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Abstract: Agricultural robots have demonstrated significant potential in enhancing farm operational
efficiency and reducing manual labour. However, unstructured and complex farm environments
present challenges to the precise localisation and navigation of robots in real time. Furthermore,
the high costs of navigation systems in agricultural robots hinder their widespread adoption in
cost-sensitive agricultural sectors. This study compared two localisation methods that use the Error
State Kalman Filter (ESKF) to integrate data from wheel odometry, a low-cost inertial measurement
unit (IMU), a low-cost real-time kinematic global navigation satellite system (RTK-GNSS) and the
LiDAR-Inertial Odometry via Smoothing and Mapping (LIO-SAM) algorithm using a low-cost IMU
and RoboSense 16-channel LiDAR sensor. These two methods were tested on unstructured farm
environments for the first time in this study. Experiment results show that the ESKF sensor fusion
method without a LiDAR sensor could save 36% of the cost compared to the method that used the
LIO-SAM algorithm while maintaining high accuracy for farming applications.

Keywords: multi-sensor fusion; localisation; RTK (real-time kinematic); GNSS (global navigation
satellite system); wheel odometry; IMU; unstructured farms; LiDAR; SLAM

1. Introduction

The development of agricultural robotics and precision farming techniques has the
potential to address labour shortages and enhance production efficiency by significantly
reducing the need for manual labour in demanding agrarian tasks. This marks a critical
step towards modernising farming practices.

However, unstructured farm environments present unique challenges for agricultural
robots. These environments are characterised by their dynamic and unpredictable na-
ture, contrasting with the controlled conditions of greenhouses or structured plantations.
Unstructured farms are often marked by irregular terrain, a diversity of crop types, and
numerous natural obstacles, including rocks, trees, and water, all contributing to the com-
plexity of navigating and executing tasks. Moreover, the lack of predefined paths and the
continuous variation in environmental conditions, including soil moisture levels and plant
growth stages, further amplifies the operational demands placed on robotic systems. Such
complexities highlight the critical need for advanced sensing, localisation, and navigation
capabilities in agricultural robots to effectively adapt to the ever-changing and varied
agricultural landscape.

Traditional agricultural robots normally use RTK-GNSS, which provides high-precision
positioning. However, these robots often struggle to provide real-time and precise perfor-
mance in unstructured farms and complex settings [1]. The primary reason is that dense
foliage, obstacles, and hills can cause signal attenuation and reflection in most unstructured
farm environments. In severe cases, obstacles can reduce the number of visible satellites,
rendering the GNSS receiver entirely ineffective [2]. The use of RTK-GNSS for agricul-
tural robots also increases their cost, as the cost of the RTK-GNSS itself can be as high as
USD 30,000.
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Therefore, the cost has to be lowered to promote the use of high-accuracy localisation
in agricultural robotics [3,4]. To address this issue, the multi-sensor fusion approach is
often used to incorporate devices such as wheel odometers along with GNSS or to combine
GNSS with IMU [5–10]. Lin et al. combined Oriented FAST. They used Rotated BRIEF
SLAM (ORB-SLAM), IMU, and wheel odometry to overcome limitations caused by the lack
of GPS [11,12].

Tixiao Shan proposed the LiDAR Inertial Odometry via Smoothing and Mapping
(LIO-SAM) framework, a SLAM method that couples LiDAR and IMU data through factor
graph optimisation. This integration enables high-precision localisation and mapping
services in complex environments, and the factor graph optimisation framework enhances
the algorithm’s robustness and accuracy [13]. However, the algorithm requires an IMU
with a high update frequency as well as a high-performance LiDAR, which costs up to
GBP 3280 [14]. Although it has excellent technical performance, these cost factors limit its
application in agricultural applications.

This study tests and compares two different localisation methods that integrate data
from low-cost sensors for real-time localisation in unstructured farm environments. By
comparing these two approaches, the performance and feasibility of the low-cost locali-
sation scheme can be evaluated to ensure that the proposed approach meets the needs of
real-world applications for agricultural robots. Additionally, the LIO-SAM algorithm is
also used to construct a 3D environmental map in this paper.

The primary contributions of this paper are as follows:

1. Use a low-cost, high-accuracy differential localisation system on the robot platform.
2. Develop a low-cost localisation method for unstructured agricultural environments

based on ESKF, integrating IMU, RTK-GNSS, and wheel odometry.
3. Test the LIO-SAM algorithm on the agricultural environment for the first time.
4. Adapt the LIO-SAM algorithm to suit the RoboSense RS16 LiDAR and a low-cost

IMU for agricultural applications.

The remainder of this paper is organised as follows. Section 2 describes the methods
and technologies used in this research. Section 3 presents the experimental design and
displays the results obtained. Section 4 analyses and discusses the experimental results.
Section 5 concludes the paper.

2. Methodologies

This study proposes an approach to achieve low-cost, real-time localisation and map-
ping for agricultural robots in unstructured farming environments. It introduces a fusion
algorithm integrating data from wheel odometry, IMU, and RTK-GNSS. Among these
sensors, wheel odometry can provide short-term accurate motion data, but it is prone to
cumulative errors; the IMU offers continuous acceleration and attitude information, but it
is limited by drift issues, and RTK-GNSS delivers high-precision localisation data that
can be affected by environmental obstacles. The ESKF algorithm is therefore utilised to
integrate the data from these sensors and enhance the accuracy of the localisation system
while maintaining cost efficiency in this paper. The performance of this method is also
compared with the LIO-SAM method.

Figure 1a illustrates the diagram of the low-cost localisation algorithm for fusing data
from three sensors using ESKF and the localisation framework diagram of the LIO-SAM
algorithm. Initially, localisation data are obtained through the RTK-GNSS system and
converted into odometry-format pose information. Then, this information, along with data
from the IMU and wheel odometry, is fused using the ESKF to produce the final fused pose
information. Figure 1b shows the localisation framework diagram of the LIO-SAM algorithm.
It obtains data from the IMU and 3D LiDAR to achieve positioning. The following sections
detail the robot platform used in this study, the application of RTK technology, and the
specific implementation of the ESKF fusion algorithm and the LIO-SAM algorithm.
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Figure 1. Robot localisation algorithm architecture diagrams using: (a) the ESKF-based method.
(b) the LIO-SAM method.

2.1. Robot Platform

The robot platform used in this research is shown in Figure 2. It uses a six-wheel
differential suspension system; the wheels use high-power DC motors to provide sufficient
power for the robot to climb and cross the obstacles, and the suspension structure allows
the robot to cross the obstacles on the farm smoothly. The robot does not need to operate at
high speeds, so a single antenna was used to reduce the cost.

This robot is also equipped with a 16-line LiDAR, which can construct a real-time 3D
map of the surrounding environment through the LIO-SAM algorithm. The controller of
this robot is NVIDIA’s newly released Jetson Orin Nano embedded development board,
which provides sufficient arithmetic power for the robot to deal with the computational
task of processing and fusing multiple sensors while controlling the cost. Compared to the
IMU and LiDAR used in the original version of LIO-SAM, this robot platform would save
up to 64% of costs [13].

Figure 2. Agriculture robot platform used for this study.



Machines 2024, 12, 612 4 of 22

Table 1 shows the price list of navigation sensors used in this study. Figure 3 illustrates
the robot’s hardware architecture, showing how it perceives its environment using LiDAR,
an IMU, and RTK-GNSS. Data from these sensors are transmitted to the main controller
through serial and Ethernet connections. An STM32 controller is used to control the
robot’s movements.

Figure 3. Hardware connection diagram for the robot used in this study.

The robot platform dimensions are 800 mm × 500 mm × 430 mm, weighing 20 kg and
having a load capacity of 10 kg. Designed to work on the complex and variable terrain
of farms, the robot is equipped with a 6-wheel suspension system, and the minimum
ground clearance is 300 mm. This design enables the robot to overcome obstacles efficiently
and ensures stable operation on slopes up to 30°. The robot’s maximum moving speed is
0.5 m/s.

The LiDAR system on this robotic platform employs the low-cost RS-LiDAR-16, a 16-
channel LiDAR from RoboSense. It measures from 0.4 m to 150 m with an accuracy of
±2 cm. Field of view is 30°, and the angular resolution is 0.1°. This LiDAR operates at a
rotational speed of 1200 rpm, enabling a sampling frequency of 20 Hz. Point cloud data are
transmitted to the robot controller via a 100 Mbps Ethernet port. High-frequency sampling
is crucial for navigation and mapping in unstructured farm environments. The LiDAR
operates at a wide range of temperatures, from −30 °C to 60 °C, which allows the robot to
operate in complex climatic conditions on farms.

This robot platform utilises two u-blox ZED-F9P modules to establish a high-precision
differential localisation system for localisation. One module is a rover fixed on the robot,
and the other module is a base station fixed on the ground. It receives signals from the
Global Navigation Satellite System (GNSS) as well as differential data from a base station.
By using differential positioning technology, it achieves an accuracy of up to 14 mm.

The low-cost Wheeltec N100 IMU is used as its primary inertial measurement unit.
The N100 IMU provides a pitch and roll accuracy of 0.05° RMS, which is crucial for precise
motion control and stable navigation. It features a high output frequency of up to 200 Hz,
ensuring the robot system can respond quickly and accurately to environmental changes.
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Table 1. List of sensor expenses used in this study.

Components Model and Specifications Quantity Unit Price Total Price

RTK Module ZED F9P Module 2 GBP 110 GBP 220
IMU Wheeltec N100 1 GBP 29 GBP 29
RTK Antenna 1 GBP 39 GBP 39

Total for ESKF-based Method GBP 288

3D LiDAR RS-16 1 GBP 670 GBP 670
IMU Wheeltec N100 1 GBP 29 GBP 29

Total for LIO-SAM Method GBP 699

2.2. Real-Time Kinematic RTK

The robot kinematic model provides the robot’s relative position by using data from
its internal sensors, such as the wheel odometry and IMU. This model helps understand
the robot’s movements in terms of its frame of reference, estimating changes in position
and orientation as the robot moves. However, the kinematic model alone cannot determine
the robot’s absolute position in a real-world coordinate system because it lacks global
positioning information.

In unstructured farm environments, RTK techniques can be used to obtain the robot’s
coordinates in the real world, as discussed in this section. These techniques provide absolute
positioning data that can be combined with the relative position estimates from the kinematic
model. By integrating data from RTK-GNSS with the robot’s kinematic model through ESKF,
the robot can accurately map its position within a larger, real-world framework.

GNSS (global navigation satellite system) provides global location data (latitude,
longitude, altitude) [15]. The most recognised system is the US GPS, offering worldwide
localisation and time data. Russia’s GLONASS, similar to GPS, serves internationally. The
EU’s newer system Galileo aims for precise European services. China’s BeiDou, initially
regional, has recently achieved global coverage.

In RTK systems, a base station is often used, and a rover or receiver is placed on a
mobile robot. The base station, located at a surveyed position, can estimate the errors
for each GNSS signal received. Once these error corrections are transmitted to the user’s
receiver, integer ambiguity resolution (IAR) computations are carried out. This principle
is more suitable when the user is relatively close to the reference station. However, if the
distance between the user and the reference station is significant, atmospheric conditions at
the two locations might differ. This disparity can lead to the unsuccessful execution of IAR
operations. The typical guideline for maximum distance is around 25 km.

Another approach is Network RTK, which requires network access at the receiver’s
location. In this method, the receiver, acting as a client receives differential signals from
network stations [16,17]. This model is not limited by coverage area or distance. Generally,
in most countries and regions, numerous service providers offer RTCM protocol data, which
are used to convey correction information. The RTK-GNSS combines RTK technology with
standard GNSS systems, capitalizing on GNSS’s global localisation abilities and RTK’s high
precision. It offers localisation services on a global scale.

Robots can obtain positioning information from IMU, wheel odometry, and RTK-
GNSS, but each sensor has advantages and disadvantages. Multi-sensor fusion algorithms
are needed to integrate different sensors and enhance localisation abilities to improve the
robustness of robot localisation.

2.3. Low-Cost RTK-GNSS System

This research investigated a low-cost robot localisation system in unstructured farming
environments. The system requires a base station, depicted in Figure 4, which gathers and
transmits satellite data to the rover via digital radio. Concurrently, while obtaining data
from the base, the rover also directly captures satellite information. The rover uses relative
localisation principles to conduct real-time differential analyses with data from the base
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and its readings, pinpointing its precise three-dimensional position with centimetre-level
accuracy. This approach, costing GBP 220, involves two units: one is a base, and another
is a rover that operates independently of internet connectivity and external differential
localisation services.

Table 2 shows the cost comparison with other RTK-GNSS systems [18]. The absolute
position coordinates are obtained through differential algorithms. Figure 5 shows the
horizontal position accuracy. The localisation accuracy is stable at around 20 mm. Three
sites were tested, and in Figure 6, the green lines show the trajectory of mapping the
localisation data from the three test sites onto Bing’s static satellite cloud map.

Table 2. Cost comparison with other RTK-GNSS systems [18].

Name Cost

Piksi Multi Evaluation Kit GBP 1785
Trimble R8s GBP 7935
Spectra Precision SP80 GBP 97,211
Geomax Zenith35 Pro GBP 77,726
Low-cost RTK-GNSS System GBP 220

Figure 4. RTK-GNSS structure.

Figure 5. RTK-GNSS accuracy.
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Figure 6. Test areas. The three images (a–c), correspond to the three test sites. (a) is surrounded by
dense trees on two sides. It also includes several slopes and obstacles, simulating the dense vegetation
in unstructured farm environments. (b) also includes dense vegetation on the left side and a steep
slope area on the right. (c) is surrounded by high and dense trees, similar to the complex vegetative
cover found in actual farms .

2.4. Robot Motion Model

To estimate the robot’s position from the data from wheel odometry sensors, it is
necessary to build a robot kinematic model. The data from wheel odometry are used as
inputs, and the position and angle of the robot’s motion can then be obtained through the
kinematic model.

To simplify the kinematic model, three assumptions were made. Firstly, it was assumed
that there is no slippage between the wheels and the ground, that the ground provides
sufficient friction, and that the six wheels are parallel to each other. The kinematic model
of a six-wheel differential drive robot is shown in Figure 7. Ideally, their speeds are
synchronised for the wheels on the same side of the chassis. The chassis can perform
circular motion around the instantaneous center of rotation (ICR). For the six wheels,
the angular velocity of the circular motion is consistent, and the centre of this circular
motion, the ICR, is always located on the y-axis extension of the chassis’s center of gravity
(COG). This is because the angular velocity ωc directly influences the rate at which the
chassis rotates around the ICR, thereby affecting the position of the ICR relative to the
COG. The distance (DC) between the ICR (instantaneous center of rotation) and the COG
(center of gravity) is constrained due to the differential drive mechanism, which dictates
that changes in the velocity of the wheels alter the chassis’s turning radius and thus shift
the ICR’s position along the y-axis. This constraint is related to the angular velocity ωc of
the circular motion, reflecting the dependency of the ICR’s location on the rotational speed
of the chassis, which in turn dictates the distance dc between the ICR and the COG.

The velocity of the chassis is located at the center of mass (COM), represented by Vc. It
is composed of components Vcx and Vcy. The velocities of the six wheels are denoted as
v1, v2, v3, v4, v5, and v6 coming from target velocities vix and viy (where i = 1, 2, 3, 4, 5, 6).
The distance between the left and right wheels is denoted as c. The formula for the angular
velocity of circular motion is shown in Equation (1):

ωc =
vc

dc
, (1)

where ωc is the angular velocity of the circular motion, vc is the linear velocity, and dc
is the radius of the circular motion. Set the angle between dc and set the y-axis as αc.
From the perpendicular relationship between Vc and ICR − COM, it can be derived that
vc cos(αc) = vcx and vc sin(αc) = vcy. Summarising the above, the following constraint
relationship is established:

ωc =
vc

dc
=

vc cos(αc)

dc cos(αc)
=

vcx

dcy
, (2)

ωc =
vc

dc
=

vc sin(αc)

dc sin(αc)
=

vcy

dcx
. (3)
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Given the condition of consistent angular velocity among the six wheels of the rotating
rigid body, Equations (2) and (3) can be generalised to Equations (4) and (5) as follows:

ωc =
vi
di

=
vi cos(αi)

di cos(αi)
=

vix
diy

, (4)

ωc =
vi
di

=
vi sin(αi)

di sin(αi)
=

viy

dix
. (5)

Equation (6) is obtained from Equations (2)–(5):

ωc =
vc

dc
=

vcx

dcy
=

vcy

dcx
=

vix
diy

=
viy

dix
(i =1, 2, 3, 4, 5, 6). (6)

At the same time, di (where i = 1, 2, 3, 4, 5, 6) and dc satisfy Equations (7) and (8)
regarding their projection lengths on the x-axis and y-axis, respectively:

d1y = d3y = dcy −
c
2

, (7)

d4y = d6y = dcy +
c
2

. (8)

For a six-wheel differential drive chassis, the speeds of the left and right wheels are
set as VL and VR, respectively. Under the condition that the speeds of the front and rear
wheels are strictly synchronised, the constraint, as shown in Equations (9) and (10), can be
established as follows:

VL = ωc · (dcy −
c
2
) = ωcdcy − ωc ·

c
2
= vcx − ωc ·

c
2

, (9)

VR = ωc · (dcy +
c
2
) = ωcdcy + ωc ·

c
2
= vcx + ωc ·

c
2

, (10)[
vx
ωc

]
=

[ 1
2

1
2

− 1
c − 1

c

][
VL
VR

]
. (11)

Thus, the inverse kinematics formula can be obtained simply by performing an inverse
transformation. The inverse kinematics model for a six-wheel differential drive system is
shown in Equation (12): [

VL
VR

]
=

[
1 − c

2
1 c

2

][
Vcx
ωc

]
, (12)

Vc =
VL + VR

2
. (13)

The rotational speed of each wheel obtained through wheel speed encoders allows
for the calculation of the robot’s linear velocity Vc and angular velocity ωc. Within a two-
dimensional plane, Vc can be decomposed into components in the Vx and Vy directions:

∆x =
∫

Vc cos(θ) dt, (14)

∆y =
∫

Vc sin(θ) dt. (15)

Integrate the angular velocity ωc to calculate the change in direction (yaw angle change):

∆θ =
∫

ωc dt. (16)

The calculated displacements ∆x and ∆y are applied to the current position of the
robot. In contrast, the orientation change ∆θ is applied to the current orientation to obtain
the new pose of the robot:
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xnew = xold + ∆x, (17)

ynew = yold + ∆y, (18)

θnew = θold + ∆θ. (19)

Figure 7. Robot kinematics model.

Wheel odometry can be used to obtain the wheel speeds on the robot’s left and right
sides. By substituting these into Equation (12), the robot’s velocity can be calculated. Then,
by inserting Equations (14)–(16) into Equations (17)–(19), the position and angle of the
robot’s movement can be determined, constituting the robot’s pose.

2.5. Method 1: RTK-GNSS IMU Odometry Fusion with ESKF

IMU, wheel odometry, and GNSS have drawbacks in unstructured farm environments.
The IMU can provide rapid updates of motion status, but it may drift over prolonged use.
Wheel odometry can provide continuous motion information, but differential wheels may
experience significant slippage and accumulate errors. GNSS signals can be obstructed,
leading to significant errors or unavailability in certain areas. To improve the accuracy
of robot localisation, multi-sensor fusion algorithms are needed to integrate data from
different sensors and enhance localisation abilities.

The Kalman filter is widely used to estimate system states by combining a predictive
model with observational data from multiple sensors [19]. However, compared to the
extended Kalman filter (EKF), the error state Kalman filter (ESKF) offers more advan-
tages in multi-sensor robot localisation. By linearising the error states, the ESKF provides
higher precision, better robustness against sensor noise, and improved computational
efficiency [20]. Therefore, this study is the first to use the ESKF to fuse data from low-cost
IMU, wheel odometry, and low-cost RTK-GNSS sensors to enhance localisation accuracy in
unstructured farm environments.
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2.5.1. State Definition

To fuse the data from IMU, RTK-GNSS, and wheel odometry using the ESKF, the state
equations and observation equations need to be established, the state vector and error state
vector need to be defined, and the state covariance matrix and observation noise covariance
matrix need to be initialised.

In the ESKF, the state vector X typically includes position, velocity, attitude (quater-
nion), accelerometer bias, gyroscope bias, and odometer bias. The state vector is defined
as follows:

x =



p
v
q
ba
bω

bodom

, (20)

where p is the position vector (x, y, z), v is the velocity vector (vx, vy, vz), q is the quaternion
representing the attitude (qw, qx, qy, qz), ba is the accelerometer bias, bω is the gyro bias,
and bodom is the odometer bias.

2.5.2. Continuous-Time State Equations

In the ESKF, state equations are used to describe the system state over time. The continuous-
time state equations are:

ṗ = v, (21)

v̇ = R(q)(am − ba − na) + g, (22)

q̇ =
1
2

q ⊗ (ωm − bω − nω), (23)

ḃa = nba , (24)

ḃω = nbω
, (25)

ḃodom = nbodom
. (26)

Here, R(q) is a rotation matrix represented by the quaternion q, am is the acceleration
measured by IMU, ωm is the angular velocity measured by IMU, g is the acceleration of
gravity, and na, nω, nba , nbω

, and nbodom
represent process noise.

2.5.3. Discrete State Equations

Since both the sensor data and the computer processing are performed at discrete time
steps, the continuous-time state equations need to be discretised.

In classical physics, the relationship between position p and velocity v can be expressed
by the following differential equation:

ṗ = v, (27)

v̇ = a, (28)

where a is the acceleration. When discretizing, these continuous-time differential equations
need to be converted into discrete-time difference equations.

Assume that the acceleration a is constant over a time step ∆t. According to Newton’s
laws of motion, the change in velocity v can be expressed as:

vk+1 = vk + ak∆t. (29)
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The change in position p can be obtained by integrating over the velocity. Over a
time step ∆t, assuming an initial velocity of vk and an end velocity of vk+1, the change in
position can be expressed as an integral over the velocity:

pk+1 = pk +
∫ tk+1

tk

v(t) dt. (30)

Since the velocity v varies linearly, it can be approximated by trapezoidal integration:

pk+1 = pk +

(
vk +

1
2

ak∆t
)

∆t. (31)

Expanding this further, we obtain:

pk+1 = pk + vk∆t +
1
2

ak∆t2. (32)

The acceleration ak is obtained from the acceleration data measured by the IMU am mi-
nus the accelerometer bias ba, and it also requires consideration of the rotation matrix R(q)
to transform the acceleration from the sensor coordinate system to the world coordinate
system. Therefore, the position update equation and velocity update equation are:

pk+1 = pk + vk∆t + 0.5R(qk)(am − ba)∆t2, (33)

vk+1 = vk + R(qk)(am − ba)∆t + g∆t. (34)

In the ESKF, attitude is usually represented by quaternions. Quaternions are a mathe-
matical tool that avoids singularities and simplifies rotation calculations. It needs to derive
the discrete-time update equation for quaternions to use quaternions for attitude updates.

1. Quaternion Representation of Attitude

A quaternion q represents a rotation and is defined as:

q =


qw
qx
qy
qz

, (35)

where qw is the real part and (qx, qy, qz) are the imaginary parts.

2. Quaternion Differential Equation

The change in attitude is determined by angular velocity. Assuming the angular
velocity ω is measured by the IMU, denoted as ωm, and considering sensor bias and noise,
the actual angular velocity is ωm − bω − nω.

The differential equation for the quaternion is:

q̇ =
1
2

q ⊗
[

0
ω

]
, (36)

where ⊗ denotes quaternion multiplication.

3. Discretizing the Quaternion Differential Equation

To discretise the quaternion differential equation, consider the change over a time
step ∆t. Assuming the angular velocity is constant over this time step, we can repre-
sent the change in the quaternion as the product of the initial quaternion and a small
rotation quaternion.

3.1 Small Rotation Quaternion



Machines 2024, 12, 612 12 of 22

The angular velocity ω = ωm − bω − nω over a small time step ∆t can be approxi-
mated as:

ω∆t ≈


0

ωx∆t
ωy∆t
ωz∆t

. (37)

The corresponding small rotation quaternion is:

∆q ≈


1

1
2 ωx∆t
1
2 ωy∆t
1
2 ωz∆t

. (38)

3.2 Quaternion Update

The new attitude quaternion qk+1 can be represented as:

qk+1 = qk ⊗ ∆q, (39)

where ∆q is the small rotation quaternion over the time step ∆t.

4. Using Exponential Mapping to Represent Small Rotations

To more accurately represent small rotations, an exponential mapping can be used:

∆q = exp
(

1
2

[
0

ω∆t

])
, (40)

where exp(·) is the exponential map for quaternions, which can be calculated using Ro-
drigues’ rotation formula or the quaternion exponential formula.

5. Discrete-Time Attitude Update Equation

Combining the above derivations, the discrete-time attitude update equation is:

qk+1 = qk ⊗ exp
(

ωm − bω

2
∆t

)
. (41)

Accelerometer, gyroscope, and odometer deviations are assumed to be constant:

bak+1 = bak , (42)

bωk+1 = bωk , (43)

bodomk+1
= bodomk

. (44)

2.5.4. Error State Equations

To use ESKF, the error state equations need to be defined, capturing the difference
between the true state and the estimated state. The error state vector is defined as:

δx =



δp
δv
δθ

δba
δbω

δbodom

. (45)



Machines 2024, 12, 612 13 of 22

The error state equations are:

δṗ = δv, (46)

δv̇ = −R(q̂)[am − b̂a]×δ` − R(q̂)δba + na, (47)

δθ̇ = ωm − b̂ω + nω, (48)

δḃa = nba, (49)

δḃω = nbω, (50)

δḃodom = nbodom
, (51)

where [am − b̂a]× is the skew-symmetric matrix of the vector am − b̂a.
Discretizing the error state equations, we obtain:

δpk+1 = δpk + δvk∆t, (52)

δvk+1 = δvk +
(
−R(q̂k)[am − b̂a]kδ`k − R(q̂k)δba

)
∆t, (53)

δ`k+1 = δ`k + (ωm − b̂ω)k∆t, (54)

δbak+1 = δbak , (55)

δbωk+1 = δbωk , (56)

δbodomk+1
= δbodomk

. (57)

2.5.5. Prediction of the Error Covariance

The prediction step of the error covariance matrix is given by:

Pk+1 = FkPkFT
k + Qk, (58)

where Fk is the Jacobian matrix of the state transition model, and Qk is the process noise
covariance matrix.

2.5.6. Measurements

The GNSS provides position information for state correction as follows:

zgnss = Hgnssx + vgnss, (59)

where Hgnss is the measurement matrix, and vgnss is the measurement noise.
Wheel odometry provides velocity information for state correction as follows:

zodom = Hodomδx + vodom, (60)

where Hodom is the measurement matrix, and vodom is the measurement noise.

2.5.7. Kalman Gain and State Update

Kalman gain is computed as follows:

Kgnss = Pk+1HT
gnss(HgnssPk+1HT

gnss + Rgnss)
−1, (61)

Kodom = Pk+1HT
odom(HodomPk+1HT

odom + Rodom)
−1. (62)

State update equations are as follows:

δxk+1 = δxk+1 + Kgnss(zgnss − Hgnssδx × k + 1), (63)

δxk+1 = δxk+1 + Kodom(zodom − Hodomδxk+1). (64)
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Error covariance update equations are as follows:

Pk+1 = (I − KgnssHgnss)Pk+1, (65)

Pk+1 = (I − KodomHodom)Pk+1. (66)

The pseudo-code for the fusion of Odom IMU and RTK-GNSS processes via ESKF is
shown in Algorithm 1.

Algorithm 1 ESKF Integrating IMU, RTK-GNSS, and Wheel Odometry

1: Initialization:
2: Set initial state estimate x0 = [p, v, q, ba, bω , bodom]

T and initial state covariance P0 ▷ Initial position
p, velocity v, orientation q, accelerometer bias ba, gyroscope bias bω , odometry bias bodom

3: Set process noise covariance Q and measurement noise covariances Rgnss, Rodom ▷ Uncertainty in
model Q and sensors R

4: Define the state transition function f () and observation models hgnss(), hodom() ▷ Functions for
state prediction and measurements

5: for each time step k = 1, 2, . . . do
6: Acquire data from sensors:
7: Obtain angular velocity ωIMU and acceleration aIMU from the IMU ▷ IMU provides rotation

rate ωIMU and acceleration aIMU
8: Obtain wheel speeds vL, vR from the odometer ▷ Wheel encoders measure speeds vL and vR
9: Obtain global localisation coordinates posGNSS from RTK-GNSS ▷ GNSS gives accurate global

position posGNSS
10: Compute control input and observation based on sensor data:
11: Calculate control input uk = [vc, ωc]T based on ωIMU , vL, vR ▷ Compute linear vc and angular

ωc velocities
12: Observation zgnss from RTK-GNSS and zodom from odometry and IMU ▷ Combine pose data

from IMU and position from GNSS
13: Prediction step:
14: Predict state x̂k|k−1 = f (x̂k−1|k−1, uk−1) ▷ Predict next state using motion model f ()
15: Calculate predicted covariance Pk|k−1 = FkPk−1|k−1FT

k + Q ▷ Estimate uncertainty in prediction
16: Update step:
17: if GNSS data available then
18: Calculate observation residual ỹgnss = zgnss − hgnss(x̂k|k−1) ▷ Difference between observed

and expected GNSS measurements
19: Calculate residual covariance Sgnss = HgnssPk|k−1HT

gnss + Rgnss ▷ Uncertainty in GNSS
observation residual

20: Calculate Kalman gain Kgnss = Pk|k−1HT
gnssS−1

gnss ▷ Weighting of prediction vs. GNSS
observation

21: Update state estimate x̂k|k = x̂k|k−1 + Kgnss ỹgnss ▷ Correct the prediction with GNSS data
22: Update state covariance Pk|k = (I − Kgnss Hgnss)Pk|k−1 ▷ Update the estimate uncertainty
23: else
24: Calculate observation residual ỹodom = zodom − hodom(x̂k|k−1) ▷ Difference between observed

and expected odometry measurements
25: Calculate residual covariance Sodom = HodomPk|k−1HT

odom + Rodom ▷ Uncertainty in
odometry observation residual

26: Calculate Kalman gain Kodom = Pk|k−1HT
odomS−1

odom ▷ Weighting of prediction vs. odometry
observation

27: Update state estimate x̂k|k = x̂k|k−1 + Kodom ỹodom ▷ Correct the prediction with odometry data
28: Update state covariance Pk|k = (I − Kodom Hodom)Pk|k−1 ▷ Update the estimate uncertainty

2.6. Method 2: LIO-SAM

This subsection describes another localisation method using LiDAR sensors called LIO-
SAM (LiDAR Inertial Odometry via Smoothing and Mapping). This is a SLAM framework
that combines LiDAR and inertial measurement unit (IMU) data and that, at its core, is
an optimisation method based on the factor graph, which is a kind of bipartite graph
used to model the impact of sensor measurements on robot constraints on positional and
environmental landmarks. Figure 8 shows the system structure of the LIO-SAM, which
contains four factors [13].
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The first type is the IMU pre-integration factor (orange), based on the IMU mea-
surements between two consecutive keyframes. The IMU can provide high-frequency
information about the robot’s acceleration and angular velocity. By pre-integrating these
IMU data, a rough estimate of the robot’s motion between the two keyframes can be ob-
tained. This estimation helps bridge the motion between keyframes, providing continuous
constraints for changes in the robot’s pose.

The second type is the LiDAR odometry factor (green), obtained by frame-to-frame
matching of the LiDAR point cloud data from each keyframe with the data from the
previous n keyframes. Based on the geometric correspondences between point clouds, this
matching can provide accurate information about the robot’s position changes. The LiDAR
odometry factors assist in fine-tuning the pose of the keyframes to ensure optimal alignment
between LiDAR point clouds.

The third type is the GPS factor (yellow), derived from the GPS measurements for
each keyframe, offering global localisation information. GPS data can provide a global
reference for the robot, helping to correct accumulated drift errors and ensure the accuracy
of long-term navigation. GPS factors are particularly useful in outdoor environments,
especially in open spaces with good GPS signal reception.

The fourth type is the loop closure factor (black), a critical component of SLAM
systems for identifying when the robot revisits previously explored areas. Upon detecting
a potential loop closure, the system selects the candidate loop closure keyframe and its
temporally adjacent 2m + 1 keyframes for frame-to-frame matching. If the matching is
successful, loop closure factors are added, connecting the current keyframe with the loop
closure candidate keyframe. These factors help correct cumulative errors in the map,
ensuring global consistency.

These four factors form the factor graph of the LIO-SAM. The LIO-SAM can fuse IMU,
LiDAR, and GPS data by optimizing this factor graph, achieving high-precision real-time
3D mapping and localisation.

Figure 8. LIO-SAM factor graph structure [13].

3. Experiments

The experiments were conducted at three test sites near the University of Sussex
campus with dense vegetation and multiple terrains, similar to unstructured farming
environments. As shown in Figure 9, the University of Sussex is situated in South Downs
National Park, with a wide range of grassland terrains.

Test Site A shown in Figure 10 is surrounded by dense trees on two sides. It also
includes several slopes and obstacles, simulating the dense vegetation in unstructured
farm environments.
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Figure 9. Experiments at the University of Sussex, located in the South Downs National Park.

Figure 10. Test Site A.

Test Site B is shown in Figure 11. It also includes dense vegetation on the left side
and a steep slope area on the right. The significant incline in this area is very similar to
the undulating terrain found in farms and tested the robot’s performance in unstructured
terrain conditions.

Test Site C, shown in Figure 12, is surrounded by high and dense trees, similar to the
complex vegetative cover found in actual farms.

A pre-planned trajectory was established for the robot to follow at each test site. To ensure
consistency reproducibility and clarity of the experiments, the following steps were followed:
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Figure 11. The slope in Test Site B.

Figure 12. The dense vegetation in Test Site C.

1. Initialisation: Before starting each experiment, all sensors were checked and calibrated
to ensure they were functioning correctly.

2. Path Tracking: The robot moved along the pre-planned trajectory while continuously
collecting sensor data.

3. Data Recording: All sensor data, including wheel odometry, IMU, LiDAR, and RTK-
GNSS data, were recorded by the “rosbag record” command during the robot’s
movement; “rosbag” is a popular ROS tool for recording and broadcasting ROS
messages. It allows the user to record data about the ROS topics being posted and
store it in a .bag file.

4. Data Analysis: The collected data were analysed using the EVO tool to calculate the
absolute pose error (APE) metrics for each method. To verify the robustness of the
proposed algorithm when the GNSS signal is lost, the GNSS signal was manually
switched off at a random interval to simulate the situation when the GNSS signal is
lost. As shown in Figure 13, the green trajectories in the three test areas of the figure
are the RTK-GNSS trajectories, and the trajectory breaks are where the RTK-GNSS
topics were randomly turned off manually.

5. Comparison of Results: The localisation accuracies of the ESKF-based method and
the LIO-SAM algorithm were compared across different test sites to evaluate their
performance in various environments.



Machines 2024, 12, 612 18 of 22

Figure 13. Trajectories with the RTK-GNSS topics turned off. The green lines in the test areas are
the trajectories of the robot. The discontinuous parts of the trajectories are areas where GNSS was
manually switched off.

3.1. Evaluation of Localisation Accuracy of Method 1 and Method 2

The effectiveness of the sensor fusion for the robot localisation method used in this
paper, in comparison to LIO-SAM localisation, was verified in three areas labelled a, b,
and c. These areas provided a range of conditions for a thorough evaluation. Figure 14
shows the experimental environments. The trajectory accuracy was evaluated using the
EVO (Evaluation of Visual Odometry) tool, a standard tool in the fields of robotics and
computer vision [21]. It processes various trajectory data formats and offers extensive data
analysis and visualisation abilities. The evaluation criterion was APE (absolute pose error),
which measures the error between the estimated and the reference trajectories. For this
study, the trajectory from RTK-GNSS served as the reference, ensuring a reliable baseline
for the accuracy assessment of the proposed localisation method.

Figure 14. Absolute pose error (APE). Test A, Test B, and Test C are data obtained from three different
fields. The two columns on the left are data obtained by fusing IMU, RTK-GNSS, and wheel odometry
using the ESKF. The two columns on the right are obtained from the LIO-SAM algorithm. The red
boxed parts indicate that a period is used to manually switch off the RTK-GNSS data while playing
the “rosbag” data.
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3.2. Real-Time Mapping

In this study, the LIO-SAM algorithm was deployed on the robotic platform. The imu-
utils tool was employed to calibrate the IMU [22]. The calibration parameters are shown in
Table 3. RoboSense RS-16, a low-cost LiDAR, was used in this research. However, the laser
point cloud emitted by the RoboSense LiDAR has a different beam sequence and format
than the Velodyne point cloud, which is the default in the algorithm. Therefore, the RS-to-
Velodyne package was used to convert the point cloud data into the Velodyne data.

Experiments were conducted in three structured farm sites to validate the algorithm’s
effectiveness. Area A is a large area with irregular terrain, generally sloping from lower
to higher elevations, surrounded by trees, and occasionally traversed by pedestrians.
Area B has a steeper slope, showcasing the diversity of farm terrains. Area C is flat but
characterised by dense vegetation. The mapping results are shown in Figure 15. For a
more intuitive presentation of these complex agricultural environments, Figure 16 maps
the point clouds onto Bing static maps.

Figure 15. Point cloud and satellite cloud maps of different test areas obtained by the LIO-SAM algo-
rithm. The three images (a–c), correspond to the three test sites. The top row shows the constructed
3D point cloud maps for each site, while the bottom row displays the projections of the robot’s
trajectory onto satellite maps during the tests.

Figure 16. Point clouds mapped onto static maps.

Table 3. Parameters of the IMU sensor after calibration.

Measurement Normal (n) Random Walk (w)

Avg-axis 9.1644814637628646 × 10−4 1.534994316938078 × 10−5

x-axis 6.2330144407217404 × 10−4 7.7852973316884239 × 10−6

y-axis 1.5193967801678358 × 10−3 2.3529647902414388 × 10−5

z-axis 6.0664621488884952 × 10−4 1.4734884274061423 × 10−5

Avg-axis 3.5460373043123113 × 10−2 3.035990452459453 × 10−4

x-axis 4.252986911819568 × 10−2 2.1006657093059140 × 10−4

y-axis 3.411867306809651 × 10−2 3.1010348121814275 × 10−4

z-axis 2.9739382704440123 × 10−2 3.9061766142504945 × 10−4
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4. Results and Discussion

This study investigated a localisation method that uses ESKF to integrate data from
wheel odometry, a low-cost IMU, and a low-cost RTK-GNSS. The accuracy of the estimated
trajectories is also compared with the LIO-SAM algorithm using the absolute pose error
(APE) metric from the Evaluation of Visual Odometry (EVO) and SLAM tools. EVO is a
tool for evaluating the performance of visual odometry and SLAM algorithms, providing a
convenient way to compare and evaluate trajectories generated by different algorithms [21].
The results obtained from three different test areas are displayed in Figure 14, where the
data from the ESKF-based method and the LIO-SAM algorithm are shown in the left and
right columns, respectively. Specifically, the first and third columns present the reference
trajectories compared to the estimated trajectories by the two methods, while the second
and fourth columns show the corresponding trajectory errors.

As shown in Table 4, the first to third rows are the trajectory error evaluation parame-
ters of the methods presented in this paper, and the fourth to sixth rows are the trajectory
error evaluation parameters of the LIO-SAM method. Here, ‘Max’ refers to the maximum
error, ‘Mean’ refers to the average error, ‘Median’ refers to the middle value in the list of
all error values, ‘Min’ refers to the minimum error, ‘RMSE’ refers to the root mean square
error, and ‘Std’ refers to the standard deviation.

The errors in Table 4 are obtained by taking the GNSS trajectory as the ground truth
trajectory and comparing the estimated trajectories of the proposed two algorithms. Divide
the RMSE value by the total length of the trajectory and multiply by 100% to obtain the error
percentage. By calculating the percentage errors for different experimental sites, the ESKF
method’s percentage errors ranged from 0.11% to 0.54%, while the LIO-SAM method’s
percentage errors ranged from 0.29% to 0.67%.

Table 4. Comparison of APE parameters and costs of Method 1 and Method 2.

Method Max /m Mean /m Median /m Min /m RMSE /m Std /m Percentage Error % Sensors Test Site Cost

ESKF-
based
method

0.8724 0.2079 0.1790 0.0035 0.2430 0.1257 0.14% RTK-GNSS Site A GBP 220
1.0706 0.4197 0.3986 0.0116 0.4747 0.2218 0.54% IMU Site B GBP 29
0.7061 0.1218 0.1106 0.0025 0.1449 0.0785 0.11% Odom Site C

LIO-
SAM

2.5812 0.5296 0.4397 0.0805 0.6211 0.3245 0.29% LiDAR Site A GBP 670
3.9087 0.6763 0.3654 0.0375 1.09 0.8581 0.87% IMU Site B GBP 29
2.8383 1.0192 0.9165 0.3134 1.0971 0.4061 0.67% - Site C

Absolute pose errors (APEs) obtained from three different test areas are displayed
in Figure 14. The left and right columns present the data from the ESKF-based method
and the LIO-SAM algorithm, respectively. The first and third columns show the reference
trajectories compared to the estimated trajectories by the two methods, while the second
and fourth columns display the corresponding trajectory errors. From Test Area A to
Test Area C, it can be seen that the errors of the ESKF-based method are smaller than the
LIO-SAM method.

Figure 16 shows that the LIO-SAM algorithm successfully generated high-quality
point cloud maps, accurately reflecting the terrain undulations and environmental features.
The algorithms exhibited robust performance even when GNSS signals were lost, with-
out any drift in the point cloud maps, accurately reflecting the terrain and environmental
conditions of the test sites.

The ESKF-based method achieved a high localisation accuracy, and it is more cost-
effective and robust when the GNSS signal is lost. It also provides a viable alternative
for low-cost agricultural robot localisation. The LIO-SAM algorithm, on the other hand,
successfully generated high-quality point cloud maps, accurately reflecting the terrain and
environmental features, even when GNSS signals were intermittent.
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5. Conclusions

This study compared two localisation methods that use the ESKF to integrate data from
wheel odometry, a low-IMU, and a low-cost RTK-GNSS, as well as the LIO-SAM algorithm
using a low-cost IMU and RoboSense 16-channel LiDAR sensor. The performance of these
methods was compared using the absolute pose error (APE) metric from the Evaluation of
Visual Odometry (EVO) and SLAM tools. The experimental results indicated that the EKF-
based localisation error is smaller than the LIO-SAM algorithm. However, the cost of the
ESKF-based method is only 36% of the LIO-SAM system. In conclusion, the proposed ESKF-
based localisation method offers a cost-effective and feasible solution for agricultural robot
localisation in unstructured environments. It demonstrates the potential for applications in
unstructured farm environments and enables the adoption of autonomous robots in the
agriculture sector.
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