperparameter vector.
Suppose the model M to be optimized has N hyperparameters to be selected. If we consider
the hyperparameter selection problem as a multiarmed bandit problem, and the search
space for the ith hyperparameter is Λi, then the entire search space is Λ = Λ1×Λ2× ... ΛN .
This search space is high-dimensional and complex, and it tends to grow exponentially
with the increase in the number of hyperparameters.

To solve the problem of an overly large problem space, the idea of divide and conquer
is adopted to optimize the N hyperparameters separately. In reinforcement learning, we
can choose different hyperparameters at different time steps, for example, selecting the t-th
hyperparameter at time step t. However, separate decision making may lead to the neglect
of the correlations between the hyperparameters. Therefore, this paper proposes to use
the LSTM, which has the characteristic of analyzing the intrinsic connections in time series
data as the core structure of the actor network. This allows each hyperparameter selection
to be based on the decision of the previous hyperparameter selection, thus converting the
hyperparameter selection process into a sequential decision-making process. The entire
search space becomes Λ = Λ1 ∪Λ2 ∪ ... ΛN , and the simplified search space only increases
linearly with the increase in hyperparameters, thus greatly reducing the search space and
improving the search rate.

If the model can predict the trend of the next hyperparameter selection direction, it
can avoid some values that will not be selected in the future. Consequently, we redesign
the structure of the actor network, which is shown in Figure 1-Actor. The Actor consists of
two layers of LSTM and two layers of fully connected layers (FCLs). The fully connected
layers are used to adjust the dimensions of the input and output, while the LSTM layers are
used to learn the latent information present in the input data and to preserve its variation
trend in the time dimension. For an optimization problem containing N hyperparameters,
at a certain moment t, the actor network selects the hyperparameter at based on the
input current state st. After N time steps, the network obtains a set of hyperparameter
configurations a1:N . Consequently, a complete epoch at the current moment includes N
time steps. Then, the action sequence interacts with the environment. The model to be
optimized uses the hyperparameter combination selected at the current moment to train
the model, and the accuracy of the model on the validation dataset is used as the reward
value at the current moment.

Therefore, the Markov decision process for the hyperparameter optimization prob-
lem will be redefined, and the target object is a model containing N hyperparameters to
be optimized:

Action space: The actor network will use N time steps, thus selecting the value of the
ith hyperparameter at the ith time step, i ≤ N, until the end of the Nth time step to obtain
a set of hyperparameter combinations. For each hyperparameter i within the N time steps,
its search space is Λi. The overall search space is Λ = Λ1 ∪Λ2 ∪ ... ΛN .

State space: The environment includes the model to be optimized, the dataset, and
the hyperparameter combination. During the execution of the optimization task, only
the hyperparameter combination to be optimized is dynamically adjusted. Therefore, the
hyperparameter setting αt−1 of the algorithm at the previous moment is chosen to be
marked as the state st at the current moment.

Reward value: The accuracy of the trained model on the validation dataset using a
set of actions A is used as the reward value. ri = 0, i ∈ [1, n), where the value of rn is the
accuracy of the MTCN model.
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State transition probability: The transition probability of the environment state is
not observable. Therefore, this research method adopts a model-free deterministic policy
gradient approach for learning.

Discount factor: This value will be reflected in the calculation of the cumulative
return value. The closer it is to 1, the longer the current network considers future benefits.

3.3.2. Construction of Differential Value Experience Sample Pool

To reduce the correlation problem among samples in the experience sample pool,
we propose a method for constructing a differential value experience sample pool with a
high-value priority sampling experience replay mechanism. The experience samples are
stored in the experience pool according to their learning value.

During the training process of the DSLD model, the actor network selects the hyper-
parameter actions, and the critic network gives the value that the selected actions may
produce. After the actor network selects actions and interacts with the environment, the
obtained samples are first used to calculate the temporal difference error (TDError) of the
action value function before being put into the sample pool. Then, the experience samples
are stored in the experience pool in order of this value. The value calculation formula is
shown in Equation (8).

σ = r(si, ai) + γQ′(si+1; µ′(si+1; θµ′))−Q(si, ai) (8)

In the equation, r(si, ai) represents instant reward and µ′(si+1; θµ′) represents the
action of the target policy θµ′ in state si+1. Our goal is to make σ as small as possible, which
represents the difference between the current Q value and the target Q value of the next
step. When σ is relatively large, it indicates that the sample has a significant influence
on the value network, and it can be understood that this sample has a higher value. The
probability of each experience sample being sampled depends on its value. The sampling
probability of the jth sample is defined as P(j), as shown in Equation (9).

P(j) =
Dρ

j

∑k Dρ
k

(9)

In Dj =
1

rank(j) , rank(j) is the rank of sample j in the replay experience pool according
to the j value. The parameter ρ is used to control the degree of priority usage, and ρ ∈ [0, 1]
and ρ = 1 indicate fully greedy sampling based on priority. During the learning process,
high-value samples have a positive impact on the network, but low-value samples cannot
be ignored either. The definition of sampling probability can be seen as a method of intro-
ducing random factors when selecting experiences, because even low-value experiences
may be replayed, thus ensuring the diversity of sampled experiences. This diversity helps
prevent overfitting of the neural network. To correct the estimation bias caused by priority
sampling, the loss function Loss of the estimation network is multiplied by the importance
sampling weight Wj, as shown in Equation (10).

Wj = (
1
N
× 1

P(j)
)β (10)

In the equation, N represents the size of the differential value sample pool, and β is
used to adjust the distribution of weights. The higher the value of the sample, the higher
its priority, and the smaller the importance sampling weight value, which smoothes the
optimization surface by correcting the loss. Therefore, the differential value experience
sample pool allows the algorithm to focus more on high-value samples and accelerate the
convergence of the algorithm.

At this point, the DSLD optimization model can search for the optimal hyperparameter
configuration of the MTCN prediction model. For a given air conditioning ECP model,
all internal parameters of the networks are initialized. The DSLD policy network selects
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appropriate actions (hyperparameter combinations) and sets them as the hyperparameter
values of the MTCN model. The MTCN is trained on the data sample set, and then the
model is validated on the validation data samples to obtain accuracy. The action and reward
are combined as an experience sample for the DSLD model and stored in the sample pool
according to the rules based on the differential value. When the sample pool reaches a
certain condition, data samples are sampled to update the internal parameters of the value
network and policy network. After multiple iterations, the RL-AOPP framework can select
a better hyperparameter configuration to achieve the highest prediction accuracy under the
current task and output the prediction model under this configuration.

Algorithm 1 presents the complete training process of the RL-AOPP framework.

Algorithm 1 RL-AOPP process

Input: train dataset Dtrain, test dataset Dtest, sample pool size N, number of samples K,
learning rate α

Output: a set of optimal hyperparameters λ
1: Initialize actor network µ, critic network Q and their weights ωµ, ωQ, target network

µ′, Q′ and their weights ωµ′ , ωQ′ , sample pool R
2: for epoch = 1, 2, ..., E do
3: Initialize policy µ = {µ1, µ2, ..., µT}
4: for t = 1, 2, ..., T do
5: if Reach convergence then
6: break
7: end if
8: Select action at based on µt
9: Execute at ← (a1, a2, ..., aN)

10: θ = TrainMTCN(Dtrain, α)
11: Calculate accuracy of Dtest with θ in MTCN
12: Set instant reward rt as accuracy and obtain state st+1
13: Calculate TD error via Equation (8)
14: Store (st, at, rt, st+1) sequentially into R based on TD error
15: Draw K samples via Equation (9)
16: Calculate weight wj of each sample via Equation (10)
17: Update µ with▽ωµ J and Q with minimal loss L(wt)

18: Update weights of target networks ωµ′ and ωQ′

19: end for
20: end for
21: function TRAINMTCN(Dtrain, α)
22: Initialize MTCN parameter θ
23: for each training epoch do
24: for t = 1, 2, ..., T do ▷ T represents the length of Dtrain
25: Extract data from each dimension
26: for l = 1, 2, ..., L do ▷ L represents the number of layers in the MTCN
27: Use multidimensional dilated causal convolution to extract features
28: if dimensions match then
29: Calculate residual connection with o = PSo f tplus(x +F (x))
30: end if
31: Set input for next layer
32: end for
33: Use full connected layer to get prediction ypred
34: end for
35: Compute loss L between ypred and y
36: Update θ with θ = θ − α ∗ Grad(L, θ)
37: end for
38: return θ
39: end function
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4. Evaluation

Firstly, we verify the effect of RL-AOPP and find the optimal hyperparameter configu-
ration. Secondly, we verify the advantages of the prediction model MTCN compared to
other traditional prediction models. Thirdly, we validate the effectiveness of the optimiza-
tion model DSLD.

4.1. Experiments Setup

Dataset: Our proposed method has been applied to all 596 magnetic levitation
water machine air conditioning production factories across the country, and the data were
managed using the E-plus data management platform. We selected six representative air
conditioning datasets from the platform with a time interval of December 2020 to December
2023 for experimentation. The details of the experimental datasets are shown in Table 1.

Table 1. Introduction to experimental datasets.

Energy
Consumption

Prediction Project
Dataset Name Train Data Vali Data Test Data Total Data

A materials company
in Hong Kong Hong Kong 841,928 105,241 105,241 1,052,410

A printing factory in
Shenzhen Shenzhen 820,968 102,621 102,621 1,026,210

An office building in
the Southwest Southwest 795,617 99,453 99,452 994,522

A pharmaceutical
factory in Shenyang Shenyang 749,968 93,746 93,746 937,460

A high-tech company
in Shanghai Shanghai 742,648 92,831 92,831 928,310

A manufacturing
factory in Qingdao Qingdao 597,108 74,638 74,638 746,384

The air conditioning operation data have 12-dimensional sensor parameters, which
have a strong correlation with the energy consumption of the air conditioning and are
screened out from the multidimensional operation sensor parameters as the features of the
experimental data samples. To meet the real-time monitoring of air conditioning energy
consumption, this paper used the operation data of air conditioning within twenty minutes
to predict the energy consumption situation for one hour.

Baseline: In the HPO experiment of the RL-AOPP framework, we selected CNN,
RNN, LSTM, TCN, and MTCN as comparative models, and the hyperparameter search
space for each model is shown in Table 2. We chose common hyperparameter optimiza-
tion methods, including Bayesian-based optimization, using the Tree-Structured Parzen
Estimator (TPE), grid search, and random search optimization for comparative experiments.

Model: In the MTCN prediction experiment, the models were built by Keras. The
CNN model has a convolutional kernel size of 4, a learning rate of 0.01, a batch size of 200,
a dropout of 0.3, and an epoch of 50. The LSTM model has 50 neurons per layer, a dropout
of 0.2, a learning rate of 0.001, a batch size of 70, and an epoch of 50. The RNN model has a
learning rate of 0.001, a dropout of 0.3, a batch size of 70, and an epoch of 50. Both the TCN
and the MTCN models have a learning rate of 0.05, an epoch of 50, a dilation rate of 2, a
convolutional kernel size of 3, and the number of residual blocks is 4. At the same time, the
MTCN model with ReLU was used as a comparison.

Other: The experiment adopted ten-fold crossvalidation and recorded the average
value of the validation results. We used the early stopping method to prevent overfitting,
thus continuously monitoring the accuracy in each iteration. When there was no significant
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improvement in performance or when it began to decline for three iterations, we stopped
training and saved the model parameters.

Table 2. Hyperparameter search space of models.

Model Hyperparameter Search Space

CNN

learning rate [0.001, 0.01]
convolution kernel [2, 5]
convolution stride [1, 5]

dropout [0, 0.5]

LSTM

learning rate [0.001, 0.01]
hidden layer elements [100, 256]

dropout [0, 0.3]
batch size [128, 512]

RNN
learning rate [0.001, 0.01]

batch size [128, 512]
neurons [12, 104]

TCN

learning rate [0.001, 0.01]
convolution kernel [2, 5]
residual modules [4, 6]

dropout [0, 0.5]

MTCN

learning rate [0.001, 0.01]
convolution kernel [2, 5]
residual modules [4, 6]

dropout [0, 0.5]
PSofplus-λ [1, 2]

Configuration: The server used in the experiments is a typical PC equipped with
an Intel Core i9-9900k processor, an NVIDIA GeForce RTX 3090 graphics card, and 16 GB
RAM. The Python version used in the experiments is 3.8.10, and the TensorFlow version is
2.12.0. The detailed software and hardware conditions are shown in Table 3.

Table 3. Experiment environment.

Name Configuration

CPU Inter Core i9-9900K
GPU GeForce RTX 3090

System Ubuntu 16.04
Memory 16 GB
Python 3.8.10

Tensorflow 2.12.0

4.2. Experiments on RL-AOPP Framework

To demonstrate the advantages of the DSLD compared to other traditional HPO meth-
ods, the experimental results of using different method combinations for hyperparameter
optimization and predictive model training are shown in Table 4.
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Table 4. Prediction performance of MTCN on different datasets.

Model Dataset
Default Parameters Grid Search Random Search TEP DSLD

RMSE RMSE Time RMSE Time RMSE Time RMSE Time

CNN

Hong Kong 11.7255 9.6911 2.44 10.1140 2.48 10.0071 2.20 8.66395 ∗ 2.31
Shenzhen 12.1921 9.8019 2.91 10.1905 2.11 10.1691 2.80 9.1125 2.50
Southwest 6.8121 6.4510 1.92 6.4112 1.61 6.5106 1.10 6.2200 0.83
Shenyang 23.2432 19.1140 1.80 21.0162 1.71 19.7017 1.75 19.6523 1.70
Shanghai 13.1580 11.2532 2.35 12.1106 2.23 11.0310 2.11 11.0001 2.20
Qingdao 17.9702 13.2891 2.33 14.1219 2.10 13.1877 2.23 11.9806 2.38

RNN

Hong Kong 7.9048 7.1552 3.02 7.7560 2.98 7.3001 3.01 6.0158 2.82
Shenzhen 9.1045 8.9815 4.16 9.0112 4.00 8.7866 3.58 8.7001 3.60
Southwest 6.0134 5.1121 2.31 5.5610 2.07 5.1269 2.20 5.0006 2.11
Shenyang 19.3903 17.0131 2.51 17.5691 2.26 16.5542 2.36 15.1123 2.11
Shanghai 12.8142 10.8741 3.56 10.6254 3.31 9.9012 3.20 9.8003 3.01
Qingdao 8.7712 7.2307 2.41 7.8012 2.28 6.8732 2.39 7.1601 2.20

LSTM

Hong Kong 5.3732 5.1136 3.51 5.1000 3.22 5.1226 3.11 5.1112 3.31
Shenzhen 6.7038 6.3001 4.25 6.4591 4.11 6.2597 4.09 6.1002 3.96
Southwest 3.9842 3.7561 2.63 3.8812 2.15 3.6152 2.34 3.2671 2.01
Shenyang 16.1869 16.0012 2.66 16.1163 2.22 15.0247 2.30 15.3036 2.10
Shanghai 11.3064 10.4951 3.78 10.5612 3.58 10.0069 3.02 10.2206 2.89
Qingdao 15.1436 9.9685 2.81 14.0014 2.41 12.4590 2.71 10.8504 2.11

TCN

Hong Kong 5.8971 5.2355 2.56 5.6691 2.48 5.2121 2.55 5.1801 2.46
Shenzhen 7.2567 6.9653 3.50 7.0125 3.32 6.5126 3.11 6.2000 3.20
Southwest 4.0954 3.8397 2.51 3.6910 2.31 3.9320 1.90 3.3001 1.92
Shenyang 16.1198 14.9637 2.25 15.2698 2.00 14.1274 1.89 13.1022 1.95
Shanghai 9.9201 9.2258 2.91 10.5697 2.30 8.9062 2.22 8.2800 2.10
Qingdao 14.8436 9.6214 2.12 13.2231 2.18 11.9501 2.37 9.3703 1.84

MTCN

Hong Kong 5.3601 5.2003 2.30 5.3162 2.41 5.2101 2.26 5.1036 2.20
Shenzhen 6.1032 5.5519 2.41 5.6329 2.21 5.7512 2.12 5.5410 2.10
Southwest 3.6150 3.4110 1.11 3.3912 1.06 3.2815 1.00 3.1140 0.91
Shenyang 13.5272 13.0013 1.49 13.1011 1.10 12.6521 0.81 12.0034 0.85
Shanghai 8.4055 7.2014 2.01 7.6521 1.60 7.0012 1.51 6.9106 1.32
Qingdao 11.6541 9.6214 1.91 10.2231 1.68 10.6847 1.43 9.1301 1.29

* all the bold represent the best results.

Comparing the results of RMSE, all optimization methods found hyperparameter
configurations that performed better than the default parameter settings. The DSLD
achieved a higher degree of model hyperparameter optimization compared to the other
optimization methods in most tasks. From the time perspective, the grid search was
computationally intensive. Random search had a low probability of finding the best
configuration based on random sampling, thus resulting in a longer training time. The TPE
combined with prior parameter information for updating, thus requiring fewer iterations
and less training time. The internal structure of the DSLD reduced the search space,
thus resulting in a faster average speed compared to the other aforementioned models.
The experimental results demonstrate that this method can find the best hyperparameter
configuration with low prediction error while reducing the search time and action space.

Furthermore, we applied the RL-AOPP algorithm to the Hong Kong dataset and
conducted automatic hyperparameter optimization in the hyperparameter search space, as
shown in Table 2, thus obtaining the best hyperparameter configuration for various models
during the training process, as shown in Table 5.

Based on the experimental results, we set the value of PSoftplus-λ at 1.5, thus indicat-
ing the most suitable activation function for this experiment, as shown in Equation (11).

PSo f tplus(x) = 1.5× (ln (
ex + 1

2
)) (11)
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Table 5. The best hyperparameters for each model.

Model Hyperparameter Search Space

CNN

learning rate 0.01
convolution kernel 3
convolution stride 2

dropout 0.5

LSTM

learning rate 0.002
hidden layer elements 128

dropout 0.2
batch size 512

RNN
learning rate 0.01

batch size 512
neurons 68

TCN

learning rate 0.002
convolution kernel 2
residual modules 4

dropout 0.2

MTCN

learning rate 0.01
convolution kernel 2
residual modules 6

dropout 0.3
PSofplus-λ 1.5

4.3. Experiments on MTCN Model
4.3.1. Prediction Effectiveness of MTCN

To compare the prediction performance of the MTCN with other traditional prediction
methods on the air conditioning energy consumption dataset, we conducted a comparative
experiment on the prediction effects of multiple models, thus using the MAE and RMSE as
evaluation metrics. The experimental results are shown in Table 6.

Table 6. Prediction performance of RL-AOPP on different datasets.

Model
Hong Kong Shenzhen Southwest Shenyang Shanghai Qingdao

MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE

CNN 5.1241 11.7255 5.2874 12.1921 2.3097 6.8121 8.2411 23.2432 6.1327 13.1580 7.5124 15.2146
RNN 3.7874 7.9048 4.0177 9.1045 2.1032 6.0134 6.0281 19.3903 5.5045 12.8142 6.4221 14.7942
LSTM 2.3677 5.3732 3.2427 6.7038 1.3685 3.9842 5.0758 16.1869 5.0843 11.3064 6.1127 14.4541
TCN 2.5901 5.8971 3.3096 7.2567 1.3574 4.0954 5.2697 16.1198 4.3981 9.9201 5.5124 11.2079

M ∗-ReLU 2.4185 5.5967 3.2119 6.5891 1.3974 3.8910 5.1335 16.2369 4.2632 9.1265 5.0118 10.1143

M ∗-PSoftplus 2.3525
∗∗ 5.3601 3.0912 6.1032 1.2620 3.6150 4.9880 13.5272 4.0932 8.4055 4.7504 8.8143

* M represents MTCN, ** all the bold represent the best results.

The MTCN-PSoftplus in the table refers to the model we proposed, which is repre-
sented by MTCN in the following text. Overall, the MTCN prediction indicators were
better than other models on all datasets. Comparing MTCN with TCN, the MAE values of
MTCN in the five tasks were all smaller than the MAE values of TCN, with an average im-
provement of 6.7% in prediction accuracy. This result indicates that the causal convolution
and dilated convolution structures of the MTCN model fully capture the temporal features
in the dataset. Since the improved PSoftplus activation function alleviates the mean shift
phenomenon, the MAE of MTCN was improved compared to MTCN-ReLU.

To more clearly illustrate the effectiveness of the MTCN model in ECP, the partial
sample prediction results of the traditional CNN, RNN, LSTM models, and the MTCN
model on the Hong Kong dataset are visualized as shown in Figure 4.
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(a) CNN (b) RNN

(c) LSTM (d) MTCN

Figure 4. Visualization of prediction results for different models.

From the comparison of the results, we can see that the CNN model could learn the
features of data samples, but it was not sensitive to time series data, thus resulting in
large fluctuations in the prediction results. After introducing the memory function, the
prediction effect of the RNN model was better than the CNN model. However, due to the
gradient vanishing problem during error backpropagation, the RNN could not effectively
learn the features of early data, and some samples had large errors. The addition of the
gate structure in LSTM enabled it to perform better than RNN in longer sequences, but
based on the fitting curve, there were still many samples that deviated from the true values.
Under this data distribution, the overall predicted values of the MTCN model are highly
consistent with the true values, and there are no significant range error situations.

4.3.2. Validating PSoftplus Activation Function

To further verify the impact of the improved activation function PSoftplus on the
MTCN prediction model, under the same experimental environment such as network
structure, experimental dataset, and network parameter configuration, a comparative ex-
periment of MTCN-ReLU, MTCN-Softplus, and MTCN-PSoftplus was conducted. This
experiment selected part of the data samples from the Hong Kong dataset as the experi-
mental dataset. The model training process is shown in Figure 5.
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Figure 5. Model convergence graph under different activation functions.

For this particular dataset, the training process illustrated demonstrates that the PSoft-
plus function converged faster than the Softplus function. The loss value of PSoftplus was
smaller compared to both ReLU and Softplus. The ReLU activation function exhibited a
zero gradient when the input was negative, thus potentially causing certain neurons to
cease updating. Conversely, the Softplus activation function circumvented this issue by
yielding nonzero outputs. However, this characteristic may lead to the activation values
of subsequent layers diverging from zero, thereby also potentially impeding the conver-
gence rate. The PSoftplus had an output mean close to zero and effectively utilized the
output information, thus enhancing the convergence speed of the network while reducing
network error.

4.4. Experiments on DSLD Model

To validate the advantages and effectiveness of the action decision network and the
differentiable value sampling pool structure employed by the DSLD model in the domain
of HPO, the DSLD, LDDPG, DSDDPG, and DDPG models were applied to the MTCN
model for prediction, respectively. The experimental results are shown in Table 7.

Table 7. The DSLD ablation experimental results on different datasets.

Model A * S *
Hong Kong Shenzhen Southwest Shenyang Shanghai Qingdao

RMSE Time RMSE Time RMSE Time RMSE Time RMSE Time RMSE Time

DDPG F F 6.6032 3.32 6.6391 4.13 5.2678 2.66 15.1240 2.51 9.3611 2.83 8.9821 3.08
L-DDPG T F 5.2361 2.35 5.6110 2.28 4.0011 1.51 13.1255 1.25 7.1015 1.66 7.4316 1.98

DS-DDPG F T 6.3056 2.89 6.2251 4.02 4.3660 2.10 14.5712 2.11 8.1121 2.18 8.1027 2.65
DSLD T T 5.1036 2.20 5.5410 2.10 3.1140 0.91 12.0034 0.85 6.9106 1.32 6.6581 1.69

* A represents Actor network and S represents Sample pool.

Compared to the DDPG, the DSLD achieved an average reduction of 2.06 in the
RMSE and an average decrease of 1.61 in training time. This validates the superiority and
effectiveness of the improved actor network and the differentiable value sampling pool
structure in the field of HPO.

To further illustrate the advantages of the differentiable value sampling pool, the
training processes of the two frameworks on Hong Kong and Shenzhen datasets are shown
in Figures 6 and 7, respectively.

In the Hong Kong dataset, although the LDDPG model also achieved high reward
values, its training process was oscillatory. The model converged around the 350th epoch,
with a slow convergence speed. In the Shenzhen dataset, while the LDDPG model found
good reward values in the early stage, the model experienced significant oscillations in the
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subsequent experimental process and converged around the 240th epoch. The DSLD model
converged around the 200th epoch, thus achieving rapid convergence during training, and
had a stable training process.

(a) RL–AOPP (b) LDDPG-MTCN

Figure 6. Training comparison graph of two frameworks in Hong Kong dataset.

(a) RL-AOPP (b) LDDPG-MTCN

Figure 7. Training comparison graph of two frameworks in Shenzhen dataset.

To verify the impact of the control parameter on the convergence speed, we conducted
comparative experiments by setting the control parameter to 0.3, 0.5, and 0.6, respectively.
We show the training process of the MTCN model optimized by the DSLD model with
different control parameters on the Hong Kong and Shenzhen datasets in Figure 8.

It can be observed that there is a strong correlation between the control parameter and
model performance. The overall performance of the DSLD model with different control
parameters was better than the original network, and the best control parameter setting is
ρ = 0.5. Analyzing the training process on the Shenzhen dataset, when ρ = 0.3, the model
obtained good rewards around the 210th epoch. When ρ = 0.5, it converged around the
200th epoch, which was much faster than when ρ = 0.3. However, the size of ρ was not
entirely positively correlated with model performance. For instance, when ρ = 0.6, although
the model obtained high rewards around the 180th epoch, it exhibited oscillations during
the optimization process. Moreover, even after convergence around the 201st epoch, the
model still experienced slight oscillations. The same phenomenon can be observed in the
Hong Kong dataset. The reason is that this value was used to control the degree of priority
sampling usage. The higher the value is set, the more valuable the high-value sample
data are. However, frequent sampling leads to imbalanced data types during the training
process, thus ultimately affecting algorithm performance.
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(a) Training figure for the Hong Kong dataset (b) Training figure for the Shenzhen dataset

Figure 8. Different control parameters comparison of DSLD model.

5. Conclusions

In this paper, we proposed a reinforcement learning-based auto-optimization parallel
energy consumption prediction approach called RL-AOPP. It can address the challenges
brought by multidimensional time series data and hyperparameter optimization in the
scenario of air conditioning energy consumption prediction, improve the performance of
the training process, and efficiently find optimal hyperparameter configurations. Through
extensive experiments, we evaluated the effectiveness of this approach.

However, the parallel processing mechanism of MTCN cannot solve the problems of
high noise, excessive abnormal data, and data loss in the original air conditioning data, and
it still requires complex data cleaning work. Furthermore, although we have optimized the
performance of deep reinforcement learning, when there are too many hyperparameters in
the algorithm, an amount of training time and computational resources are still required.

In the future, we are planning to use the large language model (LLM) integrated with
our approach to provide comprehensive solutions for air conditioning ECP.
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