Game-Theoretic Adversarial Interaction-Based Critical Scenario Generation for Autonomous Vehicles
Abstract
:1. Introduction
1.1. Motivation
1.2. Related Work
1.3. Contributions
- (1)
- Construction of Game-Theoretic Adversarial Interaction Behaviors: By introducing game theory, a decision-making algorithm specifically targeting Advs is designed, make adversarial behaviors more reasonable and human-like, thereby avoiding unreasonable adversarial actions.
- (2)
- Quantitative Grading of Adversarial Intensity: Drawing on the concept of reachability sets, the adversarial intensity of scenarios is quantitatively graded to test AVs with different capabilities. By quantifying adversarial intensity, the performance of AV systems under different levels of adversarial challenges can be more accurately assessed.
- (3)
- Comprehensive Evaluation and Testing Efficiency Improvement: In addition to safety, the evaluation metrics include the comfort and driving performance of autonomous vehicles, providing a more comprehensive assessment system. The proposed method enables the intuitive generation of a large number of critical scenarios, significantly enhancing the testing efficiency of autonomous driving systems.
1.4. Structure of the Paper
2. Model Establishment and Preparation
2.1. Construction of the Kinematic Model for Adversarial Vehicles
2.2. Motion Trend Prediction
2.3. Construction of Interaction Action Spaces
3. Establishment of Evaluation Functions
3.1. Design of Action Payoff Functions
3.2. Risk Assessment Functions
3.3. Quantitative Model of Adversarial Intensity
Algorithm 1 Offline Reachability Analysis |
Require: 1: for k = 0 to h do ▷ see (29) ) ▷ see (30) ▷ see (31) 6: end for 7: |
Algorithm 2 Online Reachability Analysis |
Require:, forbidden set , number of time steps , 1: for k = 0 to h do ▷ see (33) ▷ see (34) ) ▷ see (35) ▷ see (36) 6: end for 7: |
Algorithm 3 Calculate Immediate payoffs |
Input: ,, Output: ▷ see (17) ▷ see (21) 3: 4: 5: 6: ▷ see (Algorithm 1 and Algorithm 2) 7: 8: |
4. Solution of the Adversarial Interaction Decision-Making Model
4.1. Determining Leader and Follower Vehicles
4.2. Solving for Nash Equilibrium
5. Experiments
5.1. Experiment to Demonstrate Adversarial Interaction Capability
5.2. Multi-Level Adversarial Capability Verification
5.3. Validation of Key Scenario Construction
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Pei, H.; Zhang, J.; Zhang, Y.; Pei, X.; Feng, S.; Li, L. Fault-tolerant cooperative driving at signal-free intersections. IEEE Trans. Intell. Veh. 2023, 8, 121–134. [Google Scholar] [CrossRef]
- He, Z.; Pei, H.; Guo, Y.; Yao, D.; Zhang, Y.; Li, L. Comparative analysis of cooperative driving strategies for CAVs at on-ramps. IEEE Trans. Veh. Technol. 2023, 72, 8099–8104. [Google Scholar] [CrossRef]
- Lee, S.; Arvin, R.; Khattak, A.J. Advancing investigation of automated vehicle crashes using text analysis of crash narratives and Bayesian analysis. Accid. Anal. Prev. 2023, 181, 106932. [Google Scholar] [CrossRef] [PubMed]
- Sun, J.; Zhang, H.; Zhou, H.; Yu, R.; Tian, Y. Scenario-based test automation for highly automated vehicles: A review and paving the way for systematic safety assurance. IEEE Trans. Intell. Transp. Syst. 2022, 23, 14088–14103. [Google Scholar] [CrossRef]
- Feng, S.; Yan, X.; Sun, H.; Feng, Y.; Liu, H.X. Intelligent driving intelligence test for autonomous vehicles with naturalistic and adversarial environment. Nat. Commun. 2021, 12, 748. [Google Scholar] [CrossRef] [PubMed]
- Yan, X.; Zou, Z.; Feng, S.; Zhu, H.; Sun, H.; Liu, H.X. Learning naturalistic driving environment with statistical realism. Nat. Commun. 2023, 14, 2037. [Google Scholar] [CrossRef] [PubMed]
- Feng, S.; Sun, H.; Yan, X.; Zhu, H.; Zou, Z.; Shen, S.; Liu, H.X. Dense reinforcement learning for safety validation of autonomous vehicles. Nature 2023, 615, 620–627. [Google Scholar] [CrossRef] [PubMed]
- Zhou, J.; Wang, L.; Wang, X. Online Adaptive Generation of Critical Boundary Scenarios for Evaluation of Autonomous Vehicles. IEEE Trans. Intell. Transp. Syst. 2023, 24, 6372–6388. [Google Scholar] [CrossRef]
- Ding, W.; Xu, C.; Arief, M.; Lin, H.; Li, B.; Zhao, D. A survey on safety-critical driving scenario generation a methodological perspective. IEEE Trans. Intell. Transp. Syst. 2023, 24, 6971–6988. [Google Scholar] [CrossRef]
- Zhao, D.; Lam, H.; Peng, H.; Bao, S.; LeBlanc, D.J.; Nobukawa, K.; Pan, C.S. Accelerated evaluation of automated vehicles safety in lane-change scenarios based on importance sampling techniques. IEEE Trans. Intell. Transp. Syst. 2017, 18, 595–607. [Google Scholar] [CrossRef] [PubMed]
- Huang, Z.; Lam, H.; LeBlanc, D.J.; Zhao, D. Accelerated evaluation of automated vehicles using piecewise mixture models. IEEE Trans. Intell. Transp. Syst. 2018, 19, 2845–2855. [Google Scholar] [CrossRef]
- Rana, A.; Malhi, A. Building safer autonomous agents by leveraging risky driving behavior knowledge. In Proceedings of the 2021 International Conference on Communications, Computing, Cybersecurity, and Informatics (CCCI), Beijing, China, 15–17 October 2021; pp. 1–6. [Google Scholar]
- Ding, W.; Lin, H.; Li, B.; Eun, K.J.; Zhao, D. Semantically adversarial driving scenario generation with explicit knowledge integration. arXiv 2021, arXiv:2106.04066. [Google Scholar]
- Smullyan, R.M. First-Order Logic; Courier Corporation: Chelmsford, MS, USA, 1995. [Google Scholar]
- Klischat, M.; Liu, E.I.; Holtke, F.; Althoff, M. Scenario factory: Creating safety-critical traffic scenarios for automated vehicles. In Proceedings of the 2020 IEEE 23rd International Conference on Intelligent Transportation Systems (ITSC), Rhodes, Greece, 20–23 September 2020; pp. 1–7. [Google Scholar]
- Bennett, J. OpenStreetMap; Packt Publishing Ltd.: Birmingham, UK, 2010. [Google Scholar]
- Lopez, P.A.; Behrisch, M.; Bieker-Walz, L.; Erdmann, J.; Flötteröd, Y.P.; Hilbrich, R.; Lücken, L.; Rummel, J.; Wagner, P.; Wiessner, E. Microscopic traffic simulation using SUMO. In Proceedings of the 2018 21st International Conference on Intelligent Transportation Systems (ITSC), Maui, HI, USA, 4–7 November 2018; pp. 2575–2582. [Google Scholar]
- Wachi, A. Failure-scenario maker for rule-based agent using multi-agent adversarial reinforcement learning and its application to autonomous driving. In Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence (IJCAI-19), Macau, China, 10–16 August 2019; pp. 6006–6012. [Google Scholar]
- Xiong, Z.; Xu, H.; Li, W.; Cai, Z. Multi-source adversarial sample attack on autonomous vehicles. IEEE Trans. Veh. Technol. 2021, 70, 2822–2835. [Google Scholar] [CrossRef]
- Xu, X.; Zhang, J.; Li, Y.; Wang, Y.; Yang, Y.; Shen, H.T. Adversarial attack against urban scene segmentation for autonomous vehicles. IEEE Trans. Ind. Inform. 2021, 17, 4117–4126. [Google Scholar] [CrossRef]
- Kong, Z.; Guo, J.; Li, A.; Liu, C. PhysGAN: Generating physical-world-resilient adversarial examples for autonomous driving. In Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Seattle, WA, USA, 13–19 June 2020; pp. 14242–14251. [Google Scholar]
- O’Kelly, M.; Sinha, A.; Namkoong, H.; Duchi, J.; Tedrake, R. Scalable end-to-end autonomous vehicle testing via rare-event simulation. In Proceedings of the 32nd Conference on Neural Information Processing Systems (NeurIPS 2018), Montréal, QC, Canada, 3–8 December 2018; pp. 9827–9838. [Google Scholar]
- Chen, B.; Chen, X.; Wu, Q.; Li, L. Adversarial evaluation of autonomous vehicles in lane-change scenarios. IEEE Trans. Intell.Transp. Syst. 2022, 23, 10333–10342. [Google Scholar] [CrossRef]
- Wang, J.; Pun, A.; Tu, J.; Manivasagam, S.; Sadat, A.; Casas, S.; Ren, M.; Urtasun, R. AdvSim: Generating safety-critical scenarios for self-driving vehicles. In Proceedings of the 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Nashville, TN, USA, 20–25 June 2021; pp. 9904–9913. [Google Scholar]
- Szczepanski, R.; Tarczewski, T.; Erwinski, K. Energy efficient local path planning algorithm based on predictive artificial potential field. IEEE Access 2022, 10, 39729–39742. [Google Scholar] [CrossRef]
- Wei, C.; Romano, R.; Merat, N.; Wang, Y.; Hu, C.; Taghavifar, H.; Hajiseyedjavadi, F.; Boer, E.R. Risk-based autonomous vehicle motion control with considering human driver’s behavior. Transp. Res. Part C Emerg. Technol. 2019, 107, 1–14. [Google Scholar] [CrossRef]
- Malin, F.; Norros, I.; Innamaa, S. Accident risk of road and weather conditions on different road types. Accid. Anal. Prev. 2019, 122, 181–188. [Google Scholar] [CrossRef] [PubMed]
- Liu, E.I.; Würsching, G.; Klischat, M.; Althoff, M. CommonRoad-Reach: A toolbox for reachability analysis of automated vehicles. In Proceedings of the 2022 IEEE 25th International Conference on Intelligent Transportation Systems (ITSC), Macau, China, 8–12 October 2022; pp. 2313–2320. [Google Scholar]
- Althoff, M.; Kochdumper, N. CORA 2016 Manual; TU Munich: Garching, Germany, 2016; p. 85748. [Google Scholar]
- Chen, X.; Sankaranarayanan, S.; Abraham, E. Flow* 1.2: More effective to play with hybrid systems. In ARCH14-15. 1st and 2nd International Workshop on Applied veRification for Continuous and Hybrid Systems; EasyChair: Stockport, UK, 2015; Volume 34, pp. 152–159. [Google Scholar]
- Geretti, L.; Sandretto, J.A.D.; Althoff, M.; Benet, L.; Collins, P.; Forets, M.; Ivanova, E.; Li, Y.; Mitra, S.; Mitsch, S.; et al. ARCH-COMP23 category report: Continuous and hybrid systems with nonlinear dynamics. In 10th International Workshop on Applied Verification of Continuous and Hybrid Systems; EasyChair: Stockport, UK, 2023; pp. 61–88. [Google Scholar]
- Li, R.; Zhu, H.; Banach, R. Translating and verifying Cyber–Physical systems with shared-variable concurrency in SpaceEx. Internet Things 2023, 23, 100864. [Google Scholar] [CrossRef]
- Eshtehardian, S.; Khodaygan, S. A continuous rrt*-based path planning method for non-holonomic mobile robots using b-spline curves. J. Ambient. Intell. Humaniz. Comput. 2023, 14, 8693–8702. [Google Scholar] [CrossRef]
- Radwan, M.O.; Sedky, A.A.H.; Mahar, K.M. Obstacles avoidance of self-driving vehicle using deep reinforcement learning. In Proceedings of the 2021 31st International Computer Theory and Applications (ICCTA), Alexandria, Egypt, 1–13 December 2021; pp. 215–222. [Google Scholar]
- Coifman, B.; Li, L. A critical evaluation of the Next Generation Simulation (NGSIM) vehicle trajectory dataset. Transp. Res. Part B Methodol. 2017, 105, 362–377. [Google Scholar] [CrossRef]
Road Condition | Probability | Number of Accidents | |
---|---|---|---|
Good | 0.845 | 7992 | 0.9 |
Rain | 0.088 | 978 | 1.06 |
Rain and Snow | 0.005 | 77 | 1.46 |
Snow | 0.062 | 1417 | 2.18 |
State–Behavior Values | Movement of the Vehicle in Front (Leader) | |||||
Movement of the vehicle behind (follower) | 8.36, 10.06 | 12.46, 17.36 | 12.31, 18.50 | 10.57, 19.17 | 11.50, 16.92 | |
5.03, 5.07 | 6.12, 5.26 | 4.58, 4.66 | 8.03, 8.17 | 6.05, 6.17 | ||
6.59, 5.68 | 9.45, 9.46 | 12.00, 6.61 | 13.19, 8.35 | 9.42, 7.67 | ||
5.07, 7.31 | 3.43, 5.46 | 6.15, 15.11 | 6.16, 11.73 | 4.22, 10.15 |
Vehicle ID | Initial Position (m) | Initial Speed |
---|---|---|
Adv vehicle (yellow) | (27, −1.75) | 13 m/s |
Ego vehicle (white) | (2, 1.75) | 10 m/s |
Background vehicle (red) | (51, −2) | 9 m/s |
Background vehicle (blue) | (74, 1.75) | 13 m/s |
Parameters | Value |
---|---|
Prediction Period | 0.1 |
Prediction Time Horizon | 2 |
Acceleration for normal driving | 2 |
Deceleration for normal driving | −3 |
Extra transverse angular velocity | 0.15 |
Value Function Discount Factor | 0.98 |
Acceleration/deceleration/lane change corresponding cost factor / | 0.02/0.04 |
Dynamic/Road risk assessment factor / | 0.8/0.2 |
Expected speed | 13 |
Road width | 3.5 |
Safety constant | 0.17 |
Spacing constant | 10 |
Cell size ) | 0.5 |
Radius | 1.25 |
Level of adversarial desired | 0.6 |
Adversarial Vehicle Level of Adversarial Desired | ||||
---|---|---|---|---|
None | Low | Moderate | High | |
NGSIM [35] | 0.81% | 0.72% | 1.09% | 1.94% |
RRT [33] | 1.68% | 2.67 (0.99)% | 5.83 (4.15)% | 9.98 (8.30)% |
DDPG [34] | 1.28% | 4.94 (3.66)% | 10.17 (8.89)% | 16.81 (15.53)% |
AV under Test | ||||||
---|---|---|---|---|---|---|
DDPG | RRT | |||||
1.22 | 4.48 | 10.54 | 0.94 | 4.44 | 10.08 | |
2.17 | 7.29 | 10.76 | 0.89 | 6.82 | 10.49 | |
3.05 | 13.81 | 11.37 | 1.27 | 9.31 | 10.88 | |
3.65 | 15.86 | 11.93 | 2.34 | 14.57 | 11.34 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zheng, X.; Liang, H.; Wang, J.; Wang, H. Game-Theoretic Adversarial Interaction-Based Critical Scenario Generation for Autonomous Vehicles. Machines 2024, 12, 538. https://doi.org/10.3390/machines12080538
Zheng X, Liang H, Wang J, Wang H. Game-Theoretic Adversarial Interaction-Based Critical Scenario Generation for Autonomous Vehicles. Machines. 2024; 12(8):538. https://doi.org/10.3390/machines12080538
Chicago/Turabian StyleZheng, Xiaokun, Huawei Liang, Jian Wang, and Hanqi Wang. 2024. "Game-Theoretic Adversarial Interaction-Based Critical Scenario Generation for Autonomous Vehicles" Machines 12, no. 8: 538. https://doi.org/10.3390/machines12080538
APA StyleZheng, X., Liang, H., Wang, J., & Wang, H. (2024). Game-Theoretic Adversarial Interaction-Based Critical Scenario Generation for Autonomous Vehicles. Machines, 12(8), 538. https://doi.org/10.3390/machines12080538