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Abstract: As a type of magnetic sensor known for its high reliability and long lifespan, the reliability
issues of Hall current sensors have attracted attention in fields such as electromagnetic compatibility.
However, there is still a lack of sufficient failure data for reliability prediction. Therefore, a small-
sample reliability prediction method based on the improved Bayes method is proposed. Firstly,
the pseudo-failure lifespan data are acquired through the accelerated degradation testing of Hall
current sensors subjected to temperature and humidity stressors, and the life is examined by the
Weibull distribution; then, the data expanded using the BP neural network model are used as the
a priori information, and the parameter estimation of the Weibull distribution is obtained by the
Bootstrap method and Gibbs sampling; finally, the Peck accelerated model is implemented to achieve
the normal temperature-humidity reliability prediction of Hall current sensors under stress, and the
utility of the enhanced Bayes technique is confirmed through the application of the Wiener stochastic
process model.

Keywords: Hall current sensors; BP neural networks; Bayes; reliability

1. Introduction

Hall current sensors are magnetic sensors based on the Hall effect that can measure
current without contact and are therefore extensively used in many fields such as electro-
magnetic compatibility, power systems, electronic equipment, speed tests in automotive
engineering, etc. [1–3]. In practical applications of Hall current sensors, environmental
factors will directly affect the service life of Hall current sensors, with temperature and
humidity being the two most important and common influencing factors. Prolonged oper-
ation of Hall current sensors in high- or low-temperature environments can easily cause
phenomena such as core saturation and winding burnout, which in turn lead to measure-
ment errors of the output current. Excessive temperatures also cause wear and tear on the
sensor’s sensitive components, which can lead to material aging and electrical failure over
time [4–6]. Core saturation and winding burnout in Hall-effect devices are two significant
issues rooted in distinct physical principles. Core saturation occurs when the magnetic
flux in the device’s core exceeds its design limits, usually due to overvoltage or high levels
of harmonic distortion. When the core becomes saturated, it cannot effectively channel
the magnetic flux, leading to a sharp increase in magnetizing current, which generates
excessive heat and can cause thermal damage to the core and surrounding components.
Winding burnout, in contrast, is primarily a result of excessive current through the de-
vice’s windings. This high current generates heat due to the resistive properties of the
winding materials (Joule heating). If the current exceeds the windings’ thermal limits
for a prolonged period, the insulation around the windings can degrade and eventually
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fail. This failure can lead to short circuits between winding turns or phases, resulting in
catastrophic damage to the device [7,8]. Additionally, as temperatures rise, the degree
of corrosion and aging of the electronic components of Hall current sensors accelerates,
and the insulating materials of their circuit boards are decomposed by high temperatures,
leading to a decrease in the efficiency of other components. Moreover, if the humidity is
too high, it will accelerate the penetration of moisture into the circuit board, making the ion
migration phenomenon inside the circuit board more serious, leading to a decrease in the
insulation performance of the circuit board, thereby causing the Hall current sensor to be
unable to function normally [9]. Therefore, studying the reliability of Hall current sensors
is important for ensuring stable operation under various environmental conditions.

Currently, research on product reliability prediction mainly focuses on methods such
as failure analysis, neural networks, Monte Carlo (MCS), and stochastic processes. These
methods each have their own strengths and weaknesses. Fault analysis methods provide
systematic and structured approaches, visualizing fault relationships through graphical and
tabular representations, which facilitate the identification and prioritization of critical faults.
However, analyzing complex systems can be extremely time-consuming and dependent on
specialized knowledge and experience. Additionally, assumptions and data used in these
methods may carry uncertainties that affect the accuracy of the analysis results [10–12].
Neural network methods in product reliability prediction possess strong self-learning and
nonlinear processing capabilities, enabling them to learn complex patterns and relation-
ships from large datasets. They also exhibit strong robustness to noise and incomplete
data. However, neural network models are often considered black-box models, lacking
interpretability, and their training processes require large amounts of high-quality data and
computational resources. Despite their strong predictive capabilities, the complexity of the
models and the required training time may pose limitations [13]. Monte Carlo methods are
renowned for their flexibility and statistical nature in product reliability prediction and are
suitable for handling various complex and high-dimensional problems. They can estimate
system behavior and characteristics through random sampling and are widely applied in
many fields. However, Monte Carlo methods are computationally expensive, requiring
many random samples and computational resources. The precision of the results depends
on the sample size, and the convergence speed may be slow. Additionally, the complexity
and computational load can become practical obstacles in some cases [14,15]. Stochastic
process methods effectively describe the dynamic changes and random behavior of systems
in product reliability prediction, making them suitable for addressing time-dependent
reliability issues and providing probabilistic descriptions of system failure times. However,
constructing and analyzing stochastic process models are complex, relying on precise
mathematical models and extensive historical data, and require highly accurate model
assumptions. In practical applications, model selection and parameter estimation can be
challenging, and computational complexity is also a factor to consider [16]. When using
these methods to forecast the dependability of Hall current sensors, an extensive number
of samples is needed, and the degradation must follow certain distribution conditions.
However, due to the high reliability and long lifespan of Hall current sensors, enough
degradation data cannot be obtained within a brief timeframe, making it difficult to apply
the above methods to reliability prediction [17].

The Bayes method is commonly used to solve reliability prediction problems for
products with small samples. This method can effectively shorten the test period and reduce
test costs, so this paper chooses the Bayes method to forecast the dependability of Hall
current sensors. First, the Bayesian method can effectively combine prior knowledge with
new data, improving prediction accuracy by updating the prior probability distribution.
This is particularly important in the case of small samples, where insufficient data may lead
to unstable results with traditional statistical methods. Secondly, the Bayesian method can
provide probabilistic prediction results, making uncertainty analysis more intuitive and
comprehensive. Finally, the Bayesian method excels in handling complex systems and multi-
parameter estimation, flexibly adapting to different model requirements, thereby enhancing
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the accuracy and robustness of reliability predictions [18,19]. When using the Bayes method
to predict the reliability of products with small samples, the first step is to collect various
prior information based on the characteristics of different products and construct a prior
distribution function. Then, integrating sample data with the prior distribution function,
the subsequent distribution is obtained. Finally, through two high-dimensional integral
operations, the distribution function and estimated value of the parameters are obtained,
achieving accurate prediction of product reliability [20–22].

The solution of the posterior distribution based on the Bayes method involves complex
and slow high-dimensional integral operations. An improved Bayes method is proposed
for the reliability prediction of Hall current sensors with small samples. This method first
conducts accelerated test design, experimental data preprocessing, and degradation process
analysis. Second, to solve the problem of insufficient prior information for Hall current
sensors, a BP neural network model is used to expand small sample data. The BP neural
network possesses powerful nonlinear mapping capabilities, as well as self-learning and
adaptive abilities. Additionally, the algorithm is relatively simple and easy to implement in
programming. Beyond that, a well-trained BP neural network can not only fit the training
data well but also accurately predict and classify new input data. Therefore, this model
can be used to supplement the prior information of the Hall current sensor to improve the
accuracy of predictions. Then, when solving the prior distribution function, an improved
Bootstrap method is chosen, which is particularly suitable for analyzing small sample
problems. To avoid complex high-dimensional integral operations, the numerical analysis
software OpenBUGS3.2.3 is used to program the prior distribution function and prior
information, and the Gibbs sampling algorithm is used to solve the posterior distribution
parameters, avoiding complex high-dimensional integral operations. Finally, according
to the Peck model, the dependability of the Hall current sensor in standard operating
circumstances is forecasted, providing a theoretical reference for the service life of the Hall
current sensor. The specific process is shown in Figure 1.
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2. Design and Data Analysis of the Acceleration Test Scheme for Hall Current Sensors
2.1. Accelerated Degradation Testing Design

In practical applications of Hall current sensors, environmental factors directly affect
the service life of the sensors, with temperature and humidity being the two most predomi-
nant and common influencing factors. Therefore, this paper considers temperature and
humidity as the accelerated stresses for the sped-up degradation testing of Hall current
sensors. Using the sensor’s characteristic parameters and engineering experience, the
sensor’s offset voltage (zero-point voltage) is selected as the performance degradation
metric for the accelerated degradation testing, with a voltage offset exceeding 10 mV set
as the failure threshold. Although considering only the offset voltage to evaluate the
reliability of the sensor has its limitations, other parameters can be ignored under certain
accuracy requirements. Compared to sensitivity, temperature drift, linearity, and noise
level, the offset voltage is the representative and important parameter for evaluating the
reliability and service life of Hall current sensors because it directly reflects the health of
the sensor’s internal circuitry and materials, serving as an early warning indicator of poten-
tial failures. Moreover, measuring the offset voltage is simple and easy, and its changes
are usually highly correlated with other performance parameters, indirectly reflecting
the overall health of the sensor. As a key measurement parameter widely recognized by
industry standards, the offset voltage excels in stability and data repeatability, making it
the preferred parameter in reliability evaluations. By monitoring the offset voltage, the
analysis process and models can be simplified, reducing complexity and computational
load, thereby providing sufficient reliability information when resources are limited or
quick assessments are needed. When setting the stress levels of temperature and humidity,
two issues must be considered. First, the stress levels of temperature and humidity should
accelerate the failure process of the Hall current sensor without altering its failure mecha-
nism [23–26]. This means that the selected maximum temperature should not exceed the
sensor’s limit temperature under normal working conditions. The maximum operating
temperature of the Hall current sensor is 85 ◦C; therefore, the maximum test temperature
level (Tmax) is chosen to be 80 ◦C. The highest temperature during normal operation of the
Hall current sensor is around 40 ◦C. If the test temperature level is too low, it will lead to
an extended test duration. Therefore, the minimum temperature level (Tmin) is set to 50 ◦C.
According to the sensor’s characteristic parameter table, its operating humidity without
condensation is 20% to 90% RH. Hence, the maximum test humidity (RHmax) is chosen
to be 80% RH, and the minimum test humidity (RHmin) is set to 60% RH. Additionally,
the number of accelerated stress levels should be at least three. However, due to test cost
and time constraints, this test will select three groups of temperature and humidity stress
level combinations. To ensure appropriate intervals between the selected temperature
and humidity stress levels, the intermediate temperature level (Tmid) and humidity level
(RHmid) are selected as 65 ◦C and 70% RH, respectively.

Considering the comprehensive national standard IEC 60068-2-78 [26] and the cost
of testing, a random sample of 24 Hall current sensors from the same batch of products
is selected as the test specimens. The quantity of samples tested at each stress level
is eight. The number of test cycles for the sensors under different stress groups is 15,
with each cycle lasting 24 h, totaling 360 h. The accelerated degradation testing of the
Hall current sensors is conducted on the acceleration platform shown in Figure 2. The
required accelerated test equipment mainly consists of a constant temperature and humidity
chamber, Hall current sensors, a multifunctional calibrator, a DC stable voltage and current
power supply, and a Hall current sensor zero-voltage detection device. Standards such as
IEC 60068-2-78 and JEDEC JESD22-A101 primarily focus on testing conditions in humid and
hot environments and do not specify requirements for electromagnetic shielding [23–26].
However, to prevent external electromagnetic interference from affecting the sensor test
results, it is generally recommended that the test environment be kept as free from strong
electromagnetic interference sources as possible. Therefore, the experimental platform in
this study is set up in a shielded room, and the testing equipment employs shielded cables
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and proper grounding to avoid electromagnetic interference. Additionally, the background
magnetic field strength of the test chamber used in this study was measured to be 19 nT.
The Hall sensor used in this study has a rated current of 6 A, and the test current was
set to the rated value. The calculated magnetic field strength generated by the sensor is
approximately 0.24 mT. Therefore, the 19 nT magnetic field strength in the chamber can be
considered negligible.
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2.2. Degradation Data Processing and Analysis

After obtaining the degradation data of the Hall current sensor samples under various
stress conditions according to the accelerated degradation testing plan, it is essential to
examine and manipulate the data to comprehend the degradation trends of the zero-
point voltage in Hall current sensors under varying stress conditions. Common data
optimization algorithms include Kalman Filtering, Particle Filtering, Adaptive Filtering,
Ensemble Methods, Bayesian Model Averaging, Time Series Analysis, Autoregressive
Integrated Moving Average models, machine learning, and deep learning algorithms.
Compared to other data processing methods, the advantage of using the improved data
fusion method with weighted data points lies in its ability to more effectively utilize the
information from each data point. By assigning different weights to different data points,
reflecting their importance and reliability, the overall prediction accuracy is improved.
Additionally, the weighted data fusion method can reduce the impact of noise and outliers
on the results, enhancing the stability and robustness of the model [27–32]. Compared to
simple averaging or indiscriminate data processing methods, weighted data fusion can
more accurately capture key patterns and trends in the data, making it particularly suitable
for the integration of complex systems and multi-source data. Therefore, this paper adopts
an improved data fusion method, assigning different weights to the five data points x1, x2,
. . ., x5 measured for each sample in each cycle. When the test data deviate less from the
average test value, a larger weight is assigned, and conversely, a smaller weight is assigned,
thereby improving the accuracy of data fusion. The specific steps are as follows:

First, calculate the average of the data points:

x =
1
n

n

∑
i=1

xi (1)

Secondly, calculate the deviation di of each data point from the average:

di =|xi − x| i = 1, 2, . . . , n (2)

Then, assign different weights according to the magnitude of the deviation. Data with
smaller deviations should be given larger weights, while data with larger deviations should
be given smaller weights. The method for calculating the weights is as follows:
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wi =
1

di + ε
i = 1, 2, . . . , n (3)

In the Formula, wi represents the weight of each data point, and ε is a very small
positive number used to prevent the denominator from being zero.

Finally, complete the calculation of the weighted average of the data.

xw =

n
∑

i=1
wixi

n
∑

i=1
wi

(4)

In the Formula, xw is the result after data processing.
After processing the degradation data under all stress combinations using this method,

the degradation curves of the zero-point voltage at 65 ◦C-0%RH are presented as an example
in Figure 3. At the same time, to clearly compare the degradation rates of the zero-point
voltage across various temperature and humidity stress levels, the degradation curves
of three samples, 50 ◦C-60%RH-A1, 65 ◦C-70%RH-B1, and 80 ◦C-80%RH-C1, are plotted
together in Figure 4.
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Figure 3. Zero-point voltage degradation curves under 65 °C−70%RH stress. 
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As is evident from Figure 3, the degradation curves of the zero-point voltage for the
eight sensor samples under this stress are quite similar and show a linear decrease. From
Figure 4, it is evident that the degradation rate of the zero-point voltage of the Hall current
sensors under 80 ◦C-80%RH stress is significantly higher than that under other temperature
and humidity stress combinations. An increase in the temperature and humidity stress
combination corresponds to a more rapid degradation pace of the zero-point voltage,
leading to a decrease in the performance and accuracy of the Hall current sensor.

3. Hall Current Sensor Prior Information Processing
3.1. Extrapolated Pseudo-Failure Life

To obtain the pseudo-failure lifespans for various Hall current sensor samples, it
is necessary to first fit the degradation data of the sensors to obtain the most suitable
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degradation curve model. Taking the degradation curves of the three samples, 50 ◦C-
60%RH-A1, 65 ◦C-70%RH-B1, and 80 ◦C-80%RH-C1, as examples, this section details the
specific process for calculating the pseudo-failure lifespans. The degradation data are fitted
with linear, power, exponential, and logarithmic models using the least squares method,
and the optimal fitting function is selected based on the sum of squared residuals (SSE) and
the correlation coefficient (R2). The fitting results are shown in Table 1.

Table 1. SSE and R2 after fitting the sample data to each mathematical model.

Fitting Function
Sample A1 Sample B1 Sample C1

SSE R2 SSE R2 SSE R2

Linear model 8.96 × 10−4 0.9955 0.0074 0.9869 0.0087 0.9896
Power function model 0.0188 0.8909 0.0551 0.8864 0.0180 0.8424
Logarithmic model 0.0286 0.8341 0.0820 0.8309 0.0327 0.8407
Exponential model 0.2359 0.8840 0.0162 0.9643 0.0177 0.9624

As shown in Table 1, for the three samples, the sum of squared residuals (SSE) is the
smallest and the R2 value is close to 1 under the linear model fitting. Therefore, it can be
considered that the performance degradation amount and zero-point voltage of the Hall
current sensor will decrease linearly with the extension of the usage cycle. Using the linear
fitting results in combination with the failure criterion, the pseudo-failure lifespan of the
Hall current sensor samples under various stress conditions is extrapolated. Table 2 gives
the pseudo-failure lifespan of eight Hall current sensor samples under the 65 ◦C-70%RH
stress combination.

Table 2. Pseudo-failure lifespan for specimens subjected to 65 ◦C-70%RH stress conditions.

Sample Number Pseudo-Failure Life/Days

B1 255.50
B2 246.33
B3 282.59
B4 268.58
B5 271.25
B6 278.08
B7 262.12
B8 271.54

3.2. Pseudo-Failure Life Distribution Test

The Weibull distribution has good compatibility and can fit various types of data,
describing the failure process of products at different stages. When utilizing the Weibull
distribution to represent the pseudo-failure lifespan of Hall current sensors, it is essential
to initially assess whether the pseudo-failure lifespan data of the sensors follow a Weibull
distribution. The Anderson-Darling test method is chosen to test the distribution to which
the pseudo-failure life of Hall current sensors adheres, and the distribution test results are
shown in Table 3.

Table 3. Distributional hypothesis Anderson-Darling test results.

Distribution Type H P AD* CV

Weibull distribution 0 0.9974 0.1682 0.7170
Log-normal distribution 0 0.9826 0.2251 0.6667

Normal distribution 0 0.9889 0.2079 0.6667

In Table 3, a value of H (Hypothesis Test Result) equal to 0 indicates acceptance of the
distribution hypothesis, whereas a non-zero value indicates rejection of the distribution
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hypothesis; P represents the test values for each distribution, indicating the probability
of conforming to the distribution; AD* is the statistic for the Anderson-Darling test; and
the critical value CV is a standard used to determine whether the AD* is greater than this
value. If the AD* is greater than the CV, we can reject the null hypothesis, meaning that
the data do not conform to the specified distribution. As seen from the Anderson-Darling
test results in Table 3, the pseudo-failure lifespan data of the Hall current sensors conform
to all three hypothesized distributions, but the probability of conforming to the Weibull
distribution is the highest. Therefore, the Weibull distribution can be considered as the
most suitable distribution function for the pseudo-failure lifespan of Hall current sensors.

3.3. Pseudo-Failure Life Expansion

When using the Bayes method to analyze product reliability, it is usually necessary
to have a large amount of failure data to construct a failure distribution model. When the
number of test samples is insufficient, it is necessary to use the sample expansion method to
expand the prior information. The BP neural network model, as a commonly used sample
expansion model, has a simple prediction process and highly accurate results. When per-
forming pseudo-failure life extension in cases where the original data may not adequately
represent the full range of potential degradation behaviors, neural network models may
face issues such as insufficient representativeness of training data and overfitting, leading
to decreased accuracy in predicting unseen degradation behaviors. To address these issues,
data augmentation, transfer learning, cross-validation, and regularization techniques can
be employed to enhance the model’s generalization ability. Additionally, ensemble learning
methods can improve prediction stability and accuracy, while regularly monitoring and
updating the model helps to continuously improve its performance. These measures can
effectively mitigate the limitations and biases caused by insufficient data representation,
thereby enhancing the accuracy and reliability of predictions. Therefore, the BP neural
network model is chosen to expand the pseudo-failure lifespan data of the Hall current
sensor, and the expanded pseudo-failure life data are used as prior information. The BP
neural network structure adopted in this paper includes an input layer, a hidden layer, and
an output layer. The input layer processes eight input samples, the hidden layer contains
10 neurons and uses the tansig (tangent sigmoid) activation function, while the output
layer processes eight output samples and uses the purelin (linear) activation function. The
expansion of the pseudo-failure lifespan of the Hall current sensor at 65 ◦C-70%RH is taken
as an example.

Firstly, it is essential to provide the BP network with original input and output data
pairs for network training. Using empirical reliability as the input during BP neural network
learning and the original pseudo-failure life data as the output during BP neural network
learning, the training of the BP neural network is completed. The original data are obtained
by performing a weighted average on the accelerated test data by (1) to (4). In cases where
the sample distribution model of the data is unknown, the empirical distribution function
can be used as an input to the BP neural network to estimate empirical reliability. However,
when the sample distribution model is known and the sample size is small, the empirical
distribution function may have significant computational errors. To reduce the error in
the case of small samples and improve the prediction effect, the mathematical expectation
formula can be used to calculate the empirical reliability.

R(ti) = 1 − i
N + 1

i = 1, 2, . . . , n (5)

Within the Equation, n denotes the count of samples, while N signifies the number
of augmented samples. The empirical reliability of the eight sensor samples is calculated
as follows.

R(ti) = {0.875, 0.75, 0.625, 0.5, 0.45, 0.4, 0.38, 0.25} (6)

After training is completed, the training results are verified for accuracy against the
original data, as shown in Table 4.
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Table 4. Model Accuracy Check.

Number Original Value Predicted Value Relative Error/%

B1 255.50 255.59 0.035
B2 246.33 246.32 −0.004
B3 282.59 282.58 0.003
B4 268.58 268.69 0.041
B5 271.25 271.37 0.044
B6 278.08 278.32 0.086
B7 262.12 262.12 0.000
B8 271.54 271.55 0.003

As shown in Table 4, the forecasting precision of the BP neural network is extremely
high, with the absolute value of the relative discrepancy between the forecasted values and
the original data being under 1%. This indicates that the BP neural network model has
been successfully trained.

After training is completed, the random empirical reliability R(ti) = {0.85, 0.8, 0.77, 0.7,
0.6, 0.55, 0.35} is input into the trained BP neural network to complete the expansion of the
pseudo-failure lifespan data. The seven expanded data obtained are {254.47, 245.91, 242.20,
275.29, 278.34, 271.46, 250.34}.

To determine the fit between the original pseudo-failure life data and the expanded
data, a comparison result graph of the original sample’s pseudo-failure life data and the
expanded data is provided, as shown in Figure 5.
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4. Improved Bayes Method for Solving Weibull Distribution Parameters
4.1. Solving for the Prior Distribution

Taking the pseudo-failure lifespan of the 15 samples acquired from the expansion
under the 65 ◦C-70%RH stress combination as the prior information for the Hall current
sensor, remove one sample at a time in order, and fit the remaining 14 sensor samples’
pseudo-failure life data to the Weibull distribution. Take the average of the 15 sets of
magnitude parameters α and shape parameters β obtained and substitute the results into
the Weibull empirical distribution function.

α =
1

15

15

∑
i=1

αi = 269.63 (7)

β =
1

15

15

∑
i=1

βi = 24.62 (8)

Fn(T) = 1 − exp

[
−
(

t
269.63

)24.62
]

(9)

Using the Bootstrap method, randomly extract 1500 samples from the empirical
distribution function, group them in sets of 15 samples, and perform Weibull distribution
fitting to obtain 1500 sets of estimates for α and β. After removing the first and last 50 sets
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of parameter estimates, the distribution function fitting is performed to ultimately obtain
the prior distribution for α and β under 65 ◦C-70%RH stress.

π(α) = Φ(
x − 269.084

3.558
) (10)

π(β) = Φ(
ln x − 3.3231

0.2755
) (11)

Using the distribution test scatter plot to test the distribution of the two parameters,
the results indicate that α and β follow the normal distribution and log-normal distribution,
respectively. Figures 6 and 7 show the normal distribution and log-normal distribution test
results for α and β at a confidence level of 95%, respectively.
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4.2. Calculating the Posterior Distribution

To avoid complex high-dimensional integral operations in the posterior distribution
of Hall current sensors, the OpenBUGS software, which incorporates the Gibbs numerical
simulation algorithm, is chosen to solve for the posterior distribution of Hall current sensors.
The basic steps are as follows. First, program the prior distributions of α and β using the
BUGS language; second, check the code for correctness and load the original pseudo-failure
life data of the Hall current sensors; then, set the parameters that need to be monitored,
and configure the number of Markov chain iterations, the count of iterations, and the
count of burn-in iterations; finally, output the statistical parameters of the subsequent
distribution of the sample parameters after the iteration has stabilized, including MC
error, mean, quantiles, and other parameters, and select the mean as the estimate of the
Weibull distribution parameters to forecast the dependability of the Hall current sensors.
According to the above steps, set the number of iterations to 60,000, and the number of
burn-in iterations to the first 1,000, the results of which are presented in Tables 5 and 6.
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Table 5. The a posteriori statistic for the parameter α.

Starting Point Sample Size Mean Standard Deviation MC Error

1000 19,001 269.1 0.5230 0.0077
1000 39,001 269.1 0.5259 0.0054
1000 59,001 269.1 0.5232 0.0042

Table 6. The a posteriori statistic for the parameter β.

Starting Point Sample Size Mean Standard Deviation MC Error

1000 19,001 23.0 5.377 0.2988
1000 39,001 23.11 5.028 0.1809
1000 59,001 23.11 5.002 0.1348

As can be seen from Tables 5 and 6, the more iterations there are, the more stable the
mean values of α and β become, and the error of the MC sampling is gradually decreasing.
The posterior probability density of α and β after 60,000 iterations is shown in Figures 8 and 9.
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The point estimates of the Hall current sensor parameters are determined to be the mean
of the parameter posterior statistics. Combining Tables 5 and 6, as well as Figures 8 and 9,
after 60,000 iterations, the α and β of the Weibull distribution for the Hall current sensor
under the 65 ◦C-70%RH stress are 269.1 and 23.11, respectively.

Similarly, the improved Bayes method is used to solve for the Weibull distribution
parameters of the Hall current sensor under the 50 ◦C-60%RH and 80 ◦C-80%RH stresses.
The point estimates of the magnitude and shape parameters under each acceleration stress
are obtained, as shown in Table 7, which are used to evaluate the dependability and service
life of the Hall current sensor in standard operating circumstances.
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Table 7. Parameter estimation results for different stress combinations.

Stress Combination Magnitude Parameter α Shape Parameter β

50 ◦C-60%RH 482.9 25.42
65 ◦C-70%RH 269.1 23.11
80 ◦C-80%RH 138.5 21.88

5. Reliability Prediction of Hall Current Sensors under Normal Stress Levels

In practical engineering, in order to assess and predict the reliability of products under
normal working stress levels through accelerated testing techniques, it is necessary to
ensure that the product’s failure mechanism remains unchanged under different applied
stresses. The consensus for validating the consistency of accelerated failure mechanisms
in the Weibull distribution model is that the magnitude parameter is a function of the
accelerated stress, while the shape parameter is constant. By comparing and analyzing
the Weibull distribution parameters of the pseudo-failure lifespan of Hall current sensors
under different stress levels in Table 7, it can be observed that the magnitude parameter
varies significantly under different accelerated stresses, while the shape parameter exhibits
a small variation and good consistency. From this analysis, it can be concluded that the
failure mechanism of the Hall current sensors did not change under the three accelerated
stress levels.

When the pseudo-failure lifespan of Hall current sensors follows a Weibull distribution,
their dependability function can be expressed as (12).

R(t) = exp

[
−
(

t
α

)β
]

(12)

Since temperature and humidity are the main factors affecting the performance degra-
dation of Hall current sensors, the Peck model is selected to depict the correlation between
the degradation rate of Hall current sensors and the temperature and humidity stress levels.

ln R = a1 + b1
1
T
+ c1 ln RH (13)

where R is a parameter related to the rate of performance degradation, T is the temperature,
and RH is the relative humidity.

Based on the estimated values of the Weibull magnitude parameters under different
stress combinations in Table 7, the global optimization algorithm is used to fit the parame-
ters a1, b1, and c1 in the Peck model. The relationship between the magnitude parameter
and the temperature and humidity acceleration stress is obtained, as shown in (14).

ln α = −131.150 +
23732.446

T
+ 16.135 × ln RH (14)

By substituting the normal operating environment temperature (25 ◦C) and humidity
(40%RH) of the Hall current sensor into (14), the estimated value of the magnitude parame-
ter under normal temperature and humidity levels is obtained as 3005.37. In accordance
with the principle of consistency of accelerated failure mechanisms, the shape parameter
can be represented by the mean of the shape parameters obtained under each accelerated
stress, thereby obtaining a shape parameter of 23.47 for the Hall current sensor under
normal stress levels.

Consequently, the reliability function of the Hall current sensor under normal temper-
ature and humidity stress levels can be expressed by (15).

R(t) = exp

[
−
(

t
3005.37

)23.47
]

(15)

Based on the above equation, the dependability curve of the Hall current sensor under
normal temperature and humidity stress levels can be acquired. Since it is difficult to verify
the reliability prediction results of the improved Bayes method using actual service life
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information, this paper chooses to use the Wiener stochastic process model to validate the
effectiveness of the proposed improved Bayes method.

The comparison of reliability curves for the two methods is shown in Figure 10.
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As shown in Figure 10, the reliability curves obtained by the two prediction methods
exhibit the same overall trend, but there are some differences. The main reason for these
differences is that while the Wiener model considers the randomness in the sensor’s
performance degradation process, the limited number of sensor samples used in the
accelerated degradation tests does not effectively capture the randomness and variability
of the performance degradation parameters during the degradation process. Overall,
the reliability forecasting outcomes derived from the enhanced Bayes approach and the
Wiener process are fairly similar. Additionally, since the BP neural network model in
the improved Bayes method can expand small-sample degradation data, it can still be
used when the number of test samples is small. Compared to the Wiener stochastic
process, this method has a wider range of applicability and is more advantageous in
handling reliability prediction problems with small samples. In practical engineering
applications, there is no strict regulation for the service life of Hall current sensors, and the
manufacturer’s recommended service life is 6–8 years. The variation in reliability thresholds
can significantly affect the estimated service life of Hall current sensors. Increasing the
threshold (e.g., from 0.9 to 0.95) will shorten the estimated service life but increase reliability,
whereas decreasing the threshold (e.g., from 0.9 to 0.85) will extend the estimated service
life but increase the risk of failure. The sensitivity of reliability thresholds can be evaluated
through sensitivity analysis, observing the impact of different thresholds on service life
estimation. High-quality data and accurate models can reduce the uncertainty of service life
estimation due to changes in thresholds. Therefore, the appropriate selection of reliability
thresholds is crucial to balance product quality, cost, and failure risk. In this example,
reliability thresholds of 0.8, 0.85, 0.9, and 0.95 are used to estimate the service life of Hall
current sensors based on Figure 10, with the results shown in Table 8. As indicated in
Table 8, the estimated service lives based on these thresholds all fall within the range of
6–8 years. It is generally accepted that Hall current sensors are not suitable for continued
operation when their reliability drops to 0.9. According to Figure 10, the service life of the
Hall current sensor under normal temperature and humidity stress conditions is defined
as the time when the sensor’s reliability reaches 0.9, which is 2725 days, or approximately
7.5 years.

Table 8. Service life estimation of Hall current sensors under different reliability thresholds.

Reliability Threshold Service Life (Days) Service Life (Years)

0.8 2821 7.7
0.85 2785 7.6
0.9 2725 7.5

0.95 2654 7.3
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6. Conclusions

In response to the lack of sufficient failure data for Hall current sensors, this paper
makes full use of the experimental data obtained from accelerated degradation tests and
adopts an improved Bayes method to forecast the dependability of Hall current sensors
under small sample conditions, obtaining the service life of the sensors under normal
temperature and humidity stress levels. At the same time, the stochastic Wiener process
model is used to verify this method, proving the effectiveness of the improved Bayes
method for reliability forecasting in the context of limited sample sizes. This offers a
theoretical basis for the service life of Hall current sensors and also offers a practical
approach for the reliability prediction of other products with high reliability and long-
life characteristics.
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