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Abstract: Machine learning (ML) and artificial intelligence (AI) have emerged as the most advanced
technologies today for solving issues as well as assessing and forecasting occurrences. The use of AI
and ML in various organizations seeks to capitalize on the benefits of vast amounts of data based on
scientific approaches, notably machine learning, which may identify patterns of decision-making and
minimize the need for human intervention. The purpose of this research work is to develop a suitable
neural network model, which is a component of AI and ML, to assess and forecast crack propagation
in a bearing with a seeded crack. The bearing was continually run for many hours, and data were
retrieved at time intervals that might be utilized to forecast crack growth. The variables root mean
square (RMS), crest factor, signal-to-noise ratio (SNR), skewness, kurtosis, and Shannon entropy were
collected from the continuously running bearing and utilized as input parameters, with the total
crack area and crack width regarded as output parameters. Finally, utilizing several methodologies
of the Neural Network tool in MATLAB, a realistic ANN model was trained to predict the crack area
and crack width. It was observed that the ANN model performed admirably in predicting data with
a better degree of accuracy. Through analysis, it was observed that the SNR was the most relevant
parameter in anticipating data in bearing crack propagation, with an accuracy rate of 99.2% when
evaluated as a single parameter, whereas in multiple parameter analysis, a combination of kurtosis
and Shannon entropy gave a 99.39% accuracy rate.

Keywords: ANN; machine learning; bearing; crack propagation; statistical parameters

1. Introduction

Bearings, the unsung heroes of countless mechanical systems, are subjected to immense
stresses and fatigue during operation [1,2]. These stresses can lead to the insidious growth
of microscopic cracks, ultimately culminating in catastrophic failure. Understanding the
intricate interplay between crack dimensions and propagation dynamics is crucial for
ensuring the reliability and longevity of bearing systems [3–5].

This analysis delves into the complex world of crack propagation in bearings, aim-
ing to shed light on the factors influencing crack growth and the crucial role of crack
dimensions [6–8]. By meticulously examining the relationship between crack length, depth,
and orientation with respect to the applied stresses and material properties, this study
seeks to unveil the mechanisms governing crack evolution [9–11]. The findings of this
investigation will hold significant implications. For instance, by accurately forecasting the
rate of crack propagation, engineers can establish reliable estimations of bearing lifespan
under varying operating conditions. Understanding the influence of crack dimensions on
failure modes can guide the development of bearings with enhanced resistance to fatigue
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and crack propagation [12,13]. The early detection and monitoring of crack dimensions
can enable timely interventions, preventing catastrophic failures and ensuring safe oper-
ation [14,15]. Ren et al. [16] investigated the fracture behaviour of buried pipelines with
corrosion defects subjected to seismic loads. Utilizing the extended finite element method,
their study identified a critical crack tip angle near 5◦ in the corrosion area where maximum
stress values occur. Xie et al. [17] delved into the complex influence of crack coupling on
fatigue crack propagation in pipelines, moving beyond qualitative observations to provide
a quantitative approach for predicting remaining useful life (RUL). Parsania et al. [18]
investigated the complex interplay of multiple cracks in an infinite plate, focusing on the
interaction between a main crack and an adjacent crack under various loading conditions.
Utilizing the J-integral and finite element analysis, their study revealed that the presence
of an adjacent crack can significantly influence the stress intensity factor (SIF) of the main
crack, leading to intensifying, protective, or neutral effects depending on the relative
position and orientation of the cracks.

This exploration into the realm of crack dimensions and their role in bearing failure
will pave the way for a deeper comprehension of bearing behaviour, ultimately contributing
to the design of more robust and reliable mechanical systems [19,20]. To address these
issues, researchers have focussed on machine learning (ML) techniques, as they are more
efficient, less costly, and more adaptable due to their involvement-free nature. In general,
machine learning approaches are classified into supervised learning, unsupervised learning,
semi-supervised learning, and reinforcement learning (RL) [21–23]. The artificial neural
network (ANN) imitates the neurons of the human brain. The ANN architecture consists
of input layers, hidden layers, and output layers.

In this work, a bearing with a seeded crack is taken and run continuously for sev-
eral hours, with readings taken at regular intervals of time to determine the crack state.
Furthermore, the measurements are trained and analyzed in MATLAB’s neural network
workspace to estimate the crack dimensions after properly training the system. The read-
ings are obtained from the bearing while it is operating constantly, and these readings are
taken with various combinations of the sets of inputs while retaining the outputs as total
area and widths. These reading inputs and outputs are trained in the ANN model to test
the accuracy of the prediction for a certain time period or reading.

The ANN model is developed in MATLAB, and the network type is a feed-forward
back propagation neural network, since backpropagation is a learning approach that op-
erates on a multilayer feed-forward neural network [24,25]. It continually learns a set
of weights for predicting the class label. The training model is Levenberg–Marquardt
optimization (TRAINLM). Furthermore, TRAINLM is a network training function that
uses Levenberg–Marquardt optimization to update weight and bias variables [26,27]. Al-
though it requires more memory than other algorithms, TRAINLM is frequently the fastest
backpropagation method in the toolbox and is strongly recommended as a first-choice
supervised technique [28,29].

Additionally, the LOGSIG transfer function is applied in the process, as A = logsig(N)
takes a matrix of net input vectors, N, and returns the S-by-Q matrix, A, of the elements
of N compressed into [0, 1] [30,31]. The LOGSIG function is a transfer function. Transfer
functions compute the output of a layer based on its net input. This LOGSIG is used for the
hidden layers and the PURELIN function is used for the output layer so that the regression
graph will be linear and can measure the graph easily and accurately [32].

Various factors are used in the field of machine health monitoring and maintenance
to analyze data obtained from machines in order to identify any irregularities or potential
issues. The data obtained from a bearing with a seeded crack is analyzed in this work based
on the parameters RMS, crest factor, SNR, skewness, kurtosis, and Shannon entropy. The
parameters listed above are utilized to extract characteristics from data obtained from the
bearing with the seeded crack that may be used to identify possible faults in the machine
and anticipate crack growth.

The main contributions of this study are as follows:
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• This research work successfully developed a practical artificial neural network (ANN)
model capable of predicting crack area and width in a bearing with a seeded crack.

• The model utilizes key parameters like RMS, crest factor, SNR, skewness, kurtosis,
and Shannon entropy, reflecting the practical application of these metrics in bearing
condition monitoring.

• This study highlights the significant influence of SNR on predicting crack propagation
when using it as a single input parameter.

• The combination of kurtosis and Shannon entropy achieved an even higher accu-
racy, demonstrating the potential for enhancing predictive performance through the
integration of multiple parameters.

• This study validates the use of ANN models for predicting crack propagation in
bearings, showcasing their ability to achieve high accuracy in real-world applications.

2. Research Methodology
2.1. Data Extraction

The bearing with the seeded crack was run continuously for several hours to extract
some of the characteristics that may cause the crack to grow. A pictorial view of the seeded
cracks at different hours is shown in Figure 1. RMS, crest factor, SNR, skewness, kurtosis,
and Shannon entropy were the parameters which were analyzed to assess the propagation
of cracks in the bearing. The data of these parameters are tabulated in Table 1.
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Figure 1. Pictorial view of cracks (a) at 90 h (b), at 192 h, and (c) at 285 h.
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Table 1. Data retrieved from the bearing.

Time Duration
in Hours

RMS
(m/s2) Crest Factor SNR Skewness Kurtosis Shannon Entropy

(107)

Input Variables
Total Area

(mm2) Width (mm)

0 8.347 7.1256 22.98 0.189 5.554 2.42 24.86 1.82
10 10.22 6.8215 20.77 0.168 6.492 3.59 24.86 1.82
20 8.087 6.2457 22.33 0.208 5.527 2.02 24.86 1.82
30 8.472 8.0384 21.7 0.184 5.749 2.27 24.86 1.82
40 8.485 7.0794 22.46 0.22 5.626 2.27 24.86 1.82
50 8.448 8.2828 20.71 0.228 5.913 2.26 24.8625 1.82
60 8.456 7.3888 23.4 0.229 5.549 2.26 24.865 1.82
70 8.449 6.5549 20.99 0.223 5.618 2.25 24.8675 1.82
80 8.365 7.2492 23.45 0.223 5.542 2.19 24.96 1.82
90 8.308 6.418 22.34 0.221 5.603 2.17 24.96 1.8286
100 8.251 7.0285 21.54 0.216 5.752 2.13 24.96 1.8373
120 8.3 6.4237 22.2 0.218 5.679 2.16 25.36 1.895
140 8.601 6.7204 21.8 0.225 6.147 2.37 25.56 1.92
160 9.264 6.8881 20.35 0.168 5.521 2.8 26.0445 2.1
170 8.79 6.0588 20.29 0.18 5.728 2.48 26.4586 2.4766
180 7.68 13.357 23.6 0.119 8.537 2.03 26.978 3.1198
184 16.9 11.788 24.1 0.07 7.43 13.9 27.609 3.2798
188 8.1 14.3845 22.1 0.17 9.53 2.07 27.987 3.4399
192 7.97 11.439 22.9 0.04 7.67 1.98 28.275 3.6975
196 8.24 14.1009 24 0.11 11.6 2.19 28.345 4.0525
200 25.02 10.2382 19.67 0.129 7.312 30.7 28.778 4.867
204 22 9.5045 19.4 0.09 7.53 28 28.835 5.16
208 25.4 9.4644 22.4 0.11 7.15 20 28.892 5.4545
212 25.7 12.754 19.5 0.16 8.63 26 28.949 5.7482
216 24.9 8.8966 18.18 0.178 8.017 30.5 29.007 6.042
220 13.8 9.1122 24.3 0.12 7.09 7.27 28.885 7.0116
224 16 10.0815 21.2 0.16 7.63 15.2 28.945 7.0983
229 15.28 11.0412 23.31 0.078 8.1 10.2 29.15 7.231
232 19.2 11.2517 22.5 0.26 10.2 15.9 29.172 7.341
239 16.28 7.774 21.91 0.141 6.48 11.7 29.202 7.531
248 19.21 9.1612 17.67 0.151 6.135 12.2 29.324 7.761
259 14.86 7.3411 18.42 0.1707 6.824 9.58 29.556 8.631

267.5 8.723 9.1705 21.7 0.14 4.967 2.66 29.564 8.987
274.5 9.15 8.3301 19.51 0.041 6.653 3.06 31.019 9.362
278.5 9.178 9.6329 21.2 0.115 6.682 13.26 33.372 9.761
284.5 9.603 10.247 19.47 0.014 7.288 3.09 36.518 10.401
285 9.114 10.4396 19.35 0.009 7.954 2.74 40.157 10.967

2.2. Application of Neural Network

The data tabulated in Table 1 were imported into MATLAB 2021a and the proposed
neural network model was trained. Keeping the time duration constant, the rest of the
parameters were trained independently to see which factor was more affected by crack
propagation by comparing the projected data output to the actual data [9,11–17].

Furthermore, the overall area and width of the crack were considered as the goal data.
The ANN was trained using the TRAINLM algorithm for each parameter independently,
and the expected output was simulated by feeding the algorithm sample data; the predicted
total area and crack width were then compared to the actual data. The number of hidden
layers was set to 10 when carrying out this study. The architecture used in this study is
shown in Figure 2. This study was repeated for each parameter separately, and the ANN
model with the lowest error in projected values was regarded to be the most influential
factor in crack propagation.
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Moreover, the method provides a regression plot for the input and output data, which
establishes a regression line between two parameters and aids in the visualization of their
linear correlations. The regression plot is commonly characterized as R, the plot that is
formed comes with an R value, which stands for the regression value, and this value is
regarded to be best and most accurate if R square equals 1 [10].

3. Results and Discussion
3.1. Single Parameters
Root Mean Square (RMS)

Using the RMS and time duration values as input parameters and the total area and
breadth as targets, an ANN model was constructed, and values were forecasted using that
model by providing some sample data as the input. Table 2 shows the projected values as
well as the actual data.

Table 2. Analyzed data with the RMS as the input parameter.

Input Parameters Actual/Target Values Predicted Values
Accuracy

(in %)Time
Duration

RMS
(m/s2)

Total Area
(mm2)

Width
(mm)

Total Area
(mm2)

Width
(mm)

0 8.347 24.86 1.82 24.8600 1.82 100.0%
10 10.22 24.86 1.82 24.8600 1.82 100.0%
20 8.087 24.86 1.82 24.8600 1.82 100.0%
30 8.472 24.86 1.82 24.8600 1.82 100.0%
40 8.485 24.86 1.82 24.8600 1.82 100.0%
50 8.448 24.8625 1.82 24.8601 1.82 100.0%
60 8.456 24.865 1.82 24.8604 1.82 100.0%
70 8.449 24.8675 1.82 24.8619 1.8200 100.0%
80 8.365 24.96 1.82 24.8708 1.8200 99.8%
90 8.308 24.96 1.8286 24.9076 1.8202 99.7%
100 8.251 24.96 1.8373 25.0026 1.8249 99.6%
120 8.3 25.36 1.8953 25.3488 1.8787 99.5%
140 8.601 25.56 1.92 25.5771 1.9401 99.4%
160 9.264 26.0445 2.1 26.0410 2.0878 99.7%
170 8.79 26.4586 2.4766 26.2826 2.4391 98.9%
180 7.68 26.978 3.1198 27.6182 3.0798 98.2%
184 16.9 27.609 3.2798 24.8600 3.2777 94.4%
188 8.1 27.987 3.4399 27.9953 3.4596 99.7%
192 7.97 28.275 3.6975 28.2749 3.6800 99.8%
196 8.24 28.345 4.0525 28.1086 3.8432 96.9%
200 25.02 28.778 4.867 24.86 4.8627 92.1%
204 22 28.83525 5.16 24.86 5.1546 92.0%
208 25.4 28.8925 5.4545 24.86 5.4346 91.7%
212 25.7 28.94975 5.7482 24.86 5.7407 91.7%
216 24.9 29.007 6.042 24.86 6.0431 91.6%
220 13.8 28.885 7.0116 24.86 6.8938 91.1%
224 16 28.945 7.0983 24.86 7.0906 91.7%
229 15.28 29.15 7.231 24.86 7.2384 91.3%
232 19.2 29.1725 7.341 24.86 7.5194 90.1%
239 16.28 29.202 7.531 24.86 7.4396 90.7%
248 19.21 29.324 7.761 24.86 7.7607 91.0%
259 14.86 29.556 8.631 24.86 8.6296 90.5%

267.5 8.723 29.564 8.987 24.86 8.9862 90.5%
274.5 9.15 31.019 9.362 24.86 9.2226 86.9%
278.5 9.178 33.372 9.761 24.86 9.7644 82.9%
284.5 9.603 36.518 10.401 24.86 10.3986 76.5%
285 9.114 40.157 10.967 24.86 10.9600 69.2%

The predicted values were created using the ANN model, and the accuracy of the
trained model was calculated using the actual values. The trained model’s accuracy was
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calculated by taking the average of all the values. The findings indicate that RMS as a
single parameter had an accuracy of 94.2%. The accuracy was computed using the formula
below [10].

Accuracy = 1 − (Predicted value − Actual value)/Predicted value (1)

The ANN model was built with the crest factor and time duration values as input
parameters and the total area and breadth as targets, and values were projected using this
model by supplying some sample data as the input. Table 3 displays both the predicted
and actual numbers.

Table 3. Analyzed data with the crest factor as input parameter.

Input Parameters Actual/Target Values Predicted Values

Accuracy
(in %)Time

Duration
Crest
Factor

Total
Area

(mm2)

Width
(mm)

Total
Area

(mm2)

Width
(mm)

0 7.1256 24.86 1.82 24.8600 1.82 100.0%
10 6.8215 24.86 1.82 24.8600 1.82 100.0%
20 6.2457 24.86 1.82 24.8600 1.82 100.0%
30 8.0384 24.86 1.82 24.8600 1.82 100.0%
40 7.0794 24.86 1.82 24.8600 1.82 100.0%
50 8.2828 24.8625 1.82 24.8600 1.82 100.0%
60 7.3888 24.865 1.82 24.8600 1.82 100.0%
70 6.5549 24.8675 1.82 24.8600 1.8200 100.0%
80 7.2492 24.96 1.82 24.8600 1.8200 99.8%
90 6.418 24.96 1.8286 25.6415 1.8200 98.4%
100 7.0285 24.96 1.8373 24.9593 1.8200 99.5%
120 6.4237 25.36 1.8953 25.7792 1.8200 97.1%
140 6.7204 25.56 1.92 25.8987 1.8200 96.6%
160 6.8881 26.0445 2.1 26.0445 1.8200 92.3%
170 6.0588 26.4586 2.4766 26.4577 1.8200 82.0%
180 13.357 26.978 3.1198 24.8600 3.1218 95.7%
184 11.788 27.609 3.2798 24.8600 3.2773 94.4%
188 14.3845 27.987 3.4399 24.8600 3.3777 92.8%
192 11.439 28.275 3.6975 24.8600 3.6949 93.1%
196 14.1009 28.345 4.0525 24.8600 4.0541 93.0%
200 10.2382 28.778 4.867 28.7983074 4.9050 99.6%
204 9.5045 28.83525 5.16 28.85434946 5.1448 99.8%
208 9.4644 28.8925 5.4545 28.89521537 5.4927 99.6%
212 12.754 28.94975 5.7482 24.86 5.7404 91.7%
216 8.8966 29.007 6.042 28.96290978 6.0790 99.6%
220 9.1122 28.885 7.0116 29.00115216 6.4209 95.2%
224 10.0815 28.945 7.0983 29.04998962 6.8310 97.9%
229 11.0412 29.15 7.231 29.10491902 7.2469 99.8%
232 11.2517 29.1725 7.341 29.12729376 7.4323 99.3%
239 7.774 29.202 7.531 29.18287349 7.5263 99.9%
248 9.1612 29.324 7.761 29.20599516 8.0095 98.2%
259 7.3411 29.556 8.631 29.5600133 8.6280 100.0%

267.5 9.1705 29.564 8.987 29.69694264 8.7809 98.6%
274.5 8.3301 31.019 9.362 31.01305386 9.3511 99.9%
278.5 9.6329 33.372 9.761 32.19229614 9.7187 98.0%
284.5 10.247 36.518 10.401 36.50258921 10.4959 99.5%
285 10.4396 40.157 10.967 36.82257261 10.5398 93.4%

By repeating the accuracy calculation method from the previous stage, the crest factor
exhibited 97.4% accuracy. The same procedure was followed for the remaining parameters,
namely SNR, skewness, kurtosis, and Shannon entropy, and the predicted data, as well as
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the actual data’s accuracy, are shown in Table 4. The regression graphs for all the parameters
were also obtained through ANN, as shown in Figures 3–8.

Table 4. Accuracy percentage of remaining parameters.

S. No. Input Parameters Accuracy (in %)

1 SNR 99.2
2 Skewness 98.6
3 Kurtosis 97.1
4 Shannon entropy (107) 97.8

It can be observed from Table 4 that the SNR was 99.2%, skewness was 98.6%, kurtosis
was 97.1%, and Shannon entropy was 97.8% accurate. Furthermore, the analysis is carried
out by conducting various permutations and combinations of the input parameters. In
this study, the number of input parameters was reduced to three, with the time duration
staying constant while the other parameters were shuffled in various combinations.
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239 7.774 29.202 7.531 29.18287349 7.5263 99.9% 
248 9.1612 29.324 7.761 29.20599516 8.0095 98.2% 
259 7.3411 29.556 8.631 29.5600133 8.6280 100.0% 

267.5 9.1705 29.564 8.987 29.69694264 8.7809 98.6% 
274.5 8.3301 31.019 9.362 31.01305386 9.3511 99.9% 
278.5 9.6329 33.372 9.761 32.19229614 9.7187 98.0% 
284.5 10.247 36.518 10.401 36.50258921 10.4959 99.5% 
285 10.4396 40.157 10.967 36.82257261 10.5398 93.4% 

By repeating the accuracy calculation method from the previous stage, the crest factor 
exhibited 97.4% accuracy. The same procedure was followed for the remaining parame-
ters, namely SNR, skewness, kurtosis, and Shannon entropy, and the predicted data, as 
well as the actual data’s accuracy, are shown in Table 4. The regression graphs for all the 
parameters were also obtained through ANN, as shown in Figures 3–8.  
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3.2. Multiple Parameters

To validate the efficacy of the proposed method, the analysis of multiple parameters
was also carried out.

3.2.1. RMS and Crest Factor

An ANN model was built with the RMS, crest factor, and time duration values as
input parameters and the total area and breadth as targets, and values were projected using
that model by supplying some sample data as the input. Table 5 displays both the predicted
and actual numbers.

Table 5. Analyzed data with the RMS and crest factor as input parameters.

Input Parameters Actual/Target Values Predicted Values
Accuracy (in %)Time

Duration RMS (m/s2) Crest Factor Total
Area (mm2)

Width
(mm)

Total
Area (mm2)

Width
(mm)

0 8.347 7.1256 7.1256 24.86 1.82 24.862 99.99%
10 10.22 6.8215 6.8215 24.86 1.82 24.860 100.00%
20 8.087 6.2457 6.2457 24.86 1.82 24.865 99.98%
30 8.472 8.0384 8.0384 24.86 1.82 24.869 99.97%
40 8.485 7.0794 7.0794 24.86 1.82 24.875 99.94%
50 8.448 8.2828 8.2828 24.8625 1.82 24.886 99.91%
60 8.456 7.3888 7.3888 24.865 1.82 24.904 99.84%
70 8.449 6.5549 6.5549 24.8675 1.82 24.934 99.73%
80 8.365 7.2492 7.2492 24.96 1.82 24.981 99.92%
90 8.308 6.418 6.418 24.96 1.8286 25.051 99.64%
100 8.251 7.0285 7.0285 24.96 1.8373 25.151 99.24%
120 8.3 6.4237 6.4237 25.36 1.8953 25.468 99.58%
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Table 5. Cont.

Input Parameters Actual/Target Values Predicted Values
Accuracy (in %)Time

Duration RMS (m/s2) Crest Factor Total
Area (mm2)

Width
(mm)

Total
Area (mm2)

Width
(mm)

140 8.601 6.7204 6.7204 25.56 1.92 25.940 98.54%
160 9.264 6.8881 6.8881 26.0445 2.1 25.753 98.87%
170 8.79 6.0588 6.0588 26.4586 2.4766 26.869 98.47%
180 7.68 13.357 13.357 26.978 3.1198 27.475 98.19%
184 16.9 11.788 11.788 27.609 3.2798 27.437 99.37%
188 8.1 14.3845 14.3845 27.987 3.4399 27.872 99.59%
192 7.97 11.439 11.439 28.275 3.6975 27.986 98.97%
196 8.24 14.1009 14.1009 28.345 4.0525 28.436 99.68%
200 25.02 10.2382 10.2382 28.778 4.867 28.752 99.91%
204 22 9.5045 9.5045 28.83525 5.16 28.785 99.83%
208 25.4 9.4644 9.4644 28.8925 5.4545 28.897 99.98%
212 25.7 12.754 12.754 28.94975 5.7482 28.929 99.93%
216 24.9 8.8966 8.8966 29.007 6.042 28.099 96.77%
220 13.8 9.1122 9.1122 28.885 7.0116 28.900 99.95%
224 16 10.0815 10.0815 28.945 7.0983 29.036 99.69%
229 15.28 11.0412 11.0412 29.15 7.231 29.220 99.76%
232 19.2 11.2517 11.2517 29.1725 7.341 29.294 99.59%
239 16.28 7.774 7.774 29.202 7.531 29.131 99.76%
248 19.21 9.1612 9.1612 29.324 7.761 29.343 99.93%
259 14.86 7.3411 7.3411 29.556 8.631 29.516 99.87%

267.5 8.723 9.1705 9.1705 29.564 8.987 30.492 96.96%
274.5 9.15 8.3301 8.3301 31.019 9.362 29.425 94.58%
278.5 9.178 9.6329 9.6329 33.372 9.761 33.380 99.98%
284.5 9.603 10.247 10.247 36.518 10.401 35.734 97.81%
285 9.114 10.4396 10.4396 40.157 10.967 38.663 96.14%

It can be observed from Table 5 that the RMS and crest factor showed 99.18% accuracy
on average. The regression plot obtained through ANN and the performance curve are also
shown in Figures 9 and 10, respectively.
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3.2.2. RMS and SNR

In another case, the RMS, SNR, and time duration values were taken as input parame-
ters and the total area and breadth were considered as research goals. An ANN model was
developed, and values were projected using that model by feeding some sample data as
the input. Table 6 shows both the expected and actual results.

Table 6. Analyzed data with the RMS and SNR as input parameters.

Input Parameters Actual/Target Values Predicted Values
Accuracy (in %)Time

Duration RMS (m/s2) SNR Total
Area (mm2)

Width
(mm)

Total
Area (mm2)

Width
(mm)

0 8.347 22.98 22.98 24.86 1.82 24.860 100.00%
10 10.22 20.77 20.77 24.86 1.82 24.860 100.00%
20 8.087 22.33 22.33 24.86 1.82 24.860 100.00%
30 8.472 21.7 21.7 24.86 1.82 24.860 100.00%
40 8.485 22.46 22.46 24.86 1.82 24.860 100.00%
50 8.448 20.71 20.71 24.8625 1.82 24.860 99.99%
60 8.456 23.4 23.4 24.865 1.82 24.860 99.98%
70 8.449 20.99 20.99 24.8675 1.82 24.860 99.97%
80 8.365 23.45 23.45 24.96 1.82 24.963 99.99%
90 8.308 22.34 22.34 24.96 1.8286 24.861 99.60%
100 8.251 21.54 21.54 24.96 1.8373 24.860 99.60%
120 8.3 22.2 22.2 25.36 1.8953 25.359 100.00%
140 8.601 21.8 21.8 25.56 1.92 25.950 98.50%
160 9.264 20.35 20.35 26.0445 2.1 26.044 100.00%
170 8.79 20.29 20.29 26.4586 2.4766 26.459 100.00%
180 7.68 23.6 23.6 26.978 3.1198 27.960 96.49%
184 16.9 24.1 24.1 27.609 3.2798 27.608 100.00%
188 8.1 22.1 22.1 27.987 3.4399 27.987 100.00%
192 7.97 22.9 22.9 28.275 3.6975 28.120 99.45%
196 8.24 24 24 28.345 4.0525 28.344 100.00%
200 25.02 19.67 19.67 28.778 4.867 24.860 84.24%
204 22 19.4 19.4 28.83525 5.16 24.860 84.01%
208 25.4 22.4 22.4 28.8925 5.4545 28.892 100.00%
212 25.7 19.5 19.5 28.94975 5.7482 24.860 83.55%
216 24.9 18.18 18.18 29.007 6.042 24.860 83.32%
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Table 6. Cont.

Input Parameters Actual/Target Values Predicted Values
Accuracy (in %)Time

Duration RMS (m/s2) SNR Total
Area (mm2)

Width
(mm)

Total
Area (mm2)

Width
(mm)

220 13.8 24.3 24.3 28.885 7.0116 25.148 85.14%
224 16 21.2 21.2 28.945 7.0983 31.529 91.80%
229 15.28 23.31 23.31 29.15 7.231 29.149 100.00%
232 19.2 22.5 22.5 29.1725 7.341 29.172 100.00%
239 16.28 21.91 21.91 29.202 7.531 29.569 98.76%
248 19.21 17.67 17.67 29.324 7.761 24.860 82.04%
259 14.86 18.42 18.42 29.556 8.631 33.783 87.49%

267.5 8.723 21.7 21.7 29.564 8.987 27.384 92.04%
274.5 9.15 19.51 19.51 31.019 9.362 31.018 100.00%
278.5 9.178 21.2 21.2 33.372 9.761 28.197 81.65%
284.5 9.603 19.47 19.47 36.518 10.401 36.518 100.00%
285 9.114 19.35 19.35 40.157 10.967 31.544 72.69%

It can be observed from Table 6 that the RMS and SNR showed 95.14% accuracy
on average. The regression plot and the performance plot of this analysis are shown in
Figures 11 and 12.
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3.2.3. RMS and Skewness

An ANN model was constructed with the RMS, skewness, and time duration values
as input parameters and the total area and breadth as targets, and values were projected
using this model by feeding it some sample data. Table 7 displays both the predicted and
actual outcomes.

Table 7. Analyzed data with the RMS and skewness as input parameters.

Input Parameters Actual/Target Values Predicted Values
Accuracy (in %)Time

Duration RMS (m/s2) Skewness Total Area
(mm2)

Width
(mm)

Total
Area (mm2)

Width
(mm)

0 8.347 0.189 0.189 24.86 1.82 24.890 99.88%
10 10.22 0.168 0.168 24.86 1.82 24.911 99.80%
20 8.087 0.208 0.208 24.86 1.82 24.890 99.88%
30 8.472 0.184 0.184 24.86 1.82 24.894 99.86%
40 8.485 0.22 0.22 24.86 1.82 24.900 99.84%
50 8.448 0.228 0.228 24.8625 1.82 24.907 99.82%
60 8.456 0.229 0.229 24.865 1.82 24.916 99.80%
70 8.449 0.223 0.223 24.8675 1.82 24.927 99.76%
80 8.365 0.223 0.223 24.96 1.82 24.942 99.93%
90 8.308 0.221 0.221 24.96 1.8286 24.964 99.99%
100 8.251 0.216 0.216 24.96 1.8373 24.992 99.87%
120 8.3 0.218 0.218 25.36 1.8953 25.124 99.06%
140 8.601 0.225 0.225 25.56 1.92 25.472 99.65%
160 9.264 0.168 0.168 26.0445 2.1 26.192 99.44%
170 8.79 0.18 0.18 26.4586 2.4766 26.674 99.19%
180 7.68 0.119 0.119 26.978 3.1198 26.947 99.88%
184 16.9 0.07 0.07 27.609 3.2798 27.845 99.15%
188 8.1 0.17 0.17 27.987 3.4399 27.724 99.05%
192 7.97 0.04 0.04 28.275 3.6975 28.574 98.95%
196 8.24 0.11 0.11 28.345 4.0525 28.216 99.54%
200 25.02 0.129 0.129 28.778 4.867 29.086 98.94%
204 22 0.09 0.09 28.83525 5.16 28.815 99.93%
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Table 7. Cont.

Input Parameters Actual/Target Values Predicted Values
Accuracy (in %)Time

Duration RMS (m/s2) Skewness Total Area
(mm2)

Width
(mm)

Total
Area (mm2)

Width
(mm)

208 25.4 0.11 0.11 28.8925 5.4545 30.963 93.31%
212 25.7 0.16 0.16 28.94975 5.7482 29.157 99.29%
216 24.9 0.178 0.178 29.007 6.042 28.649 98.75%
220 13.8 0.12 0.12 28.885 7.0116 28.978 99.68%
224 16 0.16 0.16 28.945 7.0983 28.826 99.59%
229 15.28 0.078 0.078 29.15 7.231 29.602 98.47%
232 19.2 0.26 0.26 29.1725 7.341 30.701 95.02%
239 16.28 0.141 0.141 29.202 7.531 29.257 99.81%
248 19.21 0.151 0.151 29.324 7.761 29.198 99.57%
259 14.86 0.1707 0.1707 29.556 8.631 29.580 99.92%

267.5 8.723 0.14 0.14 29.564 8.987 29.658 99.68%
274.5 9.15 0.041 0.041 31.019 9.362 32.718 94.81%
278.5 9.178 0.115 0.115 33.372 9.761 29.700 87.64%
284.5 9.603 0.014 0.014 36.518 10.401 39.249 93.04%
285 9.114 0.009 0.009 40.157 10.967 39.557 98.48%

It can be observed from Table 7 that the RMS and skewness showed 98.60% accuracy
on average. The regression plot and the performance plot for this analysis are shown in
Figures 13 and 14, respectively.
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3.2.4. RMS and Kurtosis

The RMS, kurtosis, and time duration data were used as input parameters in a neural
network model, and total area and width were used as goals. This model was then used
to create predictions by inputting sample data. Table 8 displays both the expected and
actual results.

Table 8. Analyzed data with the RMS and kurtosis as input parameters.

Input Parameters Actual/Target Values Predicted Values
Accuracy (in %)Time

Duration RMS (m/s2) Kurtosis Total Area
(mm2)

Width
(mm)

Total Area
(mm2)

Width
(mm)

0 8.347 5.554 5.554 24.86 1.82 24.860 100.00%
10 10.22 6.492 6.492 24.86 1.82 24.860 100.00%
20 8.087 5.527 5.527 24.86 1.82 24.860 100.00%
30 8.472 5.749 5.749 24.86 1.82 24.860 100.00%
40 8.485 5.626 5.626 24.86 1.82 24.860 100.00%
50 8.448 5.913 5.913 24.8625 1.82 24.860 99.99%
60 8.456 5.549 5.549 24.865 1.82 24.860 99.98%
70 8.449 5.618 5.618 24.8675 1.82 24.860 99.97%
80 8.365 5.542 5.542 24.96 1.82 24.860 99.60%
90 8.308 5.603 5.603 24.96 1.8286 24.860 99.60%
100 8.251 5.752 5.752 24.96 1.8373 24.863 99.61%
120 8.3 5.679 5.679 25.36 1.8953 25.170 99.25%
140 8.601 6.147 6.147 25.56 1.92 25.858 98.85%
160 9.264 5.521 5.521 26.0445 2.1 25.981 99.76%
170 8.79 5.728 5.728 26.4586 2.4766 26.438 99.92%
180 7.68 8.537 8.537 26.978 3.1198 26.913 99.76%
184 16.9 7.43 7.43 27.609 3.2798 28.375 97.30%
188 8.1 9.53 9.53 27.987 3.4399 28.002 99.95%
192 7.97 7.67 7.67 28.275 3.6975 29.446 96.02%
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Table 8. Cont.

Input Parameters Actual/Target Values Predicted Values
Accuracy (in %)Time

Duration RMS (m/s2) Kurtosis Total Area
(mm2)

Width
(mm)

Total Area
(mm2)

Width
(mm)

196 8.24 11.6 11.6 28.345 4.0525 27.283 96.11%
200 25.02 7.312 7.312 28.778 4.867 28.935 99.46%
204 22 7.53 7.53 28.83525 5.16 28.846 99.96%
208 25.4 7.15 7.15 28.8925 5.4545 28.966 99.75%
212 25.7 8.63 8.63 28.94975 5.7482 28.864 99.70%
216 24.9 8.017 8.017 29.007 6.042 28.957 99.83%
220 13.8 7.09 7.09 28.885 7.0116 29.168 99.03%
224 16 7.63 7.63 28.945 7.0983 28.889 99.81%
229 15.28 8.1 8.1 29.15 7.231 29.104 99.84%
232 19.2 10.2 10.2 29.1725 7.341 30.250 96.44%
239 16.28 6.48 6.48 29.202 7.531 29.092 99.62%
248 19.21 6.135 6.135 29.324 7.761 29.297 99.91%
259 14.86 6.824 6.824 29.556 8.631 29.299 99.12%

267.5 8.723 4.967 4.967 29.564 8.987 26.822 89.78%
274.5 9.15 6.653 6.653 31.019 9.362 31.452 98.62%
278.5 9.178 6.682 6.682 33.372 9.761 31.975 95.63%
284.5 9.603 7.288 7.288 36.518 10.401 36.292 99.38%
285 9.114 7.954 7.954 40.157 10.967 39.883 99.31%

The RMS and kurtosis showed 98.94% accuracy on average, as shown in Table 8. The
regression plot and the performance plot for this analysis are shown in Figures 15 and 16,
respectively.
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3.2.5. RMS and Shannon Entropy

The RMS, Shannon entropy, and time duration values were used as input parameters
in the development of the ANN model, with total area and width as goals. This model was
then used to predict outcomes after being fed sample data. Table 9 shows the projected and
actual results.

Table 9. Analyzed data with the RMS and Shannon entropy as input parameters.

Input Parameters Actual/Target Values Predicted Values
Accuracy (in %)

Time Duration RMS (m/s2) Shannon
Entropy (107)

Total Area
(mm2)

Width
(mm)

Total Area
(mm2)

Width
(mm)

0 8.347 2.42 2.42 24.86 1.82 24.861 100.0%
10 10.22 3.59 3.59 24.86 1.82 24.862 99.99%
20 8.087 2.02 2.02 24.86 1.82 24.861 100.0%
30 8.472 2.27 2.27 24.86 1.82 24.862 99.99%
40 8.485 2.27 2.27 24.86 1.82 24.863 99.99%
50 8.448 2.26 2.26 24.8625 1.82 24.863 100.0%
60 8.456 2.26 2.26 24.865 1.82 24.865 100.0%
70 8.449 2.25 2.25 24.8675 1.82 24.867 100.0%
80 8.365 2.19 2.19 24.96 1.82 24.871 99.64%
90 8.308 2.17 2.17 24.96 1.8286 24.877 99.67%
100 8.251 2.13 2.13 24.96 1.8373 24.891 99.72%
120 8.3 2.16 2.16 25.36 1.8953 24.987 98.51%
140 8.601 2.37 2.37 25.56 1.92 25.438 99.52%
160 9.264 2.8 2.8 26.0445 2.1 26.614 97.86%
170 8.79 2.48 2.48 26.4586 2.4766 27.025 97.90%
180 7.68 2.03 2.03 26.978 3.1198 27.324 98.73%
184 16.9 13.9 13.9 27.609 3.2798 28.520 96.81%
188 8.1 2.07 2.07 27.987 3.4399 27.707 98.99%
192 7.97 1.98 1.98 28.275 3.6975 27.821 98.37%
196 8.24 2.19 2.19 28.345 4.0525 27.875 98.31%
200 25.02 30.7 30.7 28.778 4.867 28.516 99.08%
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Table 9. Cont.

Input Parameters Actual/Target Values Predicted Values
Accuracy (in %)

Time Duration RMS (m/s2) Shannon
Entropy (107)

Total Area
(mm2)

Width
(mm)

Total Area
(mm2)

Width
(mm)

204 22 28 28 28.83525 5.16 28.975 99.52%
208 25.4 20 20 28.8925 5.4545 28.973 99.72%
212 25.7 26 26 28.94975 5.7482 29.006 99.81%
216 24.9 30.5 30.5 29.007 6.042 28.798 99.27%
220 13.8 7.27 7.27 28.885 7.0116 27.910 96.51%
224 16 15.2 15.2 28.945 7.0983 28.516 98.49%
229 15.28 10.2 10.2 29.15 7.231 28.898 99.13%
232 19.2 15.9 15.9 29.1725 7.341 28.486 97.59%
239 16.28 11.7 11.7 29.202 7.531 29.349 99.50%
248 19.21 12.2 12.2 29.324 7.761 29.495 99.42%
259 14.86 9.58 9.58 29.556 8.631 30.125 98.11%

267.5 8.723 2.66 2.66 29.564 8.987 29.749 99.38%
274.5 9.15 3.06 3.06 31.019 9.362 32.180 96.39%
278.5 9.178 13.26 13.26 33.372 9.761 33.544 99.49%
284.5 9.603 3.09 3.09 36.518 10.401 37.427 97.57%
285 9.114 2.74 2.74 40.157 10.967 38.142 94.72%

The RMS and Shannon entropy showed 98.86% accuracy on average, as shown in
Table 9. The regression plot and the performance plot for this analysis are shown in
Figures 17 and 18, respectively.
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3.2.6. Remaining Combinations

The same procedure was followed for the remaining parameters, namely the crest
factor, SNR, skewness, kurtosis, and Shannon entropy, with all possible permutations and
combinations, and the predicted data, as well as the actual data’s accuracy, are shown in
Table 10.

Table 10. Accuracy percentages of all the remaining parameters in combinations.

S. No. Input Parameters Accuracy (in %)

1 Crest Factor and SNR 96.51%
2 Crest Factor and Skewness 97.64%
3 Crest Factor and Kurtosis 98.87%
4 Crest Factor and Shannon Entropy 97.36%
5 SNR and Skewness 98.17%
6 SNR and Kurtosis 97.81%
7 SNR and Shannon Entropy 96.08%
8 Skewness and Kurtosis 98.41%
9 Skewness and Shannon Entropy 97.45%

10 Kurtosis and Shannon Entropy 99.39%

The accuracy of all possible combinations of the input parameters is shown in Table 10.
From Table 10, it is clear that the parameters kurtosis and Shannon entropy show 99.39%
accuracy when taken as multi-parameters simultaneously. Furthermore, it is obvious that
the multiple-parameter input has slightly higher accuracy than the single-parameter input.

4. Conclusions

After analyzing the findings of our investigation, we can infer that the ANN model
performed admirably in predicting data with a better degree of accuracy. While there was
some fluctuation for each parameter, our analysis indicates that SNR was discovered to
be the most relevant parameter in anticipating data in bearing crack propagation, with an
accuracy rate of 99.2% when evaluated as a single parameter. Our investigation was carried
out by incorporating the multiple characteristics, and it was discovered that kurtosis and
Shannon entropy, when combined, had a 99.39% accuracy rate. This finding suggests that
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increasing the number of input parameters can enhance the accuracy of predicting the
outcome. In this investigation, the trainlm function was used to predict bearing crack
propagation. As a result of these findings, it can be concluded that the ANN model,
when combined with numerous input parameters, can provide a more accurate forecast of
bearing crack propagation, which has practical applications in the field of machine health
monitoring and maintenance. In future, an additional study can be conducted by raising
the number of input factors to three or four, which may result in a higher accuracy rate in
predicting outputs.
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