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Abstract: A pipeline robot suitable for miniature pipeline detection, namely π-II, was proposed in this
paper. It features six wheel-leg mobile mechanisms arranged in a staggered manner, with a monocular
fisheye camera located at the center of the front end. The proposed robot can be used to capture
images during detection in miniature pipes with an inner diameter of 120 mm. To efficiently identify
the robot’s status within the pipeline, such as navigating in straight pipes, curved pipes, or T-shaped
pipes, it is necessary to recognize and classify these specific pipeline landmarks accurately. For this
purpose, the residual network model ResNet18 was employed to learn from the images of various
pipeline landmarks captured by the fisheye camera. A detailed analysis of image characteristics of
some common pipeline landmarks was provided, and a dataset of approximately 908 images was
created in this paper. After modifying the outputs of the network model, the ResNet18 was trained
according to the proposed datasets, and the final test results indicate that this modified network has a
high accuracy rate in classifying various pipeline landmarks, demonstrating a promising application
prospect of image detection technology based on deep learning in miniature pipelines.

Keywords: miniature pipeline robot; pipeline landmarks; residual network ResNet18; hyper parameters

1. Introduction

Pipelines play a crucial role in the social and economic life of human beings. They can
be used for the long-distance transportation of oil and natural gas, municipal water, and
natural gas supply, as well as the conveyance of gases in the pharmaceutical and chemical
industries. Over time, pipelines may experience aging, leaks, corrosion, and other issues
that necessitate timely maintenance to prevent economic losses or safety hazards. Given
that pipeline systems are typically buried underground or situated within large equipment,
external inspection and maintenance are often impractical. Consequently, pipeline robots
have emerged as a solution. By referring to existing, mature mobile mechanisms, scientists
worldwide have developed various types of pipeline robots such as PIGs (Pipeline In-
spection Gauges), wheeled-type pipeline robots, tracked-type pipeline robots, helical-type
pipeline robots, snake-like pipeline robots, and inchworm-like pipeline robots. These robots
are equipped with different sensors to facilitate inspection within the pipelines.

Wheeled and tracked pipeline robots are relatively mature in commercialization. For
example, Jun [1] from the Harbin Institute of Technology in China developed a pipeline
robot with six wheel legs arranged in a staggered configuration, suitable for pipes with
a diameter of 195 mm. This robot uses a drag cable to supply power externally. Kim [2]
from Sungkyunkwan University in South Korea proposed a multi-axis differential gear
mechanism designed with a single motor as the power input and multiple sets of wheels as
the output. This differential mechanism automatically distributes the driving force without
any control force, making it highly efficient when traveling in straight and curved pipelines.
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Kwon from Hanyang University in South Korea developed double-row wheeled [3] and
triple-row wheeled [4] pipeline robots, which use a support mechanism (wall-pressing
mechanism) with a large range of variation, suitable for pipelines with a diameter of
100 mm. The double-row wheel mechanism has one degree of freedom for steering, making
it suitable for turning in T-shaped pipelines. Both robots also use drag cables for external
power supply. Considering that the application in this paper is for a miniature pipeline
system, a six-wheel-leg form of the mobile mechanism was proposed to be applied to
miniature pipelines with an inner diameter of 120 mm.

In addition to straight pipes (as shown in Figure 1a), pipeline systems also include
some transition structures, such as curved pipes (as shown in Figure 1b) and T-shaped
pipes (as shown in Figure 1c), referred to as landmarks in the pipeline [5,6]. Generally,
pipeline systems are composed of a limited variety of these landmark segments. Therefore,
for a pipeline robot to effectively perceive its internal environment or its own state within
the pipeline system, it must first efficiently identify and classify these landmarks using the
sensors carried by the robot. For example, if the identified landmark is a straight pipe, the
pipeline robot needs to move straight; if the identified landmark is a curved pipe, the robot
needs to turn; if the identified landmark is a T-shaped pipe, i.e., a three-way structure, the
robot needs to further determine whether it is entering from the side end or the lower end
of the T-shaped pipe. Efficient identification and classification of pipeline landmarks are
crucial for the autonomous navigation control of the pipeline robot within the pipeline
and play a significant role in constructing the topological structure or mapping the entire
pipeline system.
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Figure 1. Common structures in the pipeline system (with an inner diameter of 120 mm): (a) straight
pipe; (b) curved pipe; (c) T-shaped pipe.

Currently, the classification of pipeline landmarks, based on the principles of detection equip-
ment, can be divided into two main categories: shadow-based and reflection-based methods.

Shadow-Based Method: Zhang [7] used a pipeline robot to detect landmarks of curved
pipes with an inner diameter of 200 mm and a turning radius of 300 mm. The robot employs
a monocular CCD camera as a visual sensor, utilizing the captured images to calculate
movement invariant quadrature to identify the presence of bends, as these parameters are
independent of lighting changes and vary with the turning of the reflective surfaces of
the curved pipe. Ahrary [8] equipped the KANTARO sewer pipeline robot (suitable for
200–300 mm pipelines) with binocular vision devices to identify and classify the shadows
of manhole (T-shaped pipe) and joint (welding connection) landmarks. They proposed
a computationally efficient matching method, namely Linear Computation, to classify
these landmarks and create 3D models. Lee [9] researched the pipeline robot MRINSPECT
V to detect 8-inch (203 mm) natural gas pipelines. He designed a spotlight source with
64 high-brightness LEDs. The combination of spotlight and camera angles creates distinct
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shadow patterns on the pipeline landmarks (curved pipes and T-shaped pipes), which are
then matched to determine the type of landmark. The study also discusses the differences
in shadow patterns when detecting T-shaped pipes from the side end and lower end.
Thielemann [10] used a time-of-flight camera (TOF Mesa SwissRanger SR-3000) to detect
400 mm sewer pipelines and scanned the 3D models of Y-shaped and T-shaped pipe
junctions, classifying these landmarks.

Reflection-Based Method: Chand [11] used a pipeline robot equipped with 3D MEMs
Lidar (Infinisoleil FX10 Lidar) to detect and map 4-inch (102 mm) firefighting pipelines,
scanning curved pipe landmarks and creating 3D point cloud models. He proposed an ANV
(average normal vector) method based on these models to determine the direction of the
curved pipe. Choi [12] used the pipeline robot MRINSPECT VI to detect straight, curved,
and T-shaped landmarks in 8-inch (203 mm) pipelines. He designed a detection device with
nine PSDs (Position Sensitive Devices), with one at the front and eight evenly distributed
around the sides, to measure distances to the pipeline walls in nine directions. The varying
combinations of reflection distances are used to identify the corresponding landmarks.

These two methods can also be combined into a hybrid method: Lee [13–15] utilized
pipeline robot MRINSPECT V with a combination of spotlight cameras and line lasers to
scan straight, curved, and T-shaped pipes. The reflected images of lasers are captured by the
camera, and the different patterns are used to identify various pipeline landmarks. Choi [16]
used the pipeline robot MRINSPECT VI to detect 8-inch (203 mm) pipelines, combining the
spotlight and camera system from [9] and the PSD system from [12]. The camera is used
for distant detection, and the PSD system is used for close detection, identifying straight,
curved, and T-shaped pipe landmarks.

Through the analysis of the aforementioned literature, it is evident that there are many
effective methods for identifying and classifying various pipeline landmarks. Whether
based on the shadows or reflections of the landmarks, cameras are used for reception. The
classification of landmarks requires the development of corresponding algorithms based
on different graphical characteristics. For miniature pipelines, such as those with diameters
below 100 mm, binocular cameras, medium to large LIDARs, and complex sensor-based
detection equipment are not very suitable due to size limitations. Using devices like
PSDs requires close proximity to the landmarks to be effective, necessitating preliminary
judgment by the camera system, which makes the mechanism bulky. Therefore, this paper
proposes using a fisheye camera as the pipeline landmark detection device to identify and
classify landmarks in stainless steel pipelines with an inner diameter of 120 mm.

Traditional methods for classifying pipeline landmark images primarily rely on the
different shadow characteristics reflected by various pipeline landmarks to summarize
corresponding patterns [6,9] (as shown in Figure 2). In a straight pipe, the near end close to
the robot camera will have a very strong reflection, which becomes weaker with increasing
depth of the pipeline, appearing as non-reflective and dark in the distance, forming a
circular shadow in the center. At the bend of a curved pipe, light does not reflect back,
creating a crescent-shaped shadow at the edge. For T-shaped pipes, there are two modes:
entering from the side end or from the lower end. When entering from the side, it resembles
a combination of a straight pipe and a curved pipe, resulting in a shadow pattern with a
circular shape in the center and a crescent shape at the edge. When entering from the lower
end, it is akin to two curved pipes joined together, resulting in a shadow pattern with two
crescent shapes on opposite edges.

After establishing the shadow patterns for each pipeline landmark, the captured real
landmark images can be compared to the standard landmark patterns to identify the type
of real landmark. This is the standard procedure for traditional image matching. However,
in actual classification, due to the influence of lighting and the complexity of the internal
pipeline environment, the captured landmark shadow images can vary greatly and differ
significantly from the ideal patterns. Various actual cases will be provided later to illustrate
this situation. Therefore, traditional visual processing methods have certain limitations.
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The existing literature has already applied deep learning methods based on CNNs
(convolutional neural networks) to pipeline detection-related applications. For exam-
ple, Haurum [17] constructed a dataset for sewer pipeline water level estimation using
11,558 CCTV sewer images provided by three Danish utility companies. Four types of deep
neural network models—AlexNet, ResNet-18, ResNet-34, and ResNet-50—were trained
for water level height classification, and the performance of each neural network model
is evaluated using the F1 score. Patil [18] created a sewer blockage imagery classification
dataset for 200 mm diameter PVC sewers. He used image enhancement techniques such
as greyscaling, adding salt and pepper noise, random exposure adjustments, cutout, and
mosaic, expanding the original dataset from 7040 images to 14,765 images. The YOLOX
model was then trained to identify and classify three major sewer blockages: grease, plastic,
and roots, achieving performance metrics above 90%. Zhao [19] used an improved YOLOv5
model to identify leakage points with a minimum diameter of 0.9 mm in DN100PE natural
gas pipelines. He expanded the original dataset of 171 images to 1000 images using a
DCGAN (Deep Convolutional Generative Adversarial Network), and the trained model
achieved performance metrics above 95%.

From the above analysis, it is clear that if deep learning is to be used for the identifica-
tion and classification of various pipeline landmarks, a dataset must first be established.
The most significant contribution of this paper is the creation of a pipeline landmark dataset
for deep learning training and testing. The pipeline robot π-type proposed in this paper
is equipped with a fisheye camera to capture images of four types of landmarks: straight
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pipes, curved pipes, T-shaped pipes entering from the side end, and T-shaped pipes enter-
ing from the lower end. So, a residual network, i.e., ResNet18, for the classification of these
pipeline landmarks can be used.

The arrangement of the paper is as follows: Section 2 mainly introduces the experi-
mental platform of the proposed pipeline robot and its main detection modules; Section 3
covers the image processing of various pipeline landmarks and the establishment of the
dataset; Section 4 discusses the training methods of ResNet18 model, loss functions, the
training and testing process, and the presentation of metrics of the experimental results;
Section 5 focuses on the influence of hyperparameter “batch_size”; finally, Section 6 draws
a conclusion of the paper and gives a discussion on future research directions.

2. Experimental Platform and Its Detection System of Miniature Pipeline Robot π-II

After referencing existing mature mobile mechanisms, a pipeline robot suitable for
an inner diameter of 120 mm, π-II type pipeline robot [20], was developed, as shown in
Figure 3.
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To inspect the inner walls of the pipes, π-II type pipeline robot was equipped with
a vision detection system, as shown in Figure 3b. The center of the mechanism was
equipped with a monocular fisheye camera, which includes four LED patches inside the
camera device, providing three levels of brightness to form the spotlight source. The main
parameters of the fisheye camera are shown in Table 1. Due to size limitations, the selected
camera had only 300,000 pixels. Using a higher resolution would increase the camera
device’s diameter. Additionally, the spotlight was not as meticulously designed as the
64 LED patches in [9], which require more space and a thicker power cable. In practical
applications, there are no other light sources inside the pipeline system, so the brightness
of the light source of the proposed π-II type pipeline robot is relatively weak. Consequently,
the shadows cast on the pipeline landmarks will be complex and significantly different from
the ideal conditions (as shown in Figure 2). These issues arise due to the size constraints of
the pipeline.
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Table 1. Performance parameters of the fisheye camera equipped on π-II pipeline robot.

Parameter Value

Resolution 640 × 480
Frame Rate 30 fps
View Angle 70◦

Waterproof Level IP67
Photo Format JPEG

Figure 4 shows the technical roadmap of this project. It consists mainly of two parts:
creating a dataset of pipe landmarks that constitutes the majority of the work and training
and testing the model based on the created dataset. When creating the dataset, photos can
be saved into corresponding folders. For example, straight pipes can be classified as “0”, so
photos of straight pipes can be saved in a folder named “0”. After each epoch of model
training, immediate testing is conducted, which allows the performance of the model to be
observed as it evolves over the epochs.
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3. Construction of Typical Pipeline Landmark Dataset

There are currently no publicly available pipeline landmark datasets. Therefore,
using the fisheye camera detection system of π-II type pipeline robot developed in this
paper, images of various landmarks are captured to construct a usable dataset. The main
landmarks consist of four categories: images taken by the robot in straight pipes, images
taken in curved pipes, images taken at the side end of T-shaped pipes, and images taken at
the lower end of T-shaped pipes.

3.1. Shadow Analysis of Typical Pipeline Landmarks

The fisheye camera equipped on pipeline robot π-II exhibits barrel distortion, a type
of radial distortion, as shown in Figure 5. In this paper, in order to reduce computational
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load this distortion was not corrected. The final experimental results also indicate that this
does not affect the classification performance of the deep learning network. The original
resolution of the images captured by the fisheye camera was 640 × 480. Since the internal
structure of the pipeline was generally symmetrical, only the central 480 × 480 portion of
the original image was selected through programming.
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3.1.1. Shadow Characteristics of Straight Pipes

In straight pipelines (as shown in Figure 1a), the image captured by the fisheye camera
is relatively symmetrical. Ideally (Figure 2a), the spotlight causes reflections on the inner
wall of the pipeline, with the brightness of the reflections decreasing as the depth of the
pipeline increases. This creates a circular shadow at the center. In practice, this brightness
decrease is gradual, without a clear shadow boundary (as shown in Figure 6a, taken inside
a straight pipe of 4 m long). Additionally, if there is a pipeline connection structure not far
ahead of the robot, reflections may occur at the center, resulting in an irregular shadow
instead of a perfect circle (as shown in Figure 6b, with a connection structure 2 m ahead in
the straight pipe). This makes traditional pattern matching ineffective for straight pipes
with structures 2 m ahead. Furthermore, if the fisheye camera is angled slightly relative to
the pipe axis, the brightness of the reflections on the inner wall at the same depth can vary
greatly, as shown in Figure 6c, with large shadows present in the upper left and center. This
is why deep learning is used instead of traditional machine vision methods in this paper.
Additionally, the fisheye camera’s LED light source provides three brightness levels. To
increase the diversity of the dataset, shadow images of straight pipe landmarks at different
brightness levels also need to be collected (as shown in Figure 6d,e).
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Figure 6. Shadow characteristics of straight pipe landmarks: (a) A 4m straight pipe with no structure
nearby; (b) a straight pipe with a structure present2 m ahead; (c) uneven reflections caused by
improper camera angle; (d) brightness of LED light system reduced by one level; (e) brightness of
LED light system reduced by two levels.

The straight pipe landmark was labeled as class 0. A total of 224 photos were collected
using the fisheye camera. To avoid conflicts with other landmarks, only the interior of
straight pipes with structures beyond 2 m were photographed. If other pipeline landmarks
were present within 2 m in a straight pipe, a specific determination was required, and it
was no longer considered a straight pipe landmark.

3.1.2. Shadow Characteristics of Curved Pipes

To capture images of curved pipe landmarks, it is necessary to consider shadow
patterns under three lighting intensities and three distance conditions, which is similar to
straight pipe landmarks. Additionally, unlike straight pipe images, it is essential to account
for the shooting angle of the fisheye camera. The shadow patterns in curved pipes are
not symmetrical, and the brightness of reflections on the inner wall decreases along the
direction of the bend, presenting a curved shape rather than the idealized crescent-shaped
shadow shown in Figure 2b. Figure 7a,b show shadow patterns at different angles rotating
around the axis of the pipe under brighter light sources for closer curved pipe landmarks.
To enhance the diversity of the dataset, it is beneficial to vary the rotating angles as much
as possible. Figure 7c,d depict images captured under lower brightness levels at closer
distances, while Figure 7e shows an image taken at an intermediate distance, and Figure 7f
was taken at the farthest distance.
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Figure 7. Images taken with a fisheye camera inside a curved pipe: (a) The near opening facing the
upper left; (b) the near opening facing the right; (c) the near opening with brightness reduced by one
level; (d) the near opening with brightness reduced by two levels; (e) taken at the middle distance;
(f) taken at the farthest distance.

The curved pipe landmark was labeled as class 1. A total of 219 photos were collected
using the fisheye camera. These photos were taken within 2 m toward the bent from
different rotating angles along the axis of the pipe, under three different levels of brightness,
and at various distances. The number of photos taken under different conditions was
carefully considered to ensure the diversity and balance of the dataset.

3.1.3. Shadow Characteristics of T-Shaped Pipe Entering from the Side End

To capture images of T-shaped pipe side entry landmarks, it was necessary to consider
shadow patterns under three different levels of brightness and three distance conditions.
The captured shadow patterns were not symmetrical. At the lower end of the targeted
T-shaped pipe, a crescent-shaped shadow appeared, while at the far end, in the direction
of the light source, it resembled the shadow of a straight pipe. This closely matches the
idealized shadow of the T-shaped pipe side entry landmark shown in Figure 2c. Figure 8a,b
show shadow patterns at different rotating angles along the axis of the pipe under brighter
light sources for closer T-shaped pipe side entry landmarks. To enhance the diversity of the
dataset, varying the rotating angles as much as possible was beneficial. Figure 8c,d depict
images captured under lower brightness levels at closer distances, while Figure 8e shows an
image taken at an intermediate distance, and Figure 8f was taken at the farthest distance.
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Figure 8. Images taken with a fisheye camera at the side end of a T-shaped pipe: (a) The near opening
facing the right; (b) the near opening facing the upper right; (c) the near opening with brightness
reduced by one level; (d) the near opening with brightness reduced by two levels; (e) taken at the
middle distance; (f) taken at the farthest distance.

The T-shaped pipe side entry landmark was labeled as class 2. A total of 227 photos
were collected using the fisheye camera. These photos were taken within 2 m toward the
side end of a T-shaped pipe, at different rotating angles, with three different light source
brightness levels, and at various distances. The number of photos taken under different
conditions was carefully considered to ensure the diversity and balance of the dataset.

3.1.4. Shadow Characteristics of T-Shaped Pipe Entering from the Lower End

To capture images of T-shaped pipe bottom entry landmarks, it was necessary to
consider shadow patterns under three different brightness levels and three distance condi-
tions. The captured shadow patterns were not symmetrical, with the two side ends of the
T-shaped pipe presenting two opposing, semi-circular shadows. This is similar to, but not
entirely consistent with, the idealized shadow of the T-shaped pipe bottom entry landmark
shown in Figure 2d. Figure 9a,b show shadow patterns at different rotating angles along
the axis of the pipe under brighter light sources for closer T-shaped pipe bottom entry
landmarks. To enhance the diversity of the dataset, varying the rotating angles as much as
possible was beneficial. Figure 9c,d depict images captured under lower brightness levels
at closer distances, while Figure 9e shows an image taken at an intermediate distance, and
Figure 9f was taken at the farthest distance.
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near opening with brightness reduced by one level; (d) the near opening with brightness reduced 
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were collected. The original photos were BGR three-channel with a resolution of 480 × 
480. Before importing each photo into the dataset, preprocessing was required, which 
involved first resetting the resolution and then normalizing the pixel values of each 
channel. The Python code (version 3.8.13) was as follows: 
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Figure 9. Images taken with a fisheye camera at the bottom end of a T-shaped pipe: (a) The near
opening facing the left and right; (b) the near opening facing the bottom left and upper right; (c) the
near opening with brightness reduced by one level; (d) the near opening with brightness reduced by
two levels; (e) taken at the middle distance; (f) taken at the farthest distance.

The T-shaped pipe bottom entry landmark was labeled as class 3. A total of 238 photos
were collected using the fisheye camera. These photos were taken within 2 m toward the
bottom end of a T-shaped pipe, at different rotating angles, with three different light source
brightness levels, and at various distances. The number of photos taken under different
conditions was carefully considered to ensure the diversity and balance of the dataset.

3.2. Creation of the Pipeline Landmark Dataset

In this experiment, a total of 908 shadow images of four types of pipeline landmarks
were collected. The original photos were BGR three-channel with a resolution of 480 × 480.
Before importing each photo into the dataset, preprocessing was required, which involved
first resetting the resolution and then normalizing the pixel values of each channel. The
Python code (version 3.8.13) was as follows:

self.pip_trainsform=torchvision.transforms.Compose([
torchvision.transforms.ToTensor(),
torchvision.transforms.Resize((height, width)),
torchvision.transforms.Normalize(mean=[B_mean, G_mean, R_mean],
std=[B_std, G_std, R_std]),
])

In this context, “torchvision.transforms.Compose” is a composite function for vari-
ous image preprocessing operations. “torchvision.transforms.Resize((height, width))” is
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used to reset the resolution of an image to the specified height and width. In this paper,
height=200 and width=200. “torchvision.transforms.Normalize(mean=[B_mean, G_mean,
R_mean],std=[B_std, G_std, R_std])” is used to normalize the pixel values of each channel
of the image, defined as follows:

Pixel_Channel_X_Normalized =
Pixel_Channel_X_Origin − X_mean

X_std
, (1)

where X can be B, G, or R, representing any channel. “mean=[B_mean, G_mean, R_mean]”
are the mean pixel values for each channel across all images in the dataset, and “std=[B_std,
G_std, R_std]” are the standard deviations. These values differ for the training and test
datasets and must be calculated in advance. Figure 10 shows a comparison between the
original images and the preprocessed images. The upper images are the original, and
the lower part images are the preprocessed ones. Due to space limitations, the original
images and the corresponding preprocessed images are scaled to the same size, with the
upper right corner indicating the pipeline landmark categories: 0—straight pipe landmark,
1—curved pipe landmark, 2—T-shaped pipe side entry landmark, 3—T-shaped pipebottom
entry landmark.
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After preprocessing the captured images, divide the dataset into training and test sets
in an 8:2 ratio, ensuring that each pipeline landmark category is represented in both sets.

train_images,test_images,train_labels,test_labels=sklearn.model_selecti
on.train_test_split(images,labels,test_size=0.2,random_state=42)

In this context, “images” refers to the entire dataset of images, and “labels” refers
to the corresponding pipeline landmark categories for all images. “train_images” and
“train_labels” consist of 80% of the images randomly selected to form the training dataset
and their corresponding landmark categories. “test_images” and “test_labels” consist
of the remaining 20% of the images forming the test dataset and their corresponding
landmark categories.

4. Pipeline Landmark Classification Based on the Deep Learning Mode ResNet18

Considering the need for a certain level of real-time performance for pipeline robots
operating within pipelines, the deep learning model used to identify various pipeline
landmarks must balance recognition performance and parameter size to avoid excessive
runtime. The residual network model ResNet18, although relatively basic, offers strong
classification performance. This paper primarily investigates the feasibility of using the
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ResNet18 network model to classify four types of pipeline landmarks. The following
context will detail the model’s characteristics, the selected loss function and optimization
method, performance metrics, as well as the training process and test results.

4.1. Choice and Modification of the Classification Model

ResNet18 is a typical residual network model, meaning it contains modules (as shown
in Figure 11) that connect both the original signal and the residual signal. This design helps
mitigate the degradation problem in deeper layers of abstraction. These smaller modules
often stack to form a larger network. ResNet50 follows the same residual network approach
but with a deeper stacking of modules, resulting in a larger network model with more
parameters to train. Although ResNet50 can provide a more abstract understanding, it re-
quires more computational resources. Additionally, for the pipeline landmark classification
task in this paper, the dataset consisted of fewer than 1000 images, making ResNet50 more
prone to overfit. Therefore, this paper prioritized the use of the ResNet18 network model.
The computer hardware resources used for training the model are listed in Table 2.
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Figure 11. Residual network module of ResNet18.

Table 2. Computer hardware resources.

Device Specification

CPU Intel i5-7300HQ 2.50GHz
Memory 20 GB

GPU NVIDIA GeForce GTX 1050
GPU Memory 4 GB

Secondly, for small sample size datasets, if all parameters of the network model
ResNet18 are retrained, the final test performance metrics of the network may not be very
good. Therefore, the original ResNet18 model can be modified, as shown in the following
custom residual network class code (python version 3.8.13):
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class PIPEResNet18(torch.nn.Module):
def __init__(self):

super(PIPEResNet18,self).__init__()
self.cnn_layers=torchvision.models.resnet18(pretrained=True)
num_ftrs=self.cnn_layers.fc.in_features
self.cnn_layers.fc=torch.nn.Linear(num_ftrs,4)

def forward(self,x):
out=self.cnn_layers(x)
return out

In this context, “cnn_layers” is defined as the standard ResNet18 network, “pre-
trained=True” indicates that the ResNet18 parameters can be updated, “num_ftrs=self.cnn_
layers.fc.in_features” means obtaining the final layer of ResNet18, the “fc” network layer,
and “self.cnn_layers.fc=torch.nn.Linear(num_ftrs,4)” redefines the “fc” layer, changing the
original ResNet18 network “fc” layer from 1000 outputs (classifying 1000 categories) to
four outputs (classifying four pipeline landmark categories).

4.2. Selection of the Loss Function and Optimization Method during Training

The loss function is typically used as the objective function during the model training
phase. It aims to iteratively optimize the neural network model parameters to minimize
the objective function. Classification models use the standard categorical cross-entropy loss
for evaluation. For multi-class classification problems, the following formula can be used:

Loss = − 1
N ∑N

i=1 ∑M
c=1 yiclog(pic), (2)

where N is the number of samples. If considering the loss for one step in training, the num-
ber of samples N is the value of “batch_size” preset in the training dataset. If considering
the loss for one epoch, the number of samples N is the number of images in the training
dataset. M is the total number of pipeline landmarks. In this paper, there are four types of
pipeline landmarks, i.e., M = 4. If the class of the i-th sample is c, then yic = 1; if the class
of the i-th sample is not c, then yic = 0. pic is the predicted probability that the i-th sample
belongs to class c.

The Python code for the loss function is as follows:

criterion=torch.nn.CrossEntropyLoss(reduction=‘mean’)

Moreover, for training the samples, the Adam optimization method can be used with
a learning rate set to 0.001. The Python code is as follows:

optimizer=torch.optim.Adam(model.parameters(),lr=0.001)

4.3. Selection of Performance Metrics during Testing

To evaluate a trained model, some performance metrics need to be selected. Common
metrics for classification problems include accuracy, precision, recall, and F1 score. For
multi-class classification problems, micro-accuracy can be used. Its formula is the following:

micro_accuracy =
∑M

c=1 TPc

N
(3)

where N is the number of samples, and TPc is the number of samples predicted to be class
c, those are actually class c. If considering the performance metrics for each step in testing,
the number of samples N is the “batch_size” preset in the test dataset. If considering the
performance metrics for one epoch in testing, the number of samples N is the number of
images in the test dataset. M is the total number of classes.

The Python code corresponding to the performance metrics function is as follows:

micro_accracy=precision_score(test_labels,test_outputs,average=‘micro’)
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In this context, “test_labels” represents the category labels corresponding to the test
samples, and “test_outputs” represents the predicted categories given by the model after
inputting the sample images.

4.4. Training Process and Testing Results

The training process relies on the training dataset, while the testing process relies
on the testing dataset. As shown in Table 3, the residual network model was trained for
100 epochs, where the hyperparameter “batch_size” was set to 64, and the value of the loss
function was recorded at each step (as shown in Figure 12a), as well as at each epoch (as
shown in Figure 12b), representing the micro and macro variations in the training process,
respectively. After each epoch of the training process, the model was then used for testing,
and the performance metric micro-accuracy was recorded at each step of the testing process
(as shown in Figure 12c), as well as at each epoch (as shown in Figure 12d).

Table 3. Parameters of training process and test process.

Parameter
Value

Training Test

Datasets 704 182
Resolution 200 × 200 200 × 200

Epochs 100 100
Batch size 64 64

Steps per epoch 11 3
Learning rate 0.001 ---

Optimizer Adam ---
Fps 142 100
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From Figure 12a,c, it can be observed that, overall, the model converges with train-
ing, and the predictions for pipeline landmarks become increasingly accurate. However,
Figure 12b,d show that after 30 epochs, the model still occasionally produces low-accuracy
predictions and does not achieve perfect accuracy. Analysis indicates that this is due to
the existence of small batch sizes of images causing significant parameter changes during
each epoch’s training. Given the total dataset of 908 photos, the training set was formed by
randomly selecting 80% consisting of 726 photos. With a “batch_size” of 64, there will be a
step with only 22 photos (726−64 × 11 = 22). Due to the small number of samples in this
step, the model cannot accurately learn all the characteristics of the pipeline landmarks,
causing significant parameter fluctuations and resulting in drastic accuracy variations in
the next test output. A simple improvement is to skip the training step with 22 samples.
The code is as follows:

train_dataloader=DataLoader(train_ds,batch_size=64,shuffle=True,drop_la
st=True)

Using “drop_last=True” will skip the steps with fewer samples. The improved training
loss curve for each epoch is shown in Figure 13a, and the testing accuracy curve for each
epoch is shown in Figure 13b.
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As shown in Figure 13b, after skipping the steps with fewer samples to eliminate their
periodic impact on each training epoch, the model’s prediction accuracy stabilizes around
1 after approximately 20th epochs. This indicates an improvement. However, it does not
completely eliminate prediction inaccuracies, as evidenced by a prediction failure around
the 60th epoch, where the accuracy suddenly drops to about 0.6.

The training and testing results indicate that using the improved residual network
model ResNet18 based on the pipeline landmark dataset proposed in this paper can achieve
high-performance recognition and classification of various pipeline landmarks. The micro-
accuracy exceeds 0.98, and if cases with small training sample sizes are excluded, the micro-
accuracy can consistently reach 1. This validates the effectiveness of using deep learning
networks for the recognition and classification of various joint structures in pipelines. The
optimal model, such as the one trained up to the 40th generation, can also be selected, and
predictions on all test set samples can then be made, as the confusion matrix obtained, as
shown in Table 4, and the corresponding evaluation metrics, as shown in Table 5.
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Table 4. Confusion matrix on the validation and test set.

Straight Pipe Curved Pipe T-Shaped Pipe I T-Shaped Pipe II

Straight pipe 43 0 0 0
Curved pipe 0 53 0 0

T-shaped pipe I 0 0 42 0
T-shaped pipe II 0 0 0 44

Table 5. Evaluation metrics on test set.

Straight Pipe Curved Pipe T-Shaped Pipe I T-Shaped Pipe II

TP 43 53 42 44
FN 0 0 0 0
FP 0 0 0 0
TN 139 129 140 138

Presicion 1 1 1 1
Recall 1 1 1 1

F1 score 1 1 1 1

5. Influence of HyperParameter “batch_size”

The hyperparameter “batch_size” has a significant impact on the training and testing
results. For the pipeline landmark classification discussed in this paper, “batch_size”
was set to 64, which can achieve the best testing result after many experiments. When
the “batch_size” is smaller, the model cannot fully learn all the features of the pipeline
landmarks in each step of training, leading to lower micro-accuracy after testing at each
epoch. Conversely, if the “batch_size” is set larger, more computational resources are
required for training.

As shown in Figure 14, the test accuracy curves for “batch_size” settings of 16 and
32, respectively, are displayed for both in the training process and testing process with
“drop_last” set to “True” to discard small sample effects. As shown in Figure 14a, when
the hyperparameter “batch_size” of training and testing processed is reduced to 32, the
model cannot fully learn the dataset knowledge in each step. Therefore, it takes until
around 50 epochs to accurately predict 1. Further reducing the “batch_size” to 16, as shown
in Figure 14b, results in the model learning even less knowledge per step. Thus, even
though the model can accurately predict to 1 by the end of 50 epochs, the periodic training
with small sample sizes causes the model parameters to change, leading to inaccuracies
in predictions around 80 epochs. So, according to Figure 13b, it is evident that for the
pipeline landmark classification discussed in this paper, the better “batch_size” value can
be selected as 64.
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6. Conclusions

Based on the proposed miniature pipeline robot system π-II, this paper explored the
use of a monocular fisheye camera to capture the interior of four common categories of
pipeline landmarks. The established dataset demonstrates that the lighting and inner wall
environment inside the pipes during actual experiments is very complex, with significant
differences between the captured landmark shadows and the ideally assumed shapes.
This discrepancy makes it difficult to use traditional pattern-matching methods to iden-
tify corresponding pipeline landmarks. Therefore, a residual network model, ResNet18,
which is more suitable for handling classification problems, was employed. Experiments
showed that after each epoch of training, the micro-accuracy increased to above 0.98 when
testing other samples. This paper delved into the impact of periodically occurring small
sample sizes on training performance and discussed the influence of the hyperparame-
ter “batch_size”. The experiments demonstrated that the use of deep learning methods
can accurately classify common pipeline landmarks, providing a foundation for subse-
quent research on pipeline mapping and autonomous navigation of pipeline robots within
miniature pipelines.

The self-made pipeline landmark dataset used in this paper consists of 908 photos,
which is relatively small in scale and specifically targets the stainless-steel pipeline shown
in Figure 1. The types of pipeline landmarks are limited to four common types and do
not cover all possible types. Therefore, to ensure that the detection system or neural
network model developed has broader application value, it is necessary to create a larger
and more comprehensive pipeline landmark dataset in future work. The success of the
experiments in this paper indicates that this deep learning detection method is still feasible
for broader applications.

Future work will focus on two aspects: One is focusing on more complex neural
network models, not only classifying pipeline landmarks but also predicting the distance to
the landmark and the direction of the landmark opening based on such monocular fisheye
camera. The other is to apply this vision detection system to the autonomous control of
robots navigating within pipelines. Especially for curved pipes and T-shaped pipes, only
by accurately detecting the robot’s distance and angle relative to these landmarks can the
robot be controlled to navigate smoothly through such structures.
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