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Abstract: This research study represents a polydexterous deep reinforcement learning-based pick-
and-place framework for industrial clutter scenarios. In the proposed framework, the agent tends to
learn the pick-and-place of regularly and irregularly shaped objects in clutter by using the sequential
combination of prehensile and non-prehensile robotic manipulations involving different robotic
grippers in a completely self-supervised manner. The problem was tackled as a reinforcement
learning problem; after the Markov decision process (MDP) was designed, the off-policy model-free
Q-learning algorithm was deployed using deep Q-networks as a Q-function approximator. Four
distinct robotic manipulations, i.e., grasp from the prehensile manipulation category and inward slide,
outward slide, and suction grip from the non-prehensile manipulation category were considered
as actions. The Q-function comprised four fully convolutional networks (FCN) corresponding
to each action based on memory-efficient DenseNet-121 variants outputting pixel-wise maps of
action-values jointly trained via the pixel-wise parametrization technique. Rewards were awarded
according to the status of the action performed, and backpropagation was conducted accordingly
for the FCN generating the maximum Q-value. The results showed that the agent learned the
sequential combination of the polydexterous prehensile and non-prehensile manipulations, where
the non-prehensile manipulations increased the possibility of prehensile manipulations. We achieved
promising results in comparison to the baselines, differently designed variants, and density-based
testing clutter.

Keywords: polydexterous; deep reinforcement learning; prehensile; non-prehensile; robotic manipulation;
Markov decision process; deep Q-network; fully convolutional network; pixelwise-parameterization;
DenseNet-121

1. Introduction

The concept of Industry 4.0 has been prevalent for over a decade now [1]. The fourth
industrial revolution, centered on automation, introduced key technologies such as Digital
Twins, Cyber–Physical Systems, Smart Manufacturing, and the Internet of Things (IoT).
These innovations have become integral to implementing automated processes within
industries. With this revolution of industry, one can clearly see the direction and future of
industries, as described by Warren Bennis [2]: “The factory of the future will have only two
employees, a man and a dog. The man will be there to feed the dog. The dog will be there
to keep the man from touching the equipment.” The proof-of-concept of the Industry 4.0
revolution can be witnessed all over the world, for example, Europe’s Industry 4.0, China’s
Made in China 2025, USA’s Advanced Manufacturing, Japan’s Super Smart Society 5.0, etc.
One can witness different terminologies such as smart factories, smart manufacturing, and
smart industry in the literature, which fall under the umbrella of Industry 4.0. In these
domains, while achieving the goal of automation, the involvement of artificial intelligence
(AI) and the utilization of robotics are quite evident.

Robotics has been a part of industry for almost five decades, evolving in various forms
over time [3]. The operations usually performed by industrial robots can be divided into
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three categories: material handling, processing operation, and assembly and inspection [4].
Tasks included in the material handling category are material transfer and machine loading
and unloading. In processing operations, robotic arms are used to perform a process on a
medium such as welding and painting. In assembling and inspection operations, products
are assembled, and their quality is ensured. In all these categories, the most frequent
and repetitive robotic manipulation is the pick-and-place operation. In addition to pure
industrial robots, even collaborative robots, also known as cobots, are specially designed to
work alongside human workers, mostly to perform pick-and-place tasks. Over the years,
along with pure industrial robots, collaborative robots have become the focus of attention
of industry due to their ability to quickly learn on the job and trouble-free reprogramming
features. It is being witnessed that with the rapid growth of industries and e-commerce,
pick-and-place or bin-picking robotic arms are in demand to achieve automation in various
factories and warehouses [5].

Usually, robotic manipulations are categorized into two categories: prehensile manipu-
lation [6,7] and non-prehensile manipulation [8]. The key difference between the two is that
the former implies grasping or capturing and the latter lacks the element of grasping and
instead adopts pushing or propelling. Figure 1 clearly showcases the difference between
both categories. Our previous work [9] showed that a well-coordinated approach between
these two types of robotic manipulations can significantly enhance success rates. Therein,
we found that non-prehensile manipulation such as sliding can navigate through tightly
packed objects, facilitating subsequent grasping. Meanwhile, prehensile manipulation
such as grasping can efficiently displace objects, ensuring collision-free and precise move-
ments for non-prehensile manipulations, such as sliding or pushing. Previously, much
research was conducted separately on prehensile and non-prehensile robotic manipulations.
However, there remains a substantial research gap and ample opportunity to explore the
integration of these two types of robotic manipulations that we targeted in our previous
work [9].
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When we consider the combination of prehensile and non-prehensile robotic manipu-
lation, the role of non-prehensile manipulation can vary, for example, modifying the object
poses, creating gaps between objects, breaking down a clutter of objects for further manip-
ulation, etc. In most existing research combining prehensile and non-prehensile robotic
manipulation, the varying role of non-prehensile manipulation has not been thoroughly ex-
amined, neither in model-based work [10] nor in data-driven approaches [11]. The primary
difference between the model-based and data-driven is that the former relies entirely on
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static models, whereas the latter involves models trained through learning from relevant
data. In prehensile manipulation, some approaches learn from previous experiences [12]
while others rely on grasp stability measures [13]. However, most current approaches lack
the ability to sequentially learn a combination of prehensile and non-prehensile manipula-
tions, which could enhance the success rate of pick-and-place tasks.

In this research study, we extend our previous work [9] and explore the possibility of
integrating previous work on the agent learning synchronization of grasping and sliding
with suction-based grasping, which technically falls under the category of non-prehensile
manipulation. To extend the previous work, we develop a polydexterous framework, which
uses different robotic grippers on a robotic arm to perform multiple robotic manipulations.
The major objectives or contributions of this research study are as follows:

• A deep reinforcement learning-based end-to-end framework, known as PolyDexFrame,
enables the agent to learn the sequential combination of jaw-gripper and suction
cup/pad prehensile and non-prehensile robotic manipulations, thus allowing the
pick-and-place of regular- and irregular-shaped objects successfully.

• The jaw-gripper grasping, bidirectional sliding, and suction-cup-based vacuum grip-
ping are learned together in such a sequential manner where each robotic manipulation
further enhances the chances of the other manipulations.

• Optimal policy convergence is achieved through Q-learning by training joint end-to-
end CNNs in a self-supervised mode with the help of a pixelwise-parameterization
technique.

An important question here regards the need or reason behind extending our research
by integrating the suction-based non-prehensile manipulation with the jaw-gripper-based
prehensile and non-prehensile manipulations. There are several scenarios in industry and
warehouses where there is clutter to be picked and placed, comprising various kind of
objects; some may be deformable, soft, and flexible objects, whereas others may be rigid
ones. When a regular jaw gripper faces problems in accurately grasping the deformable,
soft objects, the suction cup/pad can be the right option due to its gentleness, adaptability to
the soft deformable object’s surface, and reduced pressure points [14]. Therefore, the agents’
learning to combine the prehensile and non-prehensile manipulations of different grippers,
i.e., to be polydexterous, in a sequential manner which may lead to an enhanced success
rate of the pick-and-place task is highly beneficial. Therefore, the novelty of this extended
research work is evident in the joint learning of the jaw-gripper grasping, bidirectional
sliding, and suction-cup-based vacuum gripping for the pick-and-place of regular- and
irregular-shaped clutter.

2. Related Work

In this research study, we target the amalgamation of robotic gripper-based grasping,
sliding, and vacuum gripping with the help of a suction cup/pad. Therefore, we examine
these three elements addressed individually thus far in the existing body of literature.

The robotic gripper-based grasping has been studied and practiced for a long time
now. A lot of the literature consists of various model-based approaches. Some of these
approaches identified the merit of individual grasps based on their ability to control the
movement of the object [15], whereas a couple of them explored the resistive role of contact
forces by modeling them in the process of grasping [16]. In some approaches, the main
idea is to relate point clouds with the grasps computed beforehand dynamically on the
run for the sake of the pose estimation of the objects under consideration [17]. The pre-
computed grasps are mostly generated with the help of 3D object models which make
the real-world adaptation much better [18]. The obvious limitation of these approaches
is that a large amount of in-depth information is necessary beforehand for them to work,
such as the shape of the objects, poses of the objects, pre-computed contact points on the
objects, etc. But when the objects are novel and unknown, then it is impossible to meet
this mandatory condition, which makes these approaches unsuitable. On the other hand,
researchers have been working on data-driven approaches instead in recent years. Various
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data-driven approaches are evident, in which agents are trained in a model-free manner
to identify the potential grasps after learning the visual features instead of requiring any
in-depth information beforehand [12]. Approaches like [19] present the idea of using
models pretrained to learn other robotic manipulations to be used for the learning of the
desired robotic manipulation. The approach in [12] is completely deep-learning-based
and tends to calculate pixelwise affordances in order to make the model learn the optimal
grasping policy.

Like the history of prehensible manipulation, the relevant literature suggests that
non-prehensile manipulation has also been around for a long time. The early approaches
developed in the non-prehensile domain used the assistance of frictional forces in mod-
eling [20]. Even though these approaches played a vital role in the future development
of the non-prehensile research area, the modeling assumptions made during the process,
such as non-uniform distribution and varying frictional forces, proved to be insufficient
for real-world settings [21]. These limitations causing hurdles in adapting to real-world
settings led to the exploration of data-driven approaches for the learning of non-prehensile
manipulations [22]. Most of the techniques presented in these approaches revolved around
dealing with a single object. However, exploring dense clutter remains a complex challenge
in this domain.

The vacuum gripping with the help of a suction cup/pad is one of the widely deployed
non-prehensile manipulations in warehouses and industries [23,24]. In the three popular
events of the Amazon Picking Challenge [25], most approaches were based on vacuum
gripping using a suction cup/pad. The Amazon Picking Challenge 2015 featured more
than half of its approaches using suction grippers, including the winning team [25], which
achieved suction gripping by pushing objects to the sides and walls. In [26], the authors
utilized 6D pose estimation to perform vacuum gripping using a suction gripper near the
center of the object surface. In [27], both 6D models and manual heuristics were employed
for suction gripping at potential grasp coordinates. Fully convolutional networks were used
by [12] to link visual inputs to the probabilities of suction grasps. In [28], the authors used
two different masks to achieve grasp estimation from a single depth image. These masks
represented the contact and collision regions, respectively. Another approach, [29], involved
training convolutional neural networks to predict the grasp quality by classifying potential
suction grasps in cloud points. A dataset comprising 2.8 million point clouds, suction
grasps, and relevant labels was created for this purpose. Additionally, double-stream
convolutional neural networks have been used to calculate suction point probabilities
in clutter, with the aid of manual annotations [30]. Despite these advancements, most
deep-learning-based approaches still rely on data manually annotated by humans.

The research area combining prehensile and non-prehensile robotic manipulations has
not been fully explored yet, but there is no doubt about its efficacy. The study presented
in [8] can be seen as a pioneering model-based approach that tried to combine prehensile
and non-prehensile manipulations. It performs the combination of push–grasp, where the
grasping is achieved while the pushing through clutter, with the hope of increasing the
chances of grasping. However, this approach requires a large amount of relevant in-depth
information beforehand, whereas the proposed approach in this research study requires
absolutely no information beforehand since it learns in a self-supervised mode. Some other
combination-based approaches [11] have also been presented where the grasping pose and
locations are predefined, and the role of the non-prehensile pushing is to bring the objects
to these pre-designed grasp locations. In these approaches, in addition to the limitation of
a static grasping part, the pushing part is also not learned from scratch. A reinforcement-
learning-based approach [31] has also been presented using handcrafted features to make
the agent learn and select from prehensile and non-prehensile manipulations to pick-
and-place the clutter. In this approach, object detection relies on the segmentation of
RGB-D images, after which potential manipulations/actions are sampled for each detected
object, and for each sampled action, handcrafted features are extracted before performing
that manipulation. The downside of this approach is that it is only suitable for clutter
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composed mostly of convex objects. Another limitation of the approach is the requirement
for prior information regarding the pushing actions, such as motion prediction through a
simulator. Using the reinforcement learning, some singulation techniques [32] have also
been presented, restricted to regular shapes and limited non-prehensile manipulation.

In the research area of combining prehensile and non-prehensile robotic manipu-
lations, little has been carried out in combining suction-based gripping non-prehensile
manipulation with jaw-gripper-based prehensile and non-prehensile manipulations. The
proposed approach in this paper addresses this research gap. This work is essentially an
extension of the research conducted in [9], which combined jaw-gripper-based prehensile
and non-prehensile manipulations, and it extends the work in [7], where the pixelwise-
parametrization technique was adopted for prehensile manipulation. The role of Q-learning
in this work prior to adopting the pixelwise-parameterization technique was presented
in [33,34].

3. Background

In this section, we briefly review the basic concepts of the cutting-edge technolo-
gies of deep learning, reinforcement learning, and their amalgamation, known as deep
reinforcement learning, involved in this end-to-end data-driven approach.

3.1. Deep Learning

Deep learning is a very well-known member of the machine-learning family because of
its exceptional performance in various domains. Deep learning is not limited to computer
vision problems, its application can be found in many fields, including climate science,
medical science, bioinformatics, drug design, material inspection, machine translation,
natural language processing, speech recognition, social network filtering, etc. Deep learning
has even outperformed human experts in board games. In other words, deep learning has
introduced the world to many new ways of data processing, analysis, and manipulation.
The word “deep” in deep learning refers to the presence of multiple layers in a single
network. Whereas in machine learning, feature extraction from input data is performed
manually by experts, deep learning extracts higher-level features automatically as the input
data pass through the multiple layers of the deep neural network, as shown in Figure 2.
Here, input data refers to raw images. Usually, large volumes of data are required in deep
learning to achieve maximum efficiency and optimal results. Because it deals with large
volumes of data, it requires substantial computational power. Deep models can be seen as
artificial neural networks involving deep structures. The idea of the artificial neural network
can be traced back to the early 1940s [35]. Since then, several turning points and landmarks
have been achieved, with the introduction of perceptron, backpropagation method, rectified
linear unit, max-pooling, dropout, batch normalization, etc. This series of algorithmic
advances, the availability of large-scale data, and the emergence of highly efficient parallel
computing entities such as Graphics Processing Units (GPUs) have contributed to the
success of deep learning today. The first major achievement in the field of deep learning
was achieved by a convolutional neural network (CNN) performing classification after
training in 2012 [36]. It was trained on hundreds of thousands of labelled images, using
loss computation and backpropagation to learn the parameters. Since then, this method has
seen many improvements and can be considered the most popular deep learning approach;
however, it is not well-suited for learning robotic manipulations. The primary reason for
its unsuitability for learning robotic manipulation is its very high time requirement, which
necessitates a large number of labelled images of joint angles for training. Nevertheless,
researchers are exploring alternatives [37], and deep reinforcement learning, which will be
discussed later, appears to be more efficient and promising.
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3.2. Reinforcement Learning

Reinforcement learning is one of the subdomains of the machine-learning field [38]. It
focuses on finding behaviors that maximize rewards through a process of trial and error.
This mirrors how humans and animals learn: by perceiving and processing information,
storing it as knowledge, and adapting their behavior in response to changing circumstances.
This self-supervised technique is being deployed in several fields such as statistics, infor-
mation theory, system optimization, recommendations systems, operations research, game
theory, and control theory [39]. Natural reinforcement learning can be seen in living beings
through punishment or reward, thus reinforcing positive behavior and suppressing nega-
tive behavior. In the same manner, an agent starts in a state, takes an action according to its
current policy, receives a reward from the environment, ends up in a new state, chooses a
new action, and continues iterating through this procedure. For a better understanding,
this cycle is shown in Figure 3. Simply put, it is like playing a video game in which a
character performs actions to maximize their score. Reinforcement learning is not like
supervised learning, where labeled datasets are available for training the agent. When
deploying reinforcement learning in interactive use cases, such as robotic control problems,
labeled data or depictions of all potential actions are often scarce. Therefore, the concept
of rewards is introduced. Reinforcement learning is also not like unsupervised learning,
where we identify patterns or structures in unlabeled datasets. Instead of finding patterns
and structures, the agent gradually learns to behave in the environment based on future
rewards. Therefore, it can be termed as the third paradigm of machine learning, next to
supervised and unsupervised learning [40].
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3.3. Deep Reinforcment Learning

As evident from the name, deep reinforcement learning is an amalgamation of re-
inforcement learning and deep learning. From reinforcement learning, it borrows the
technique of awarding rewards to agents based on the actions they chose to perform,
and from deep learning, it uses the idea of learning features through the deployment of
neural networks. While traditional reinforcement learning is suited for environments with



Machines 2024, 12, 547 7 of 25

simple state representations, deep reinforcement learning enables agents to learn from
unstructured and multi-dimensional inputs using neural networks. A general outlook
of a deep reinforcement learning-based approach is shown in Figure 4. In the last few
years, as deep learning has gained popularity, deep reinforcement learning has also made
significant progress in various domains. Deep reinforcement learning gained much of its
popularity through its role in games research. In 2013, DeepMind produced significant
results in the Atari game without relying on hand-coded features. Later, in 2016, AlphaGo
made headlines by defeating a human expert in the ancient Chinese game Go. Its improved
version, AlphaZero, produced in 2017, demonstrated proficiency in learning features in
shogi and chess as well. In 2019, Pluribus and OpenAI Five outperformed top professionals
in multiplayer poker and defeated the defending world champion in Dota 2, respectively.
Beyond games, deep reinforcement learning holds potential in other domains such as
robotics, computer vision, natural language processing, finance, healthcare, and transporta-
tion. Many tech giants, academic labs, and non-profit research organizations have focused
on applying deep reinforcement learning and have published several breakthroughs. The
widely used deep reinforcement learning algorithms can generally be classified into three
categories: value-based, policy gradient, and model-based methods. In the first category,
value-based methods, the policy is defined by a value function based on an algorithm using
the Bellman equation, such as Q-learning or its variant, fitted Q-learning. The successful
implementation of the deep Q-network (DQN) and its various extensions, including double
DQN and distributional DQN, are examples of this category. The performance of these
methods, in terms of final results and data efficiency, is benchmarked against the Atari 2600
environment in [41]. Deep Q-network (DQN) approaches handle problems with discrete
action spaces and deterministic policies. On the other hand, policy gradient methods
address problems with continuous action spaces and stochastic policies by finding a policy
based on neural network parameters to increase the expected cumulative reward. Policy
gradient methods require an estimate of a value function for the current policy, like other
policy methods, and deploy actor–critic architectures through a sample-efficient approach,
enabling the use of off-policy data. An example of such a method is the Deep Deterministic
Policy Gradient (DDPG). Research on combining Q-learning and policy gradient methods
is also ongoing. Both value-based and policy-based methods face limitations in sample
efficiency because they do not utilize the environmental model, making them model-free
approaches. In contrast, model-based methods learn an environmental model through
experience, using approximation functions or pre-supplied models, in conjunction with a
planning algorithm. Studies have also explored combining model-based and model-free
methods to leverage the strengths of both approaches.
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4. Methodology

In this research study, we develop a polydexterous robotic pick-and-place framework.
The reason behind terming it a polydexterous framework is that “poly” means many and
“dexterous” means skill with the hand. Thus, a polydexterous robotic arm can be seen as
a robotic arm performing prehensile and non-prehensile manipulations while involving
more than one robotic gripper, which is the case in this proposed approach.

In this research paper, we design a pick-and-place framework for variously shaped
objects, including regular and irregular ones. The task is modeled as a deep reinforcement
learning problem, where the agent tries to learn the skill of the pick-and-place of regular-
and irregular-shaped objects from a conveyor belt through a continuous sequential combi-
nation of prehensile and non-prehensile robotic manipulations with the help of two robotic
grippers. We train an agent through reinforcement learning to learn the pick-and-place
task. An agent here means an abstract entity that iteratively learns a policy to maximize its
expected reward, thereby mastering the task. As the task is to be resolved as a reinforcement
learning problem, we formulate a Markov Decision Process (MDP), which is a quintuple
process comprising states, actions, transition function, rewards, and a discount factor. Thus,
according to the MDP flow, an agent (the robotic arm in our case) at any time t, residing
in the initial state st, takes an action at while following the policy π, and ends up in the
next state st+1. For this transition from the initial state to the next state, it also earns some
reward, denoted by rat(st, st+1). Thus, in terms of MDP, the actual goal here for the agent
is to find the optimal policy π* which can lead the agent to reach the goal of maximum
reward, depicted by Rt = Σ∞

i=tγrai(si, si+1). Here, the γ represents the discount factor,
valued between 0 and 1, which helps the agent to learn with more speed.

This approach is essentially a self-learning, data-driven scheme where the agent (the
UR5 robotic arm we are deploying) tries to predict the most suitable pixel or coordinate for
the relevant robotic manipulation to be performed. As soon as the agent becomes successful
in predicting the accurate pixel for the manipulation, the overall pick-and-place process by
becoming proficient in the sequential synchronization of the prehensile and non-prehensile
manipulations also becomes successful, as evident from the results. In this approach, we
deployed the off-policy, model-free Q-learning algorithm to enable the agent to learn the
pick-and-place task through prehensile and non-prehensile robotic manipulations. The
Q-learning agent tends to learn the optimal policy in a greedy manner, always choosing
the action with the maximum action-value. These action-values are calculated through
the Q-function, which can be depicted as Qπ(st, at). The working of a Q-function can be
summed up as in Equation (1).

Q(st, at)← Q(st, at) + α
[
Rat(st, st+1) + γQ

(
st+1, argmax

(
Q
(
st+1, a′t

))
−Q(st, at)

)]
(1)

where the α and a′t represent the learning rate and the directory of all the action options
available at the time.

To understand the flow of the approach, the main three elements of the MDP are
described as follows:

• States: A state (s ∈ S) is the current snapshot of the agent’s environment. In our case,
states are represented graphically. Each state is depicted as an RGB-D heightmap,
which shows the graphical view of the agent’s environment. As the UR5 robotic arm is
our agent, the conveyor belt containing the regular and irregular objects is seen in its
surrounding environment at any given time. This surrounding environment can also
be called the workspace of our agent within which it can observe and perform actions.
Since the state is designed graphically, vision sensors are needed to capture the current
state of the UR5 robotic arm’s workspace. We installed two kinds of vision sensors:
an orthographic vision sensor and a perspective vision sensor. These sensors have
different fields of view: the orthographic vision sensor’s field of view is rectangular,
while the perspective vision sensor’s field of view is trapezoidal. The reason for using
these two different vision sensors is to install them at fixed positions, as shown in
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Figure 5, and then merge their field of views to collect the maximum amount of RGB
and depth information from the environment. Both vision sensors capture their own
individual RGB-D images, which are later amalgamated into one image. As the name
suggests, the RGB-D image contains the color information (R, G, and B channels)
as well as the depth information (D channel). The depth information represents the
distance of objects’ surfaces from a viewpoint. Since our robotic manipulation is from
the top angle, the depth data can be considered elevation or height-from-bottom data.
As stated above, the state is represented in RGB-D heightmap format. The RGB-D
image is translated to the corresponding RGB-D heightmap using the same scheme
as we used before in [9]. As shown in Figure 6, after generating and back-projecting
the 3D point cloud from the input RGB-D data in an orthographic manner, the RGB-D
heightmap is procured. The size of the generated RGB-D heightmap corresponds to
the actual workspace of the agent, which is equivalent to 2242 pixels in our case. By
this design, each of the 50,176 pixels in the RGB-D heightmap corresponds to a distinct
3D location in the physical workspace of the agent designed in the simulator.

• Actions: An action (a ∈ A) is a step chosen from the available list performed by the
agent after observing the environment, following the policy to maximize its expected
future reward. In our case, the actions are the prehensile and non-prehensile robotic
manipulations performed by the UR5 robotic arm agent to pick-and-place regular and
irregular objects in clutter. We consider four different robotic manipulations: grasp,
inward-slide, outward-slide, suction-grip. These actions cover both prehensile and
non-prehensile robotic manipulation. In our setup, two robotic grippers are involved:
the jaw gripper and the suction cup. The grasp is the prehensile manipulation of
the jaw gripper, while the inward-slide and outward-slide are its non-prehensile
manipulations, as shown in Figure 7. The suction-grip is the non-prehensile robotic
manipulation performed by the suction cup, as shown in Figure 7. In summary, there
is one prehensile manipulation and three non-prehensile manipulations that the agent
can learn to synchronize such that each robotic manipulation increases the chances of
successfully picking and placing objects.
At any given time, the agent can select a pixel from the 2242 sized RGB-D heightmap.
As discussed before, each pixel corresponds to a particular 3D location on the robotic
arm’s workspace on the conveyor belt represented as pixel→ 3D location ∈ St. This 3D
location on the workspace has different roles depending on the action. For instance,
in the case of grasping action, it will be considered the mid-point of the grasp. In the
inward- or outward-slide, it will be the start point of the linear push. In the suction-
grip, it is the contact point. According to the design setup, some static modifications
are made to the runtime when performing the action in the given 3D location. For
instance, because we have vision sensors installed at top angles and the pick-and-place
is performed from the top angle, the z-coordinate of the predicted 3D location on the
workspace is incremented by around 2 cm in the cases of grasp and suction-grip. The
increment ensures that the object can be grasped from center point, and in the case
of suction gripping it helps to create vacuum suction pressure inside the suction cup,
leading to a stronger grip. In non-prehensile manipulations, the direction of the slide
is towards the robotic arm base in the inward-slide and away from the robotic arm
base in the outward-slide. For these sliding non-prehensile manipulations, the straight
linear push limit is kept at 8 cm.

• Rewards: The reward (r ∈ R) in the reinforcement learning is the incentive that the
agent receives when it transitions from one state to another by choosing the appropriate
action. The goal of the agent is to maximize its expected future reward. In our case, we
have a reward scheme consisting of discrete reward values. For a successful grasp and
placement, the agent is awarded the full reward, which is 1. If the grasp is successful
but the placement fails, meaning the object slips from the gripper before placement,
the reward is reduced to 0.8. To determine whether the object has slipped from the
jaw gripper, a ray-type infrared proximity sensor is installed between the jaws of
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the gripper. For successful inward- or outward-slide actions, the reward is 0.5, with
success measured by comparing the workspace before and after sliding. If changes are
detected, the action is considered successful, and a reward is awarded. The suction-
grip action has the highest chance of success due to the lower probability of slipping,
and therefore it is rewarded lightly at 0.2. In any scenario other than the ones stated
above, the agent is rewarded 0. This reward scheme encourages the agent to prioritize
actions that lead to the successful grasping and placing of objects while also providing
feedback for partial success and less optimal actions.

• Q-Function: In reinforcement learning, the Q-function generates action-values repre-
senting the expected future reward an agent will receive if it takes a specific action
in a given state and transitions to the next state. In simple problems, this can be
maintained as a Q-table, but in more complex problems, such as ours, neural networks
are used for function approximation. Since we are deploying an off-policy model-free
Q-learning algorithm and using deep neural networks, this approach is referred to
as deep Q-networks (DQNs) for transition function approximation [42,43]. In our
approach, we design the Q-function using multiple fully convolutional networks
(FCN) [44]. The goal is to enable the agent to learn the synchronization among the
four distinct robotic manipulations to enhance the success rate of the picking and
placing variously shaped objects in clutter. To achieve this, we deploy a distinct FCN
for each robotic manipulation, allowing the agent to learn the important features of
all the robotic prehensile and non-prehensile manipulations in substantial depth. We
designed four FCNs: FCNGrasp, FCNInward-Slide, FCNOutward-Slide, and FCNSuction-Grip.
Each of these FCNs receives the state as input, represented as an RGB-D heightmap of
the workspace, sized as 2242 pixels. All four FCNs are fed the same RGB-D heightmap
simultaneously at any given time. This approach uses the pixelwise-parameterization
technique, where processing is performed at the pixel level. Consequently, the out-
put generated by each FCN is a 2242-sized pixelwise map of values. The input and
output are the same size because of this technique. Thus, we supply the same RGB-D
heightmap to all four FCNs and receive four distinct pixelwise maps of the same size.
The values in these pixelwise maps are the action-values on which the agent bases its
decision for the current state. Each value in the pixelwise map predicts the expected
future reward if the agent performs the particular action at the corresponding 3D loca-
tion of the predicted pixel in the workspace. This setup allows the agent to evaluate
and choose actions that maximize its expected reward, improving its effectiveness in
performing pick-and-place tasks.

All four distinct FCNs share the same neural architecture, specifically DenseNet-
121 [45]. The reason for adopting the DenseNet architecture is due to the connections
between all layers. In a traditional FCN with n number of layers, each layer is only
connected to its next layer, resulting in n number of connections. However, in DenseNet, a
network with n layers has n(n + 1)/2 total connections, meaning that each layer receives
features from all preceding layers and transmits features to all succeeding layers. This
enhances feature reuse and propagation, reduces the vanishing gradient problem, and
minimizes the number of parameters. Despite these advantages, the increased connectivity
and depth can lead to an exponential quadratic growth of the features, causing a bottleneck.
To address this vulnerability, we use a memory efficient implementation of DenseNet
which will be detailed in the next section. DenseNet-121 was trained and tested in two
settings: from scratch and pretrained on ImageNet [36]. The DenseNet-121 architecture was
extended by adding two pointwise convolution layers and batch normalization operations,
with ReLU as the activation function. Our approach employs a multimodal architecture
as shown in Figure 8. Each FCN has two separate trunks: one for color data (RGB) and
one for depth data (DDD). The depth channel, originally a single, is cloned to match the
three color channels using the method used in [9]. Later, these trunks merge, passing their
learned features into the extended pointwise convolutional layers.
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In our previous work, we have employed a scheme of rotations of the current state
view to enhance feature learning. We apply the same rotation technique in this case too.
To compare the performance, we rotated the RGB-D heightmap by 90◦, 45◦, and 22.5◦ as
shown in Figure 9. These rotation settings generate 4, 8, and 16 rotations, respectively,
for each RGB-D heightmap state. Similar to our previous results, the maximum feature
learning was noted at the rotation setting of 22.5◦. Adopting the 16-rotation setting means
that each of the FCNs is supplied with 16 rotated versions of the RGB-D image, resulting in
16 pixelwise maps generated by each FCN. In one single iteration of the FCNs, 64 pixelwise
maps of action-values are produced, with 16 pixelwise maps for each action: grasp from the
FCNGrasp, inward-slide from the FCNInward-Slide, outward-slide from the FCNOutward-Slide,
and the suction-grip from the FCNSuction-Grip. Each pixelwise map contains 50,176 (2242)
action-values, resulting in a total of 802,816 (50,176 × 16) action-values for each action.
The decision of which action to perform out of four is made by the agent by selecting the
maximum action-value from all 3,211,264 (50,176 × 16 × 4) action-values combined. In
other words, the corresponding action is performed at the 3D location corresponding to
the pixel predicted with the maximum action-value/Q-value out of all the 64 pixelwise
Q-values maps, as expressed in Equation (2).

maxQ(st, at) = max
(
FCNgrasp(st), FCNInward−Slide(st), FCNOutward−Slide(st), FCNSuction−Grip(st)

)
(2)

With the help of the pixelwise-parameterization technique along with the rotation
scheme described above, our approach enables the agent to learn at an optimal learning
rate with a minimal amount of training data required.
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4.1. Training Specifications

In this section, we describe the process step by step to provide a better view of the
training cycle, as shown in Figure 10. The cycle starts with regular and irregular objects
entering the workspace on the conveyor belt. A ray-type infrared proximity sensor installed
at the workspace detects the objects, and the vision sensors capture the current situation of
the workspace in the form of RGB-D images, which are processed to generate the RGB-D
heightmap. This RGB-D heightmap is passed to the rotation scheme function, which takes
the RGB-D heightmap as the input, performs rotation at 22.5◦, and produces 16 rotations of
the RGB-D heightmap. These 16 rotations are fed to all four FCNs, and they generate the
16 pixelwise maps of action-values/Q-values for the agent. To represent these 3,211,264
(50,176 × 16 × 4) action-values, we use a heatmap representation as shown in Figure 11,
which can compactly sum up the huge amount of data in less space and highlight the higher
Q-values by showing them as hot regions in orange–red shades. In Figure 10, the approach
is shown as a top-down tree structure. The RGB-D heightmaps from color and depth data
act as the root of the tree, and the next level shows four nodes of the tree representing
the 16 pixelwise maps of Q-values presented in heatmap format. The leaves of this tree
show the 3D locations corresponding to the predicted pixels with the highest Q-values on
the workspace (represented by the red dots). Each red dot represents the highest Q-value
3D location for the corresponding action to be performed. At this stage, the Q-values of
all these four 3D locations/pixels are compared, and the one with the maximum value is
chosen to perform the corresponding action.
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As we discussed for the forward pass, backpropagation is also crucial for the weight
tuning. To leverage the benefits of two widely used loss functions, i.e., mean square error
(MSE) and mean absolute error (MAE), we deployed the Huber Loss function [46]. During
the backpropagation, gradient passing is performed only for the FCN that predicts the
pixel with the maximum Q-value. For the remaining pixels, zero loss is backpropagated.
For the optimizer, the stochastic gradient descent with momentum (SGDM) variant [47] is
used in this approach instead of basic SGD. The reason behind choosing SGDM over SGD
is its ability to provide more stable values, being closer to the actual loss due to exponential
weighted averages. This helps the agent to obtain faster convergence. In the training
hyperparameters, the momentum is kept at 0.9, the weight decay is set to 1 × 10−3, and
the learning rate is set to 1 × 10−2. An epsilon value is defined to address the exploration
vs. exploitation dilemma and it is kept between 0.1 and 0.4, with a gradual decrease. In
terms of hardware specifications, our system is equipped with an Intel® Core™ i7-9700K
processor, 16 GB DDR3 RAM, and a GeForce RTX 2080 GPU with 8GB memory capacity. For
the development, training, and testing of the FCN models, we used PyTorch version 2.2.1.

As discussed before, the reason behind selecting the DenseNet architecture is its design
of maximum connections between layers, which leads to maximum feature reuse and prop-
agation while diminishing the vanishing gradient problem. However, this design can make
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the system vulnerable to exponential quadratic growth of the features. This potentially
causes a bottleneck situation that chokes the network. To remedy this vulnerability, we
implement a memory-efficient variant of DenseNet-121 [48] instead of the base variant. In
this variant of DenseNet-121, a memory sharing scheme is employed for all operations
such as batch normalization, concatenation, gradients, etc. Temporary storage buffers are
introduced to accommodate the outputs generated after these operations in the network,
instead of being allocated new memory every time.

Machines 2024, 12, 547 15 of 27 
 

 

 
Figure 10. The flowchart diagram of the proposed approach. 

 
Figure 11. Visualization of 16 pixelwise Q-values maps through heatmap representation.

In the training phase, our agents learn through self-supervision. In each training
iteration, the workspace has a certain number (=<10) of regular- and irregular-shaped
objects placed in a random clutter pattern, as shown in Figure 12. The agent’s task is to
clear the workspace by picking and placing all the objects. The iteration is marked complete
as soon as the workspace is cleared, and then the next iteration starts with another random
clutter of regular- and irregular-shaped objects in the workspace, and the cycle continues.
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4.2. Simulation Setup

For the experimental setup design, we chose the virtual robot experimentation (V-REP)
robotic simulator. This simulator not only provides coding options but is also equipped
with physics engines that simulate real-world physics effects, such as ODE, Bullet, etc.
Multiple different programming platforms, such as Python and C++, can be used with
the simulator from outside through threaded and non-threaded Lua scripts inside the



Machines 2024, 12, 547 16 of 25

simulator. In our case, we implemented the DRL side in PyTorch in Python externally and
then communicated with the simulated setup inside the simulator using Lua scripting.
Moreover, in addition to the programming support, it also includes various planning
modules, such as motion planning and path planning. It features both forward and inverse
kinematics modules. The difference between the two is that the forward kinematics module
takes all joint angles as the input and provides the end-effector coordinates as the output,
while the inverse kinematics module does the opposite. It takes the end-effector position
as the input and calculates all the joint angles. In our scenario, we deployed the inverse
kinematics module. Another crucial module provided by the simulator is the collision
detection and avoidance module, which highlights if any part of the robotic arm collides
with the environment. In our designed simulation, we used the popular 6-degree-of-
freedom cobot UR5 with two grippers: the RG2 jaw gripper and suction-cup gripper, as
shown in Figures 13 and 14. The RG2 jaw gripper handles the grasp, inward-slide, and
outward-slide manipulations, while the suction-grip manipulation is performed by the
suction-cup gripper. As shown in Figure 15, our simulated experimental setup includes
a conveyor belt, on which regular- and irregular-shaped object clutter moves and enters
the workspace. The objects are detected by the vision sensors and a proximity infrared
sensor, initiating the pick-and-place process. Once the workspace is cleared, the next clutter
reaches the workspace, and the cycle continues.
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To implement the motion planning scheme for the UR5 robotic arm for the pick-and-
place task, we explored various options available in the literature, such as OpenRave [49]
and Trajpot [50], and finally settled on the Open Motion Planning Library (OMPL) [51]. The
reason for this selection was the flexibility it offers for customization and control. OMPL
provides several options for control-based and geometry-based planners, and many widely
used planning state-spaces are also available. In our work, we deployed a single-query
planner known as RRT-Connect [52], which is a bidirectional variant of the traditional RRT.
RRT-Connect outperforms traditional RRT because, unlike the base variant, it works with
two trees: one at the start and another at the end, which are later connected.
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5. Results and Discussion

This section comprises a series of experiments designed to assess the performance of
the developed agents within the simulated environment. The purpose is to evaluate the
agents’ ability to learn the synchronization of prehensile and non-prehensile manipulations
for the pick-and-place task. These experimental results also highlight the role of non-
prehensile manipulations in facilitating the prehensile manipulations.

For assessing the performance of our designed agent in terms of pick-and-place, we
compare its performance with two different baselines. The first baseline is a variant of
the proposed approach that is also based on the pixelwise-parameterization scheme. The
major difference is that this baseline lacks the reinforcement learning element, being purely
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designed as a deep-learning-based binary classification approach. The structural design is
the same as the proposed approach, with the representation of states, the design of actions,
and the number and architecture of FCNs remaining consistent. While both use the same
input and output pixelwise maps of action-values, the difference lies in the agent’s training
method. In the proposed approach, the agent is trained in self-supervision mode through
Q-learning, whereas in this baseline, the FCNs are trained in supervised mode using binary
classification. Labels are produced at runtime: a successful action is labeled as 1, and an
unsuccessful one as 0. The backpropagation approach is also the same as in the proposed
approach. This baseline approach has been previously implemented in [12] with a different
architecture and in [9] with the same DenseNet-121 architecture. The comparison of the
performance of the proposed approach and the binary classification baseline variant is
shown in Figure 16. In this experiment, a series of 3000 episodes is conducted where
each episode involves random clutter of ten regular- and irregular-shaped objects being
introduced to the workspace. The episode is considered complete when the workspace is
cleared or when 10 consecutive failed actions occur. In Figure 16, the orange line represents
the proposed approach, while the green line represents the binary classification baseline.
The plot shows that the proposed approach outperforms the binary classification, achieving
up to an 89% success rate, while the baseline approach does not exceed 70%. The success
rate is defined as the number of successfully picked-and-placed objects divided by the total
number of actions performed. The lower success rate of the binary classification baseline is
likely due to its greedy policy, which prevents it from recognizing long-term strategies that
lead to higher expected rewards, unlike the proposed approach.
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The second baseline is deployed from [9], where the agent has only three designed
actions: grasping, left-slide, and right-slide. The major difference between the proposed
approach and the G&S baseline from [9] is that the latter involves only one robotic gripper
and lacks the suction gripping non-prehensile manipulation. The blue line in Figure 16
demonstrates the performance of the G&S baseline against the performance of the proposed
approach, represented by the orange line. The addition of the second gripper and the suc-
tion gripping action, along with bidirectional sliding and grasping, leads to an improvement
of around 5% in the success rate compared to the G&S baseline. This improvement is due to
the role of suction gripping in facilitating the other three actions—grasping, inward-slide,
and outward-slide—leading to successful pick-and-place operations in the clutter.

To investigate the role of FCNs architecture in the learning of the agent, we designed
another variant of the proposed approach. Since we are specifically targeting the role of
the neural network architecture, the only difference between the proposed approach and
this variant is the architecture of the deployed FCNs. The proposed approach comprised
FCNs designed using the DenseNet-121 architecture, but in this variant, the DenseNet-
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121 architecture is replaced by the pretrained ResNet-101 [53] architecture. The ResNet
architecture consists of residual blocks; hence, it is called a residual network. Any deep
neural network has a certain threshold of its depth. As the layers keep on adding and
that threshold is breached, the performance deterioration becomes evident because of the
widely known vanishing gradient problem. The vanishing gradient problem is basically
the extreme shrinking of the gradient while being backpropagated through the depths
due to repetitive multiplications. ResNet was presented as the remedy to the vanishing
gradient problem. The cure for the vanishing gradient problem in the ResNet architecture
lies in the connections known as skip connections. As is evident from the name, the skip
connections are named as such because they skip a few layers in gradient transmission,
resulting in reduced repetitive multiplications, which leads to no vanishing gradient
problem. Figure 17 presents the performance comparison of the proposed approach (in
blue) and the ResNet101-based variant (in red). The graph clearly shows that the ResNet101-
based variant is beaten by the proposed approach by around a 17% margin. The most
probable reason behind this result is the difference in feature maps’ handling between the
two architectures. The ResNet implements feature map summation, whereas the DenseNet
performs feature map concatenation. This results in better feature reusability in DenseNet.
Moreover, where the skip connections in the ResNet limit the connectivity among the
layers comparatively, the n(n + 1)/2 connections in the DenseNet enable higher feature
propagation too.

Machines 2024, 12, 547 20 of 27 
 

 

and lacks the suction gripping non-prehensile manipulation. The blue line in Figure 16 
demonstrates the performance of the G&S baseline against the performance of the pro-
posed approach, represented by the orange line. The addition of the second gripper and 
the suction gripping action, along with bidirectional sliding and grasping, leads to an im-
provement of around 5% in the success rate compared to the G&S baseline. This improve-
ment is due to the role of suction gripping in facilitating the other three actions—grasping, 
inward-slide, and outward-slide—leading to successful pick-and-place operations in the 
clutter. 

To investigate the role of FCNs architecture in the learning of the agent, we designed 
another variant of the proposed approach. Since we are specifically targeting the role of 
the neural network architecture, the only difference between the proposed approach and 
this variant is the architecture of the deployed FCNs. The proposed approach comprised 
FCNs designed using the DenseNet-121 architecture, but in this variant, the DenseNet-
121 architecture is replaced by the pretrained ResNet-101 [53] architecture. The ResNet 
architecture consists of residual blocks; hence, it is called a residual network. Any deep 
neural network has a certain threshold of its depth. As the layers keep on adding and that 
threshold is breached, the performance deterioration becomes evident because of the 
widely known vanishing gradient problem. The vanishing gradient problem is basically 
the extreme shrinking of the gradient while being backpropagated through the depths 
due to repetitive multiplications. ResNet was presented as the remedy to the vanishing 
gradient problem. The cure for the vanishing gradient problem in the ResNet architecture 
lies in the connections known as skip connections. As is evident from the name, the skip 
connections are named as such because they skip a few layers in gradient transmission, 
resulting in reduced repetitive multiplications, which leads to no vanishing gradient prob-
lem. Figure 17 presents the performance comparison of the proposed approach (in blue) 
and the ResNet101-based variant (in red). The graph clearly shows that the ResNet101-
based variant is beaten by the proposed approach by around a 17% margin. The most 
probable reason behind this result is the difference in feature maps’ handling between the 
two architectures. The ResNet implements feature map summation, whereas the Dense-
Net performs feature map concatenation. This results in better feature reusability in 
DenseNet. Moreover, where the skip connections in the ResNet limit the connectivity 
among the layers comparatively, the n(n+1)/2 connections in the DenseNet enable higher 
feature propagation too. 

 
Figure 17. Performance comparison of the proposed approach and the ResNet101-based variant. 

In this research study, we explore the role of other non-prehensile manipulations be-
hind the prehensile manipulation. The idea is to evaluate the performance of these non-
prehensile manipulations in the convergence of the policy, leading to a high success rate 

Figure 17. Performance comparison of the proposed approach and the ResNet101-based variant.

In this research study, we explore the role of other non-prehensile manipulations
behind the prehensile manipulation. The idea is to evaluate the performance of these non-
prehensile manipulations in the convergence of the policy, leading to a high success rate for
the prehensile manipulations. To understand the role of non-prehensile manipulations—
inward-slide, outward-slide, and suction-grip—we developed a variant of the proposed
approach which awards zero rewards for all three non-prehensile manipulations. Rewards
were only given for successful prehensile manipulation, i.e., grasping. If the whole pick-
and-place was successful, the reward given was 1. If the placement failed after successful
grasp, the reward given was 0.8. Figure 18 presents the performance of the no sliding-
suction rewards variant (in magenta) against the proposed approach (in blue). The graph
shows a fall of around 26% in the performance of the variant compared to the proposed
approach, depicting the vital role of non-prehensile manipulations in the convergence of
the policy. The delayed rise of the magenta line clearly shows the slower pace of learning
of the agent due to the absence of the non-prehensile manipulations’ rewards, leading to a
grasping-based policy learning. It is possible that the agent is learning an indirect pattern
of non-prehensile manipulations leading to prehensile manipulation rewards, but not at
the desirable rate.
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pretrained weights seem to have minimal impact on the agent’s learning, but the early rise 
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previously learned weights to exit local optima and then start fresh learning, resulting in 
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In the proposed approach, we deployed the DenseNet-121 architecture pretrained
on the ImageNet dataset, which contains a large number of images across approximately
1000 object classes. The general reason behind using pretrained networks is to achieve a
better accuracy and reduce training time. In this series of experiments, we also explore the
role of pretrained weights in the agent’s learning of synchronization between prehensile
and non-prehensile manipulations. A variant of the proposed approach was developed
with a difference in weights. While the proposed approach uses pretrained weights from
the ImageNet dataset, the variant uses no pretrained weights and is trained from scratch.
Figure 19 shows the performance of the no pretrained weights variant against the proposed
approach. The former is represented by the purple line, whereas the latter is shown by
the blue line. According to these results, there is not much difference between the two in
terms of performance and success rate. The pretrained weights do not play a significant
role in the learning process of the agent. The probable cause behind the lack of benefit
from pretrained weights in our case could be the difference in pixel patterns between the
RGB-D heightmaps and the RGB images used in the ImageNet dataset. Not only do the
pretrained weights seem to have minimal impact on the agent’s learning, but the early
rise of the purple line also highlights a faster pace of learning. In the case of the proposed
approach with pretrained weights, the agent likely needs to first “clean the slate” of the
previously learned weights to exit local optima and then start fresh learning, resulting in a
delayed rise in the learning curve.
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We also explore the role of the depth data fed to the FCNs in training the agent.
As discussed earlier, in addition to the RGB channels, we utilize the cloned DDD depth
channels. To evaluate the role of the depth channel, we designed a variant of the proposed
approach that lacks depth channel information. As previously mentioned, in the proposed
approach each FCN has two trunks: one is supplied with color information, and the other
one is given depth information. In this variant, the major difference is that there is no
second trunk designed for depth information. Therefore, feature learning is carried out
solely on the color information maps. Figure 19 presents the performance of the no depth
channel variant (in yellow) against the performance of the proposed approach (in blue).
The results clearly show a significant degradation in performance in the absence of feature
learning from the depth data. The lack of height-from-bottom information reduces the
performance by approximately 41% compared to the proposed approach. This result
underscores the importance of depth data in the agent’s learning for the pick-and-place
task and its convergence to the optimal policy.

In our training phase, we conducted a total of 3000 episodes, with the number of
regular and irregular objects in the random clutter kept at 10. To evaluate the trained
model, we used varying clutter sizes. We designed three clutter sizes as shown in Figure 20.
The first is the minimum-size clutter, which consists of 6 to 10 randomly distributed
regular and irregular objects. The second is called medium-size clutter, containing 15 to 20
regularly and irregularly shaped objects randomly distributed in the workspace. The last is
named as maximum-size clutter, where the object count ranges from 25 to 30. The average
performance results of the trained agent for these clutter densities are presented in Table 1.
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Table 1. Average testing performance.

Clutter Size Success Rate Grasp Success Suction-Grip Success

Minimum-Sized 89% 97% 100%
Medium-Sized 87% 96% 100%

Maximum-Sized 82% 85% 99%

Table 1 presents the average success rate, grasp success, and the suction-grip success
of testing across varying densities of clutter. The success rate is defined as the number of
successfully picked-and-placed objects divided by the total number of actions performed.
Grasp success is calculated as the number of successful grasps in an episode divided by
the total number of attempted grasps in that episode. The suction-grip success rate is
calculated in the same manner. The overall results indicate that performance is lowest
in the maximum-sized clutter. The primary reason for this lower performance in the
maximum-sized clutter is the random and weak arrangement of regular and irregular
objects. With a higher number of objects, they become loosely stacked in the workspace



Machines 2024, 12, 547 22 of 25

and start falling or displacing/moving as soon as they are touched by the gripper, leading
to failed prehensile and non-prehensile manipulations. Despite these complications, the
overall results demonstrate that the agent has achieved a substantial level of learning
and convergence to the optimal policy for the pick-and-place task involving regular- and
irregular-shaped objects through a sequential combination of prehensile and non-prehensile
robotic manipulations.

Discussion

In the experimental trials, we trained and tested our proposed approach agent along
with its various variants. A comparative analysis was performed on the results of the
proposed approach, its designed variants, and previously presented state-of-the-art meth-
ods. The results showing that the proposed approach outperforms the previously pub-
lished state-of-the-art method by around 5% clearly highlights the positive role of the
non-prehensile suction-grip manipulation in the pick-and-place task involving regular and
irregular objects in clutter. These results not only demonstrate the agent’s success in learn-
ing and converging to the optimal policy by understanding the patterns between prehensile
and non-prehensile manipulations, but also emphasize the utility of deploying different
robotic grippers together. The better performance of the proposed approach compared to
the previously presented work underscores the effectiveness of suction gripping and bidi-
rectional sliding manipulations in achieving successful pick-and-place operations. The role
of reward-based learning was also explored by designing a binary classification-based agent.
The importance of an efficient rewarding scheme and optimal policy convergence through
the off-policy model-free Q-learning becomes evident when the binary classification-based
variant is restricted to a success rate of under 70%. This variant lacks the reward-based
learning ability, which apparently limits its feature learning compared to the proposed
approach, resulting in a lower success rate in the pick-and-place task. Another important
factor explored was the architecture of the four jointly trained FCNs used for Q-function ap-
proximation. It was crucial to determine the role of the FCN architecture in the convergence
of the proposed agent to the optimal policy, in order to understand whether the architecture
influences Q-function approximation. For this reason, a variant was designed by replacing
the DenseNet-121 architecture with the ResNet-101 architecture. Both architectures address
the vanishing gradient problem effectively and were chosen for this reason. The role of
the FCN architecture in Q-function approximation was confirmed when the proposed ap-
proach with DenseNet-121 architecture outperformed the ResNet-101 architecture variant
by around 17%. The most likely reason for this outperformance is the difference in feature
map handling between the two architectures. DenseNet-121 uses feature concatenation,
resulting in higher feature learning and reusability due to its n(n + 1)/2 connections among
layers. In contrast, the ResNet-101 architecture performs feature summation and relies on
skip connections. To further investigate the role of non-prehensile manipulations, a variant
was designed with zero rewards for the suction-grip, inward-slide, and outward-slide
actions. This variant exhibited a slower learning compared to the proposed approach
and underperformed in terms of success rate by approximately 26%. This slower learn-
ing rate clearly indicates the agent’s difficulty in learning synchronization between the
prehensile and non-prehensile manipulations. Without rewards encouraging the use of
non-prehensile manipulations to maximize future expected rewards, the success rate was
lower. This finding supports the earlier results comparing the proposed approach to the
previously presented state-of-the-art method. Additionally, the role of depth data was
examined by designing a variant that used only RGB channels. As anticipated, performance
deteriorated by approximately 41% when only RGB data were provided. This performance
decline underscores the importance of depth data in predicting action-values during Q-
function approximation. The absence of depth data hindered efficient feature learning
by eliminating the concept of distance and spatial relationships. This finding highlights
the depth data as a critical element of the proposed approach. As mentioned in previous
sections, both pretrained and untrained models of DenseNet-121 architecture were tested.
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Surprisingly, the untrained variant performed better in terms of learning pace compared
to the pretrained one. This was evident from the earlier rise in the curve of the untrained
variant compared to the pretrained one. The likely cause for this could be the difference in
pixel patterns between our simulation data and the ImageNet dataset. Thus, the pretrained
variant had to first escape the local maxima represented by pretrained weights before it
could relearn new weights. Overall, the testing based on clutter density further supports
the earlier findings that the agent successfully learned and converged to the optimal policy
by sequentially synchronizing non-prehensile and prehensile manipulations, leading to a
higher success rate.

6. Conclusions

This research study developed a deep reinforcement learning-based polydexterous
framework that enables agents to learn industrial pick-and-place tasks in a self-supervised
manner using cobots. The proposed framework allows agents to learn the sequential
combination of prehensile and non-prehensile robotic manipulations using different robotic
grippers. This learning process facilitates the achievement of optimal policy convergence,
leading to increased efficiency and throughput for the pick-and-place task. The framework
incorporates four distinct robotic manipulations: grasp, inward-slide, outward-slide, and
suction-grip, using two robotic grippers: a jaw gripper and a suction cup. A key contribu-
tion of this research is that the framework integrates the manipulations of two different
grippers, unlike most existing literature, where a single gripper typically performs all
manipulations. Another significant contribution is that the framework operates without re-
quiring prior domain-specific knowledge about objects or the environment, unlike previous
approaches. The off-policy model-free Q-learning algorithm is utilized, and the pixelwise-
parameterization technique is employed for Q-function approximation. Pixelwise maps
of action-values are obtained through pixelwise-parameterization, and the 3D location
corresponding to the pixel with the maximum action-value is selected for the relevant
robotic manipulation. The reward scheme is designed accordingly, allowing the agent to
learn in a completely self-supervised manner by recognizing patterns in non-prehensile
manipulations, which increases the likelihood of successful prehensile manipulations in the
near future. The Results Section demonstrates that the agents achieve optimal policy con-
vergence, as evidenced by comparisons with baselines, various variants, and density-based
testing clutter.

There are some limitations in the presented approach. For instance, the agents are
trained on a fixed number of regular- and irregular-shaped objects. This could be extended
in future research by incorporating real-life 3D object shapes such as balls, cups, etc.
Similarly, transitioning from the simulated environment to the physical world could be
achieved by redesigning the approach using the Robot Operating System (ROS/ROS2),
which would enable the robotic arm to experiment with real-life objects. Additionally,
the sequential combination learning of the agent could be expanded to include parallel
combinations of robotic manipulations, incorporating tasks such as rotating and stacking,
and exploring their impact on efficiency and throughput.
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