
Citation: Ma, F.; Sun, W.; Jiang, Z.;

Suo, S.; Wang, X.; Liu, Y. Industrial

Robot Trajectory Optimization Based

on Improved Sparrow Search

Algorithm. Machines 2024, 12, 490.

https://doi.org/10.3390/

machines12070490

Academic Editors: Yong Tao,

Hongxing Wei, Haiyuan Li and

Guangzhe Zhao

Received: 28 June 2024

Revised: 14 July 2024

Accepted: 17 July 2024

Published: 20 July 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

machines

Article

Industrial Robot Trajectory Optimization Based on Improved
Sparrow Search Algorithm
Fei Ma 1 , Weiwei Sun 1 , Zhouxiang Jiang 1, Shuangfu Suo 2, Xiao Wang 1 and Yue Liu 1,*

1 Mechanical Electrical Engineering School, Beijing Information Science & Technology University,
Beijing 100192, China; mf@bistu.edu.cn (F.M.); sww@bistu.edu.cn (W.S.)

2 State Key Laboratory of Tribology, Department of Mechanical Engineering, Tsinghua University,
Beijing 100084, China

* Correspondence: yliu@bistu.edu.cn

Abstract: This paper proposes an enhanced multi-strategy sparrow search algorithm to optimize the
trajectory of a six-axis industrial robot, addressing issues of low efficiency and high vibration impact
on joints during operation. Initially, the improved D-H parametric method is employed to establish
both forward and inverse kinematic models of the robot. Subsequently, a 3-5-3 mixed polynomial
interpolation trajectory planning approach is applied to the robot. Building upon the conventional
sparrow algorithm, a two-dimensional Logistic chaotic system initializes the population. Additionally,
a Levy flight strategy and nonlinear adaptive weighting are introduced to refine the discoverer
position update operator, while an inverse learning strategy enhances the vigilante position update
operator. These modifications boost both the local and global search capabilities of the algorithm.
The improved sparrow algorithm, based on 3-5-3 hybrid polynomial trajectory planning, is then
used for the time-optimal trajectory planning of the robot. This is compared with traditional sparrow
search algorithm and particle swarm algorithm optimization results. The findings indicate that the
proposed enhanced sparrow search algorithm outperforms both the standard sparrow algorithm
and the particle swarm algorithm in terms of convergence speed and accuracy for robot trajectory
optimization. This can lead to the increased work efficiency and performance of the robot.

Keywords: industry 4.0; industrial robot; trajectory optimization; improved sparrow search algorithm

1. Introduction

As industrialization continues to evolve, nations worldwide are actively advancing
the modernization of industrial production and automation upgrades. Industrial robots,
as the primary equipment for substituting manual labor to enhance production efficiency,
have garnered extensive attention and research within industrial automated production
lines. The advancement of artificial intelligence-related technologies has ushered in a new
era in the field of industrial production, with industrial robots that incorporate intelligent
technologies representing a significant direction for future development. To ensure the
efficient and stable completion of production tasks during the operation of industrial
robots, it is imperative to conduct a comprehensive trajectory optimization study on
these machines.

In recent years, researchers have conducted extensive research on trajectory planning
for robotic arms [1,2]. In recent years, researchers have conducted extensive research on
trajectory planning for robotic arms. The trajectory planning of a robotic arm in joint space
requires representing the joint variables as time-dependent functions and then constraining
their angles, angular velocities, and angular accelerations. Sabarigirish et al. [3] presents
the determination of the trajectory between the initial point and end point for a five-degree-
of-freedom (DOF) robotic manipulator in the presence of obstacles. The path is determined
using the cubic polynomial, which ensures the smooth motion of the robot. The nonlinear

Machines 2024, 12, 490. https://doi.org/10.3390/machines12070490 https://www.mdpi.com/journal/machines

https://doi.org/10.3390/machines12070490
https://doi.org/10.3390/machines12070490
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/machines
https://www.mdpi.com
https://orcid.org/0000-0003-4259-9675
https://orcid.org/0009-0002-8148-2779
https://orcid.org/0000-0003-2653-6332
https://doi.org/10.3390/machines12070490
https://www.mdpi.com/journal/machines
https://www.mdpi.com/article/10.3390/machines12070490?type=check_update&version=2


Machines 2024, 12, 490 2 of 19

nature of the robotic manipulator is taken into consideration as well. Fang et al. [4]
performed trajectory planning of the robot arm using the cubic polynomial and the quintic
polynomial function. The simulation results show that the quintic polynomial method
effectively solves the problem of acceleration discontinuity and obtains a continuous
smooth trajectory curve of each joint. Porawagama et al. [5] combined cubic and fifth-
degree polynomials and used the 5-3-5-degree polynomial interpolation algorithm to
make the generated motion trajectory continuously differentiable in position, velocity,
and acceleration.

The objectives of trajectory planning vary across different applications of robotic
arms, which can be categorized into optimal operation time, optimal energy consumption,
optimal impact, and multi-objective optimization [6,7]. Notably, the majority of scholarly
research focuses on optimal trajectory planning for operational time [8].

Concurrently, the integration of traditional trajectory planning methodologies with in-
telligent algorithms for robotic trajectory optimization is a pivotal concept in contemporary
robot trajectory research. Markus [9] introduced a novel hybrid time-optimal flexible joint
trajectory planning algorithm. This approach employed a smooth time-optimal switching
strategy as an alternative to the acceleration mutation, yielding notable results. The foun-
dation of this work was built upon optimal time trajectory planning. Joonyoung et al. [10]
introduced a planning methodology designed for robots to execute spot welding tasks
with the most efficient trajectory. This method not only efficiently computes the generated
trajectory and dynamically approximates the optimal time but also ensures the integrity of
path followed in high-frequency planning and control cycles. Luo et al. [11] proposed an
improved quantum particle swarm optimization algorithm to enhance convergence speed
and avoid local optima. Lan et al. [12] initially employed the seventh-order B-spline curve
method to construct the joint trajectory of a robotic arm. They proposed a multi-objective
particle swarm optimization algorithm for trajectory competition, aiming to solve the
Pareto solution set for the optimal trajectory of the robotic arm in terms of time, energy,
and impact. Experimental results demonstrated that this method effectively reduced the
motion time, joint impact, and energy consumption of the robotic arm. However, it also
increased the time complexity of the algorithm. Cao et al. [13] proposed an enhanced multi-
objective particle swarm optimization algorithm designed to optimize the time, energy,
and impact functions of a fruit-picking robotic arm. The experimental results indicated that
this algorithm facilitated the smooth and efficient execution of fruit-picking operations by
the robotic arm. Xu et al. [14] introduced an improved sparrow search algorithm (ISSA)
with a fusion strategy to further improve the ability to solve challenging tasks. The results
show that the proposed method is more effective, robust, and feasible in mobile robot path
planning. Zhao et al. [15] introduced an enhanced whale optimization algorithm to address
the optimal trajectory planning issue associated with robot time jitter. This was achieved by
constructing a robot joint space fifth-order B-spline interpolation trajectory. Zhao et al. [16]
introduced an optimization technique for the trajectory of a mechanical arm, focusing on
minimizing both movement time and joint impact as objectives. This approach reframed
the multi-objective optimization challenge into a single-objective problem by employing a
weighted coefficient method. Additionally, they proposed a trajectory optimization method
that integrates hybrid particle swarm optimization with whale optimization algorithms,
leading to significant reductions in both movement time and joint impact of the mechanical
arm. Wang et al. [17] introduced an enhanced elite nondominated sorting genetic algorithm
for the multi-objective trajectory optimization of robotic arms, incorporating three novel
genetic operators. This approach yielded superior efficiency and more consistent solutions
for point-to-point tasks executed by robotic arms. Ekrem et al. [18] used the MATLAB
program and particle swarm optimization (PSO) to carry out the trajectory planning of the
robotic arm. Zhang et al. [19] investigated the trajectory-planning problem of a six-axis
robotic arm based on deep reinforcement learning. The proposed method demonstrated its
effectiveness in comparison with the RRT algorithm, as evidenced by the simulations and
physical experiments.
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This paper builds upon the principles of mixed polynomial interpolation motion
trajectory planning to introduce an enhanced multi-strategy improved sparrow search
algorithm. This algorithm is specifically designed for time-optimal trajectory optimization:

1. A two-dimensional logistic system is utilized to initialize the sparrow population,
with the objective of enhancing initial diversity and achieving equilibrium.

2. The Levy flight strategy and the nonlinear weighting factor method are utilized
to refine the position update algorithm of discoverers within the sparrow population.
This approach is designed to optimize the search capability of the algorithm, bolster its
robustness, and enhance both the accuracy and speed of convergence.

3. The vigilant update algorithm of the sparrow population is augmented with a
reverse learning strategy, thereby enhancing both local and global search capabilities.

The findings indicate that the enhanced sparrow search algorithm demonstrates
superior convergence speed and accuracy in optimizing industrial robot trajectories, out-
performing both the standard sparrow algorithm and the particle swarm algorithm.

This paper is structured as follows: The initial section provides an introduction. The
Section 2 presents the kinematic model of the robotic arm. The Section 3 delineates the
hybrid polynomial interpolated kinematic trajectory planning. The Section 4 elaborates on
the improved sparrow search algorithm. The Section 5 offers the experimental simulation
results of the algorithm. Finally, the conclusions are summarized in the concluding section.

2. Kinematics Analysis

This paper focuses on a six-axis industrial robot, independently developed by our
research team. The overall structure of the robot is depicted in Figure 1. Figure 1a,b illustrate
the dimensions of the robot’s connecting rod, while Figure 1c depicts the positioning of
each joint axis within the robot. The coordinate system for the connecting rod, as presented
in Figure 2, is constructed by utilizing the D-H parameter method. This construction also
takes into account the mechanical structure’s dimensions and the positioning of each joint
axis. The robot’s D-H parameters can be found in Table 1. These parameters represent the
link length, link twist, link offset, and joint angle [20].
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Table 1. The D-H parameter of the robot.

Joint i ai−1/mm αi−1/◦ di/mm θi/◦ Joint Range/◦

1 0 0 0 θ1 [−150~180]
2 200 −90 0 θ2 [−60~120]
3 715.6 0 −94.4 θ3 [−45~45]
4 256 −90 845.5 θ4 [−90~90]
5 0 90 0 θ5 [−90~90]
6 0 −90 83.8 θ6 [−180~180]

2.1. Forward Kinematic

By utilizing the D-H parametric method, the sub-transformation matrix between the
robot’s adjacent linkage coordinate systems {i − 1} and {i} is represented in Equation (1) [20].

i
i−1T =


cos θi − sin θi 0 ai−1

sin θi cos αi−1 cos θi cos αi−1 − sin αi−1 −di sin αi−1
sin θi sin αi−1 cos θi sin αi−1 cos αi−1 di cos αi−1

0 0 0 1

 (1)

For the sake of the simplicity of expression, sin θi and cos θi in Equation (1) are de-
noted as si and ci, respectively. sin(θm + θn) and cos(θm + θn) are denoted as smn and cmn,
respectively. In Equation (1), i, m, n ∈ {1, 2, 3, 4, 5, 6}.

The position matrix of the robot’s terminal point is depicted in Equation (2).

0
6T =0

1 T1
2 T2

3 T3
4 T4

5 T5
6 T =


nx ox ax px
ny oy ay py
nz oz az pz
0 0 0 1

 =

[
R P
0 1

]
(2)

In Equation (2), P and R represent the position and attitude of the robot’s end, re-
spectively, in relation to the base coordinate system. This equation serves as the positive
kinematic equation for a six-axis industrial robot. The elements within Equation (2) can be
expressed as per Equation (3).
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

nx = c1[c23(c4c5c6 − s4s6)− s23s5c6] + s1(s4c5c6 + c4s6)
ny = s1[c23(c4c5c6 − s4s6)− s23s5c6]− c1(s4c5c6 + c4s6)
nz = −s23(c4c5c6 − s4s6)− s23s5c6
ox = c1[c23(−c4c5s6 − s4c6) + s23s5s6] + s1(c4c6 − s4c5s6)
oy = s1[c23(−c4c5s6 − s4c6) + s23s5s6]− c1(c4c6 − s4c5c6)
oz = −s23(−c4c5s6 − s4c6) + c23s5s6
ax = −c1(c23c4s5 + s23c5)− c1s4s5
ay = −s1(c23c4s5 + s23c5) + c1s4s5
az = s23c4s5 − c23c5
px = d6[−s5(s1s4 + c1c4c23)− c1c5s23]− d4c1s23 − d3s1 − d2s1 + a1c1 + a2c1c2 + a3c1c23
py = d6(c1s4s5 − c5s1s23 − c2c3c4s1s5 + c4s1s2s3s5)− d4s1s23 + d3c1 + a3c23s1 + a2c2s2 + a1s1
pz = d6(c4s5s23 − c5c23)− d4c23 − a3s23 − a2s2

(3)

2.2. Inverse Kinematics

Robot inverse kinematics is the process of obtaining the angles of each joint of the robot
by transforming the matrix based on the known position and posture of the robot’s end
effector. This study employs an analytical method [21] to address the inverse kinematics of
the robot.

Equation (4) is derived from Equation (2):

1
6T =0

1 T−1(θ1)
0
6T =1

2 T(θ2)
2
3T(θ3)

3
4T(θ4)

4
5T(θ5)

5
6T(θ6) (4)

Given that the elements (2,4) at Equation (4) are equivalent as follows:

−s1 px + c1 py = d3 (5)

The value of θ1 can be found by the following constant triangular transformation:

θ1 = atan2
(

py, px
)
− atan2

(
d3,±

√(
p2

x + p2
y − d2

3

)
(6)

In Equation (6), the plus and minus signs indicate that θ1 has two solutions.
Upon establishing a solution for θ1, the elements (1,4) and (3,4) on both sides of

Equation (4) are equal, and we can obtain the following:{
c1 px + s1 py = a1 + a3c23 − d4s23 + a2c2
−pz = a3s23 + d4c23 + a2s2

(7)

Square both sides of Equation (5) and Equation (7), respectively, and subsequently
add these equations to derive Equation (8).

a3c3 − d4s3 = k (8)

where k =
px

2+py
2+pz

2+a1
2−a2

2−a3
2−d3

2−d4
2−2a1c1 px−2a1s1 py

2a2
.

The θ2 term has been eliminated from the equation, thereby enabling the calculation
of Equation (9) for θ3 through trigonometric substitution.

θ3 = atan2(a3, d4)− atan2
(

k,±
√

a2
3 + d2

4 − k2
)

(9)

The plus and minus signs in Equation (9) mean that θ3 has two roots.
After sorting out Equation (4), Equation (10) can be obtained:

0
3T−1(θ1, θ2, θ3)

0
6T =3

4 T(θ4)
4
5T(θ5)

5
6T(θ6) (10)
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Given that the elements (1,4) and (2,4) at Equation (10) are equivalent

c1c23 px + c23s1 py − s23 pz − a1c23 − a2c3 = a3 (11)

−c1s23 px − s1s23 py − c23 pz + a1s23 + a2s3 = d4 (12)

θ2 can be obtained as follows:

θ2 = atan2(s23, c23)− θ3 (13)

Here

s23 =
(−a3 − a2c3)pz +

(
c1 px + s1 py − a1

)
(a2s3 − d4)

p2
z +

(
c1 px + s1 py − a1

)2 (14)

c23 =
(−d4 + a2s3)pz −

(
c1 px + s1 py − a1

)
(−a2c3 − a3)

p2
z +

(
c1 px + s1 py − a1

)2 (15)

Given that the elements (1,3) and (3,3) at Equation (10) are equivalent

axc1c23 + ayc23s1 − azs23 = −c4s5 (16)

−axs1 + ayc1 = s4s5 (17)

θ4 can be solved

θ4 = atan2
(
−axs1 + ayc1,−axc1c23 − ayc23s1 + azs23

)
(18)

If s5 = 0, the robot will assume a singularly shaped position. For singular forms, any
value of θ4 can be selected to calculate the corresponding θ6.

After sorting out Equation (10), Equation (19) can be obtained:

0
4T−1(θ1, θ2, θ3, θ4)

0
6T =4

5 T(θ5)
5
6T(θ6) (19)

Given that the elements (1,3) and (3,3) at Equation (19) are equivalent

ax(s1s4 + c1c4c23) + ay(s1c23c4 − c1s4)− azs23c4 = −s5 (20)

ax(−c1s23) + ay(−s1s23) + az(−c23) = c5 (21)

θ5 can be solved
θ5 = atan2(s5, c5) (22)

After sorting out Equation (19), Equation (23) can be obtained:

0
5T−1(θ1, θ2, θ3, θ4, θ5)

0
6T =5

6 T(θ6) (23)

Given that the elements (3,1) and (1,1) at Equation (23) are equivalent

−nx(c1c23s4 − s1c4)− ny(s1c23s4 + c1c4) + nz(s23s4) = s6 (24)

nx[(c1c23c4 + s1s4)c5 − c1s23s5]
+ny[(s1c23c4 − c1s4)c5 − s1s23s5]
−nz(s23c4c5 + c23s5) = c6

(25)

The closed-form solution for θ6 is given by Equation (26).

θ6 = atan2(s6, c6) (26)
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3. Hybrid Polynomial Interpolation in Motion Trajectory Planning
3.1. 3-5-3 Mixed Polynomial Interpolation Functions

While conventional cubic and quintic polynomial interpolation algorithms are highly
effective for motion paths between two points, robots often traverse more than two path
points during operation [22]. To enhance the efficiency and accuracy of robotic tasks, this
paper introduces a hybrid trajectory planning method that combines cubic and quintic
polynomial interpolations for multiple path point scenarios. The specific implementation
method is tailored to fit the robot under study.

1. Two predetermined path points are determined to designate the initial and terminal
positions of the robot arm’s movement.

2. The initial and terminal path points are divided into three distinct segments, as
illustrated in Figure 3. Within the segment 0 ∼ t1, cubic polynomial interpolation is
employed, followed by quintic polynomial interpolation within the segment t1 ∼ t1 + t2.
Cubic polynomial interpolation is utilized again in the segment t1 + t2 ∼ t1 + t2 + t3.
These steps collectively constitute a hybrid “3-5-3” polynomial interpolant.
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θ j2(t) = 5aj25(t − t1)
4 + 4aj24(t − t1)

3 + 3aj23(t − t1)
3 + 2aj22(t − t1) + aj21..

θ j2(t) = 20aj25(t − t1)
3 + 12aj24(t − t1)

2 + 9aj23(t − t1)
2 + 2aj22

(28)

(3) During the time period t1 + t2 < t < t1 + t2 + t3, it can be expressed as in
Equation (29).

θj3(t) = aj33(t − t1 − t2)
3 + aj32(t − t1 − t2)

2 + aj31(t − t1 − t2) + aj30.
θ j3(t) = 3aj33(t − t1 − t2)

2 + 2aj32(t − t1 − t2) + aj31..
θ j3(t) = 6aj33(t − t1 − t2) + 2aj32

(29)
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In Equations (27)–(29), t represents the current motion time. The variables t1, t2, and
t3 denote the motion times of joints within the three-segment path trajectories. Here, aj1k,
aj2k, and aj3k (where j ranges from 1 to 6) signify the k-th interpolation coefficients of the

function associated with the j-th joint in these trajectories. The terms
.
θ j1(t),

.
θ j2(t), and

.
θ j3(t) represent the velocity of joint j in the three-segment path trajectories. Conversely,
..
θ j1(t),

..
θ j2(t), and

..
θ j3(t) indicate the acceleration of joint j in the same trajectories.

The comprehensive path trajectory comprises four interpolation points, namely Xj1,
Xj2, Xj3, and Xj4, which are further segmented into three distinct sections. The kinematic
Equations (30)–(33) can be derived from Equations (27)–(29).

Aa = A−1θ (30)

θ =
[
0 0 0 0 0 0 Xj1 0 0 Xj2 0 0 Xj3 Xj4

]
(31)

a =
[
aj13 aj12 aj11 aj10 aj25 aj24 aj23 aj22 aj21 aj20 aj33 aj32 aj31 aj30

]
(32)

A =



t3
1 t2

1 t1 1 0 0 0 0 0 −1 0 0 0 0
3t2

1 2t1 1 0 0 0 0 0 −1 0 0 0 0 0
6t1 2 0 0 0 0 0 −2 0 0 0 0 0 0
0 0 0 0 t5

2 t4
2 t3

2 t2
2 t2 1 0 0 0 −1

0 0 0 0 5t4
2 4t3

2 3t2
2 2t2 1 0 0 0 −1 0

0 0 0 0 20t3
2 12t2

2 6t2 2 0 0 0 −2 0 0
0 0 0 0 0 0 0 0 0 0 t3

3 t2
3 t3 1

0 0 0 0 0 0 0 0 0 0 3t2
3 2t3 1 0

0 0 0 0 0 0 0 0 0 0 6t3 2 0 0
0 0 0 1 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 1 0 0 0 0



(33)

In the 3-5-3 mixed polynomial, the coefficients aj1k, aj2k, and aj3k (where j ranges from
1 to 6) can be determined by substituting them into Equations (30) through (33), based on
the time points t1, t2, and t3 of each path trajectory. This process allows the derivation of
the relationship between the three path trajectories associated with joint j and time t.

3.2. Time-Optimal Fitness Function under Constraints

Within the confines of maximum speed and acceleration restrictions for robot joints, a
fitness function is formulated with an emphasis on time optimization. Initially, the optimal
value is determined within these constraints by utilizing a mathematical model, as depicted
in Equation (34). 

F(x) = (min f1(x), min f2(x), . . . , min fm(x))
s.t. Qi(x) ≤ |Qmax|
Ji(x) ≤ |Jmax|

(34)

In Equation (34), x represents a vector [x1, x2, x3. . . xn], with Qi(x) and Ji(x) serving
as constraints. The optimization objective function F(x) is constructed from fm(x).

In the context of mixed polynomial interpolation, the fitness function is delineated in
Equations (35) and (36), taking into account the three stages of motion time.

f (t) = min
n

∑
i=0

(ti1 + ti2 + ti3) (35)
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∣∣vij(t)
∣∣ ≤ vmax∣∣aij(t)
∣∣ ≤ amax∣∣Jij(t)
∣∣ ≤ Jmax

(36)

In Equations (35) and (36), ti1, ti2, and ti3 represent the motion times of each joint
across the three distinct motion paths, while vij(t) denotes the joint motion speed. The
term vmax signifies the maximum constraint speed, which is determined by the joint
motion acceleration aij(t). Additionally, amax represents the maximum allowable constraint
acceleration.

4. Improved Sparrow Search Algorithm
4.1. Sparrow Search Algorithm

The sparrow search algorithm (SSA) is a novel intelligent search algorithm, initially
proposed by Xue [23] in 2020. This algorithm primarily simulates sparrow foraging and
anti-predator behavior to identify the optimal solution in multidimensional space. The
sparrow population is categorized into three distinct groups based on their characteristics:
discoverers, followers, and vigilantes. Individuals with higher fitness within the population
function as discoverers, responsible for food searching. Followers, who trail the discoverers,
are accountable for maintaining foraging vigilance within the population. Vigilantes, who
sound the alarm upon detecting danger, update the population’s location and relocate to
other areas for foraging when the vigilance value surpasses a certain threshold.

Supposing that n sparrows are distributed in the D-dimensional solution space, then
the initial population distribution can be represented in matrix form as Equation (37).

X =


x1,1 x1,2 · · · x1,dim
x2,1 x2,2 · · · x2,dim

...
...

. . .
...

xn,1 xn,2 · · · xn,dim

 (37)

The fitness of the nth individual sparrow is represented by Equation (38).

Fn = [ f (xi,1), f (xi,2), f (xi,3), · · · · f (xi,dim)] (38)

The fitness value of each individual sparrow within the initial population is enhanced
through a continuous search in space. The update of the discoverer position is represented
by Equation (39).

Xt+1
i,j =

{
Xt

i,j · exp
(

−i
α·N−gen

)
, R2 < ST

Xt
i,j + Q · L, R2 ≥ ST

(39)

Here, Xt
i,j denotes the position of the i-th sparrow in j-dimensional space during

the t-th iteration. The variable α signifies a random number that adheres to a uniform
distribution within the range of 0 to 1. N_gen represents the maximum number of iterations,
while Q is a random number that follows a normal distribution within the same range. L
symbolizes a matrix of 1 × d with elements equal to 1. R2 stands for the warning value, and
ST signifies the safety value. If the warning value surpasses the safety value, the discoverer
will execute random position updates based on the current position.

The equation for the follower to update their position based on the discoverer’s
position is presented in Equation (40).

Xt+1
i,j =

 Q · exp
(

Xt
w−Xt

i,j
i2

)
, i > NP

2

Xt+1
p +

∣∣∣Xt
i,j − Xt+1

p

∣∣∣ · A+ · L, i ≤ NP
2

(40)
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Here, Xt
w is the position of the worst-fitted sparrow at iteration t, Xt+1

p is the position
of the best-fitted sparrow at iteration t + 1, A is a 1 × d matrix with elements randomly set
to 1 or −1, L is a 1 × d matrix with elements set to 1, and NP is the population size.

The guardians, constituting 10% to 20% of the population, are tasked with performing
vigilance behavior during sparrow foraging activities. Upon detecting potential danger,
these guardians will cease their current foraging activity and relocate to the next available
foraging location. The mathematical formula used to update the location of these guardians
is presented in Equation (41).

Xt+1
i,j =


Xt

b + β ·
∣∣∣Xt

i,j − Xt
b

∣∣∣, fi > fg

Xt
i,j + K ·

( ∣∣∣Xt
i,j−Xt

w

∣∣∣
( fi> fw)+ε

)
, fi = fg

(41)

Here, Xt
b denotes the position of the sparrow with the highest global fitness at iteration

t. The variable β is a random number drawn from a normal distribution (0,1), K is a
uniformly distributed random number in the range (−1,1), and ε is a minimum value to
prevent the denominator from becoming zero. fi, fg, and fw represent the fitnesses of
the current sparrow, the globally highest individual, and the globally lowest individual,
respectively. If the vigilant individual occupies the global optimal position, it will move
based on its current location. Conversely, if it does not occupy the global optimal position,
it will shift towards the current optimal position.

4.2. Enhanced Multi-Strategy Sparrow Search Algorithm

The conventional sparrow search algorithm initializes the population at random within
the search space. However, as the algorithm iterates, there is a gradual decrease in both
the diversity and balance of the population distribution. This can negatively impact the
convergence speed and stability of the algorithm. Furthermore, according to Equation (39),
within the warning value range, the discoverer updates its position based on a small range
of its current location. Consequently, the positions of sparrow individuals after iteration
tend to converge to a single point, significantly increasing the likelihood of the algorithm
falling into local optimization [24]. When the warning value is exceeded, the discoverer
employs a random strategy to update its position. Similarly, as the iteration progresses, the
population richness also gradually diminishes. To address these issues, this paper proposes
an improved sparrow search algorithm. This algorithm initially uses a two-dimensional
Logistic chaotic system to initialize the population, thereby ensuring the richness and
balance of the initial population. It then introduces a Levy flight strategy and a nonlinear
adaptive weight to enhance the position update operator of the discoverer. Additionally,
it incorporates a reverse learning strategy to improve the position update operator of the
vigilant. This approach ensures that in the early stages of algorithm iteration, the weight
increases significantly to boost global search ability. In contrast, in the later stages of
iteration, the weight decreases slightly to strengthen local search ability. Simultaneously,
this method avoids issues such as the “premature” convergence and local optimization
of the algorithm, thereby enhancing its robustness, as well as its convergence accuracy
and speed.

4.2.1. Improved Two-Dimensional Logistic Chaotic System

In recent years, the rapid advancement of chaos theory has expanded its application
scope. The defining characteristics of chaotic systems include high randomness, divergence,
and ergodicity [25]. Logistic mapping, as depicted in Equation (42), is a classic example of
such a system.

xn+1 = µxn(1 − xn) (42)

Here, xn and xn+1 are chaotic sequences, and µ is a chaotic control parameter. When
3.55 < µ < 4.0, the chaotic characteristics of the mapping sequence begin to emerge.
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Despite the robust chaotic properties of the classic Logistic chaotic mapping, its small
mapping space and suboptimal randomness limit its effectiveness. To address these issues,
an enhanced two-dimensional Logistic chaotic mapping [25] approach is employed to
replace the initial population in the sparrow search algorithm with a generated chaotic
sequence. This substitution results in superior chaotic performance, thereby enhancing
the global convergence of the algorithm and preventing it from becoming trapped in local
optimal problems. The improved two-dimensional Logistic chaotic system [26] is defined
in Equation (43).{

xn+1 = sin(π(4axn(1 − xn)) + (1 − a) sin(πyn))
yn+1 = sin

(
π(4ayn(1 − yn)) + (1 − a) sin

(
π
(
x2

n+1
))) (43)

Here, yn and yn+1 are chaotic sequences. When 0 < a < 1, the system is in a
chaotic state.

4.2.2. Discoverer Update Algorithm Based on Levy Flight and Nonlinear Weighting Factors

Levy flight, a strategy that employs both short-range and long-range random trans-
formations for spatial movement, is characterized by its unique randomness and leaps.
This method is particularly well suited to the position updates of the sparrow algorithm’s
discoverer. It iteratively selects movements based on the current position, utilizing either
short- or long-range steps. This approach enhances the algorithm’s search capabilities and
augments the diversity of spatial population distribution.

Levy flight denotes a non-Gaussian stochastic variation process. The Monte Carlo
algorithm is employed to simulate the calculation method of random step length during
this flight process [27], as depicted in Equation (44).

Levy =
µ

|ν|
1
β

(44)

 σµ =
{

Γ(1+β)×sin(πβ/2)
Γ[(1+β)/2]×β×2(β−1)/2

}1/β

σv = 1
(45)

Here, Γ is Standard Gamma Function, β is a constant with value 1.5, and µ and ν are
parameters that follow a normal distribution µ ∼ N

(
0, σ2

µ

)
, ν ∼ N

(
0, σ2

v
)
.

In the algorithm for updating the discoverer position, a nonlinear weight factor [28]
can be employed when the warning value exceeds the safety value (R2 ≥ ST). This ensures
that the weight factor is substantial during the initial stages of algorithm iteration, with
a gradual reduction in its rate of decrease. This strategy broadens the search range of the
sparrow, thereby enhancing global search capabilities and increasing population richness.
As the algorithm progresses to later stages, the weight factor diminishes progressively with
each iteration. This is advantageous for accelerating convergence and improving local
search capabilities, as demonstrated in Equation (46).{

dω
dt = 2·(ωmax −ωmin)

t2 max
· t

ω = ωmax − ωmax −ωmin
t2 max

· t2 (46)

Here, ωmax and ωmin represent the maximum and minimum values of the nonlinear
weight factor, respectively. t denotes the current iteration number, while tmax signifies the
maximum iteration number.

By integrating Equations (44)–(46), we present an enhanced discoverer position update
algorithm, which is based on Levy flight and nonlinear weight factors, as depicted in
Equation (47).

Xt+1
i,j =

{
Xt

i,j + Xt
i,j · Levyj, R2 < ST

Xt
i,j + Q · L · ω, R2 ≥ ST

(47)
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4.2.3. Vigilant Update Algorithm Based on Reverse Learning Strategy

The reverse learning strategy generates a reverse solution derived from the original
one. This is subsequently compared to yield an enhanced solution. When integrated into
the vigilant update algorithm, the process entails determining the optimal position between
the original and reverse solution positions, followed by position updates. The relevant
equations are presented in Equations (48) and (49).

X∗
b (t) = ub + r ⊕ (lb − Xb (t)) (48)

Xt+1
i,j = Xt

b + b1 ⊕ (Xb (t)− X∗
b (t)) (49)

Here, X′
b (t) denotes the inverse solution of the optimal solution at iteration t. The

variables ub and lb signify the upper and lower bounds of the solution space, respectively.
r is a random matrix that follows a uniform distribution within the range of (0,1). Ad-
ditionally, b1 serves as an information control parameter, which can be expressed using
Equation (50).

b1 =

(
tmax −

t
tmax

)t
(50)

4.2.4. Process of Improved Sparrow Search Algorithm

In summary, the methodology of the “3-5-3” hybrid polynomial interpolation trajectory
planning multi-strategy improved sparrow search algorithm for time-optimal six-axis
robots, as proposed in this article, is depicted in Figure 4.

The main procedures are as follows:
Step 1: Ascertain the angle values associated with the six joints and identify the four

interpolation points based on the inverse kinematics solution of the robot arm.
Step 2: The initialization of parameters for the enhanced sparrow search algorithm

encompasses the number of populations, the maximum iteration count, and the allocation
of roles such as discoverers, followers, vigilantes, among others.

Step 3: Utilize a two-dimensional Logistic chaotic system to generate a random initial
population and subsequently initialize the population.

Step 4: Determine the optimal and least favorable individual fitnesses within the
constraints. Subsequently, update the positions of the discoverer, follower, and guard by
utilizing the position update operator of the enhanced sparrow search algorithm.

Step 5: Upon attaining the maximum iteration count, the optimal time for trajectory
planning is output. Should the maximum iteration count not be met, the process reverts to
step 4 until this threshold is satisfied.
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5. Simulation Analysis

The six-axis industrial robot, designed for this study, is kinematically modeled using
MATLAB. A trajectory for the robot’s end point is planned in Cartesian space, as depicted
in Figure 5. Within this Cartesian space, four path points are selected from the robot’s
motion path, which extends from the start to the end point. The interval between these
four path points is set at 2 s. Subsequently, an inverse kinematic solution is applied to these
four path points to determine the joint angle values corresponding to each of the robot’s six
joints. These values are presented in Table 2. The kinematic constraints associated with
each joint of the robot are detailed in Table 3.

Table 2. The corresponding angle values for each joint interpolation point.

Joint i Path Point 1 /◦ Path Point 2 /◦ Path Point 3 /◦ Path Point 4 /◦

1 0 0 0 0
2 0 −30 −45 −50
3 −45 −30 −20 −20
4 0 30 45 60
5 0 0 30 60
6 0 0 0 30
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Table 3. TKinematic constraints of joints.

Joint i Maximum Angular
Velocity/(◦/s)

Maximum Angular
Acceleration/(◦/s2)

1 150 93
2 180 120
3 210 160
4 360 170
5 360 260
6 450 330

Machines 2024, 12, x FOR PEER REVIEW 15 of 21 
 

 

Step 3: Utilize a two-dimensional Logistic chaotic system to generate a random initial 
population and subsequently initialize the population. 

Step 4: Determine the optimal and least favorable individual fitnesses within the con-
straints. Subsequently, update the positions of the discoverer, follower, and guard by uti-
lizing the position update operator of the enhanced sparrow search algorithm. 

Step 5: Upon attaining the maximum iteration count, the optimal time for trajectory 
planning is output. Should the maximum iteration count not be met, the process reverts 
to step 4 until this threshold is satisfied. 

5. Simulation Analysis 
The six-axis industrial robot, designed for this study, is kinematically modeled using 

MATLAB. A trajectory for the robot’s end point is planned in Cartesian space, as depicted 
in Figure 5. Within this Cartesian space, four path points are selected from the robot’s 
motion path, which extends from the start to the end point. The interval between these 
four path points is set at 2 s. Subsequently, an inverse kinematic solution is applied to 
these four path points to determine the joint angle values corresponding to each of the 
robot’s six joints. These values are presented in Table 2. The kinematic constraints associ-
ated with each joint of the robot are detailed in Table 3. 

 
Figure 5. The Cartesian spatial planning trajectories. 

Table 2. The corresponding angle values for each joint interpolation point. 

Joint i Path Point 1 /° Path Point 2 /° Path Point 3 /° Path Point 4 /° 
1 0 0 0 0 
2 0 −30 −45 −50 
3 −45 −30 −20 −20 
4 0 30 45 60 
5 0 0 30 60 
6 0 0 0 30 

Table 3. TKinematic constraints of joints 

Joint i Maximum Angular 
Velocity/(°/s) 

Maximum Angular  
Acceleration/(°/s2) 

1 150 93 
2 180 120 
3 210 160 
4 360 170 
5 360 260 
6 450 330 

Figure 5. The Cartesian spatial planning trajectories.

To ascertain the efficacy of the improved sparrow algorithm (ISSA) proposed in this
study, it was compared with the standard sparrow algorithm (SSA) and the standard
particle swarm optimization algorithm (PSO) for optimizing the “3-5-3” mixed polynomial
interpolation trajectory. Subsequently, a comparative analysis of the optimization outcomes
derived from these three algorithms was conducted. During the optimization phase,
the ISSA and SSA algorithms were initialized with the following parameters: a sparrow
population size of 30, a maximum iteration count of 1000, a discoverer proportion of 20%, a
vigilant proportion of 10%, and a vigilance value of 0.8. Conversely, the PSO algorithm was
initialized with the following parameters: a population size of 30, a maximum iteration
count of 1000, an initial inertia weight of 0.9, and a final inertia weight of 0.4.

The convergence curves for the three algorithms, which are based on time-optimal
trajectory planning for the robot’s six joints, are depicted in Figure 6. As observed from
this figure, the ISSA algorithm demonstrates superior performance in terms of both con-
vergence speed and accuracy when compared to the PSO and SSA algorithms. Upon
comparing the convergence curves of joints 2, 3, 4, 5, and 6, the ISSA algorithm significantly
outperforms both the PSO and SSA algorithms in terms of convergence accuracy, as shown
in Table 4. Specifically, for joint 2, the ISSA algorithm demonstrates a convergence accuracy
that is 13% higher than that of the SSA algorithm and 33% higher than that of the PSO
algorithm. For joint 3, the ISSA algorithm demonstrates a similar convergence accuracy
to the SSA algorithm and exhibits a convergence accuracy that is 6% higher than that of
the PSO algorithm. In the case of joint 4, the convergence accuracy achieved through the
implementation of the ISSA algorithm surpasses those of the SSA and PSO algorithms by
18.8% and 48%, respectively. For joint 5, the ISSA algorithm outperforms both the SSA
and PSO algorithms by 6.5% and 9.3%, respectively. In the instance of joint 6, the ISSA
algorithm demonstrates a 2.4% increase in convergence accuracy compared to the PSO
algorithm. On a broader scale, it is evident that the ISSA algorithm consistently delivers
superior convergence accuracy, exceeding those of the SSA and PSO algorithms by up to
18.8% and 48%, respectively.
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Table 4. ISSA convergence accuracy compared to SSA and PSO.

Convergence Accuracy ISSA Compared to SSA ISSA Compared to PSO

Joint 2 13% 33%
Joint 3 - 6%
Joint 4 18.8% 48%
Joint 5 6.5% 9.3%
Joint 6 2.4% 18.8%

Upon comparing joints 4, 5, and 6, it is evident that the ISSA algorithm exhibits a
superior convergence rate in comparison to both the PSO and SSA algorithms, as shown in
Table 5. Specifically, for joint 4, the convergence rate achieved through the ISSA algorithm
surpasses that of the SSA algorithm by 25% and outperforms the PSO algorithm by 16.7%.
For joint 5, the ISSA algorithm demonstrates an 80% increase in convergence rate compared
to the PSO algorithm. In the case of joint 6, the ISSA algorithm’s convergence rate exceeds
that of the SSA algorithm by 44.4% and surpasses the PSO algorithm by 56%. On a broader
scale, the ISSA algorithm’s convergence rate can be up to 73% higher than that of the SSA
algorithm and up to 80% higher than that of the PSO algorithm.

Table 5. ISSA convergence speed compared to SSA and PSO.

Convergence Speed ISSA Compared to SSA ISSA Compared to PSO

Joint 4 25% 16.7%
Joint 5 52% 80%
Joint 6 44.4% 56%

Given the minimal interval between path points, the fitness curves of the two algo-
rithms exhibit negligible differences in joint 1. Consequently, employing the ISSA algorithm
for time-optimal trajectory planning of six-axis industrial robots is both feasible and effi-
cient. Through the application of the ISSA algorithm, it becomes possible to effectively
accomplish trajectory planning in the shortest timeframe, thereby enhancing the robot’s
work efficiency and optimizing its performance. Simultaneously, the efficiency of the
ISSA algorithm demonstrates strong practicality and promising application prospects in
real-world engineering scenarios.

Figure 7 illustrates the curves for angular displacement, angular velocity, and angular
acceleration obtained following the application of the ISSA, SSA, and PSO algorithms in
time-optimal trajectory planning for an industrial robot with six joints. This process ensures
compliance with kinematic constraints.

As illustrated in Figure 7, the industrial robot optimized by the PSO algorithm operates
at a time of approximately 3.77099 s. In contrast, the robot optimized by the SSA algorithm
functions at an average time of 3.33759 s, while the one optimized by the ISSA algorithm
operates at around 3.17564 s. The ISSA-optimized robot’s running time is notably shorter
than that of the unoptimized model by 2.82436 s, which represents a reduction of 47%.
Furthermore, the ISSA-optimized robot’s running time is 0.16195 s or 4.9% shorter than
that of the robot optimized by the SSA algorithm, and it is 0.59535 s or 15.8% faster than
that of the robot optimized by the PSO algorithm. This comparison indicates that each joint
trajectory of the unoptimized robot experiences a significant reduction in running time
when optimized by either the ISSA, SSA, or PSO algorithms. However, the optimization
effect of the ISSA algorithm surpasses that of both the SSA and PSO algorithms, effectively
enhancing the robot’s operational efficiency. Specifically, each joint’s running time is
reduced by 0.59535 s compared to the unoptimized model. Post-optimization, the curves
representing angular displacement, velocity, and acceleration for each joint of the robot are
smoother and exhibit no abrupt changes, thereby mitigating any rigid or flexible impact on
the robot’s performance.
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6. Conclusions

This paper introduces an enhanced multi-strategy sparrow search algorithm, which
is based on the 3-5-3 trajectory planning. The aim is to achieve time-optimal trajectory
planning for industrial robots.

This paper proposes an enhanced multi-strategy sparrow search algorithm based on a
3-5-3 hybrid polynomial interpolation. The specific improvement strategies include initial-
izing the population using a two-dimensional Logistic chaotic system to ensure diversity
and balance, implementing a Levy flight strategy and nonlinear adaptive weighting to
enhance the discoverer position updating operator, and introducing an inverse learning
strategy to refine the vigilante position-updating operator. This approach ensures that dur-
ing the early iterations of the algorithm, a larger weight boosts the global search capability.
Conversely, in later iterations, a smaller weight augments the local search ability. This
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method simultaneously mitigates the issues of “precocity” and local optimization, thereby
enhancing the robustness of the algorithm, as well as its convergence accuracy and speed.

A six-axis industrial robot independently developed by the laboratory is taken as the
research object, and the improved sparrow search algorithm, traditional sparrow search
algorithm, and particle swarm algorithm are, respectively, used to carry out time-optimal
trajectory planning simulation experiments based on 3-5-3 hybrid polynomial interpolation.
The numerical results demonstrate that the enhanced sparrow search algorithm outper-
forms both the standard sparrow algorithm and the particle swarm algorithm in terms
of convergence speed and accuracy when optimizing a robot’s trajectory. This improved
algorithm not only converges more rapidly but also achieves greater precision, thereby
increasing the robot’s work efficiency and overall performance.
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