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Abstract: Kinematics is a hot topic in robotic research, serving as a foundational step in the synthesis
and analysis of robots. Forward kinematics and inverse kinematics are the prerequisite and foundation
for motion control, trajectory planning, dynamic simulation, and precision guarantee of robotic
manipulators. Both of them depend on the displacement models. Compared with the previous
work, finite screw is proven to be the simplest and nonredundant mathematical tool for displacement
description. Thus, it is used for displacement modelling of serial robots in this paper. Firstly, a finite-
screw-based method for formulating displacement model is proposed, which is applicable for any
serial robot. Secondly, the procedures for forward and inverse kinematics by solving the formulated
displacement equation are discussed. Then, two typical serial robots with three translations and two
rotations are taken as examples to illustrate the proposed method. Finally, through Matlab simulation,
the obtained analytical expressions of kinematics are verified. The main contribution of the proposed
method is that finite-screw-based displacement model is highly related with instantaneous-screw-
based kinematic and dynamic models, providing an integrated modelling and analysis methodology
for robotic mechanisms.

Keywords: displacement modelling; kinematics; serial robots; finite screw; screw theory

1. Introduction

Robots have been widely utilized in industrial application in recent years [1,2]. Kine-
matics, including forward kinematics and inverse kinematics, is a fundamental problem
in the synthesis and analysis of robots. It is the prerequisite for motion control, trajectory
planning, dynamic simulation, and precision guarantee of robotic manipulators. Both
forward kinematics and inverse kinematics depend on displacement modelling. Through
describing displacements of robots by mathematical tools, displacement models can be
formulated in an algebraic way [3–5]. The two main issues involved in displacement
modelling of robots are as follows:

(1) Select a mathematical tool to analytically express the displacements generated by
the joints of the robots [6];

(2) Formulate the displacement equations of the robots by compositing the joints’
displacements [7].

Up to now, two main kinds of methods for displacement modelling of serial robots
(SRs) have been proposed, i.e., vector chain methods and product of exponentials methods.
In vector chain methods, three-dimensional position vectors are employed to formulate the
displacement equation by means of building mappings between positions and orientations
of the end-effector of an SR at the given pose [8]. In the formulated position equations, all
joint parameters are independent and decoupled. In the product of exponentials method,
exponential matrices (or dual quaternions) containing joint parameters are used to express
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pose transformations between adjacent links of an SR [9]. The displacement equation can
be formulated by multiplying these matrices or (or dual quaternions) together [10,11].

By employing these methods, displacement models of any SR can be formulated.
Forward kinematics can be directly carried out by applying the obtained displacement
equation [12]. Additionally, some methods for inverse kinematics have also been put
forward, which accompany the displacement modelling methods. The works related to
vector chain methods have been reported by elimination and engine value analysis of
univariate polynomial equations [13]. The works related to the product of exponentials
methods can be found by algebraic and geometric approaches [14].

Compared with the mathematical tools used in these existing methods, finite screw
has the following advantages in describing displacements of serial robots and their joints:

(1) It has only six items, which is the simplest and nonredundant description of the
special Euclidean group (SE(3)) [15].

(2) The algebraic structure of the entire set of finite screws has been proved to be a Lie
group under the screw triangle product, while the entire set of instantaneous screw is its
corresponding Lie algebra [16].

Considering that the instantaneous screw and its isomorphism have been success-
fully and widely used in mobility, velocity, dynamic, accuracy, and stiffness modelling
of SRs [17–20], we intend to use the counterpart of it, i.e., finite screw, in implementing
displacement modelling. Based upon Dai’s works [21–23], finite screw will be used in
displacement modelling of SRs in this paper.

The contributions of this paper lie in the following points.
(1) Displacement modelling based upon finite screw formulates the nonredundant

and most concise expression for forward and inverse kinematics of SRs [24,25].
(2) The computational cost of displacement modelling is improved by introducing

finite screw and the corresponding algorithms of screw triangle product [26].
(3) The formulated displacement models of SRs are highly related with the velocity and

higher kinematic models because of the differential mapping between finite and instanta-
neous screws, providing integrated method for kinematics and dynamics modelling [27,28].

This paper presents a new method for displacement modelling of SRs using finite
screws as the mathematical tool, making it applicable to any SR. The organization of this
paper is as follows. After a brief review of the state-of-the-art of the existing methods for
displacement modelling and kinematics in Section 1, Section 2 presents a new method to
algebraically formulate displacement equation of an SR through describing displacements
generated by an SR and its joints as finite screws. Then, the procedures of forward and
inverse kinematics using the formulated finite-screw-based displacement model are given
in Section 3. In Section 4, two topical serial robots are taken as examples to illustrate the
proposed method, which is followed by the verification of the correctness of the obtained
analytical expressions in Matlab simulation in Section 5. The conclusions are drawn in
Section 6.

2. Displacement Modelling Using Finite Screw

In this section, the displacement equation will be formulated through describing
displacements generated by an SR and its joints by finite screws, which clearly shows the
algebraic mappings between all the joint parameters and the pose of the end-effector [29].

In Chasles’ theorem, a rigid body displacement from one configuration to another
configuration can always be regarded as the rigid body rotating around an axis together
with translating along the axis. The axis is called Chasles’ axis. As is well known, for
the Chasles’ axis, the rotational angle and translational distance about/along that axis
are the basic elements of displacement [30,31]. Among all the mathematical tools used
to describe displacement, the finite screw in quasi-vector form can clearly express these
basic elements in the simplest and most nonredundant manner, which can be analytically
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composited [32,33]. Generally, a displacement of a rigid body can be expressed by a finite
screw as follows:

S f = 2 tan
θ

2

(
s f

r f × s f

)
+ τ

(
0
s f

)
, (1)

where s f (
∣∣∣s f

∣∣∣ = 1) and r f denote the unit direction vector and position vector of the

Chasles’ axis,
(

s f ; r f × s f

)
is the Plücker coordinates of the screw axis of the displacement,

and θ and τ are the rotational angle and translational distance about/along that axis [34,35].
Suppose that a rigid body realizes two successive displacements expressed by

S f ,i = 2 tan
θi
2

(
s f ,i

r f ,i × s f ,i

)
+ τi

(
0

s f ,i

)
, i = a, b. (2)

The screw triangle product [23] is the composition algorithm of finite screws. The
composition of two finite screws results in the linear addition of these two screws, the
screw along their common perpendicular, and their translational parts. The resultant
displacement of this rigid body can be obtained by compositing the two finite screws using
the screw triangle product,

S f ,ab = S f ,a◦S f ,b =

S f ,a + S f ,b +
S f ,b×S f ,a

2 − tan θa
2 tan θb

2

(
τb

(
0

s f ,a

)
+ τa

(
0

s f ,b

))
1 − tan θa

2 tan θb
2 sT

f ,as f ,b
, (3)

where the symbol “◦” is used to denote the screw triangle product.
By employing finite screws to describe the displacements generated by an SR and

its joints, the displacement model of the robot can be directly formulated utilizing screw
triangle products [36,37]. In this way, for an SR constituted by n one-DoF joints (revo-
lute (R) and prismatic (P) joints), its displacement model can be obtained as follows using
Equations (1) and (3),

S f ,SR = S f ,n◦S f ,n−1◦ · · · ◦S f ,1, (4)

where S f ,SR and S f ,k (k = 1 , 2, · · · , n) denote the displacements generated by the SR and
its kth joint measured from a preset initial pose. According to Equation (1), S f ,k can be
expressed as follows:

S f ,k =


2 tan θk

2

(
sk

rk × sk

)
R joint

τk

(
0
sk

)
P joint

(5)

where sk and rk are the unit direction vector and position vector of the kth joint at its initial
pose; θk (τk) is the rotational angle (translational distance) of the kth joint with respect to its
initial pose [38,39]. Conventionally, joints in the SR are numbered from the fixed base to
the end-effector. Equation (4) is the finite-screw-based displacement model (displacement
equation) of the SR [40,41].

3. Kinematics Using Finite Screw

Having the finite-screw-based displacement equation at hand, the kinematics of SRs
can be carried out [42,43]. The procedures for forward and inverse kinematics by utilizing
this displacement equation will be discussed in this section.

According to Chasles’ theorem and screw triangle product, the composition of sev-
eral joint displacements can always be rewritten as a finite screw [44–46]. Hence, the
displacement model of SR can be rewritten into the following form:

S f ,SR = S f ,n◦S f ,n−1◦ · · · ◦S f ,1 = 2 tan
θC
2

(
sC

rC × sC

)
+ τC

(
0

sC

)
, (6)
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where sC and rC are unit direction vector and position vector of the axis of the composition
displacement, and θC and τC are rotational angle and translational distance about and
along that axis [47,48]. It is easy to see that they are all functions of the joint parameters θk
and τk (k = 1 , 2, · · · , n) as

sC = fs(θ1, θ2, · · · , θn), rC = fr(θ1/τ1, θ2/τ2, · · · , θn/τn),

tan
θC
2

= fθ(θ1, θ2, · · · , θn), τC = ft(θ1/τ1, θ2/τ2, · · · , θn/τn). (7)

We write the current pose of the SR’s end-effector as

S f ,SR = 2 tan
θSR

2

(
sSR

rSR × sSR

)
+ τSR

(
0

sSR

)
. (8)

Because the composition displacement generated by all the joints is equivalent to the
pose of the end-effector [49–51], Equation (6) can be rewritten into the following three
mappings between the joint parameters and the end-effector pose,

sSR = fs(θ1, θ2, · · · , θn), (9)

tan
θSR

2
= fθ(θ1, θ2, · · · , θn), (10)

2 tan θSR
2 rSR × sSR + τSRsSR

= 2 fθ(θ1, θ2, · · · , θn) · ( fr(θ1/τ1, θ2/τ2, · · · , θn/τn)× fs(θ1, θ2, · · · , θn))
+ ft(θ1/τ1, θ2/τ2, · · · , θn/τn) · fs(θ1, θ2, · · · , θn)
= g(θ1/τ1, θ2/τ2, · · · , θn/τn)

(11)

In the above three equations, fs and fθ are the mappings between the rotational pa-
rameters of joints and the end-effector orientation, and g is the mapping between the joint
parameters and the end-effector position [52–54]. They clearly reveal the algebraic map-
pings between the joint parameters and the end-effector pose [55–57]. In these mappings, sk
and rk are determined by the preset initial pose of the SR. They are known quantities, which
are invariable with the pose that the end-effector moves to [58–60]. In forward kinematics,
the n joint parameters, θ1/τ1, θ2/τ2, . . ., θn/τn, are given, and the displacement S f ,SR
generated by the SR with respect to the initial pose, i.e., the current pose of the end-effector,
is what needs to be solved. In inverse kinematics, the displacement of the SR is given, and
the n joint parameters are the variables needed to be solved. It is noted that the symbol “/”
here means “or”, because only one of θk and τk exists [61–63].

From the above analysis, the procedures for forward and inverse kinematics utilizing
finite screw can be concluded as follows:

(1) Formulate the displacement model of an SR using the finite screws generated by
its joints [64,65].

(2) Rewrite the displacement equation into the mappings between the joint parameters
of the end-effector pose [66].

(3) Given the joint parameters, the forward kinematics leads to the end-effector
pose [67,68].

(4) Given the end-effector pose, the inverse kinematics results in the joint parame-
ters [69,70].

The procedures for forward and inverse kinematics are illustrated in Figure 1.
Through vector and polynomial analysis, the analytical solutions of forward and

inverse kinematics can be derived by following the procedures [71,72]. In the next section,
two topical SRs will be taken as examples to show the validity of the proposed finite
screw method.
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4. Examples

The method and procedures proposed in this paper can be applied to displacement
modelling and kinematics of SRs. In this section, P1P2P3RaRb and RaRaRaRbRb robots with
three translations and two rotations are taken as typical examples to illustrate the method.
In order to show the procedures more clearly, we firstly solve the P1P2P3RaRb robot, and
then use the result to solve RaRaRaRbRb. Here, the subscript of each R or P joint denotes
its direction.

4.1. P1P2P3RaRb Robot

As shown in Figure 2, P1P2P3RaRb is the three-translational and two-rotational robot
with the simplest structure. It generates two rotations with fixed directions. Its displacement
equation can be formulated based upon Equation (4),

S f ,SR = 2 tan
θb
2

(
sb

rb × sb

)
◦2 tan

θa

2

(
sa

ra × sa

)
◦τ3

(
0
s3

)
◦τ2

(
0
s2

)
◦τ1

(
0
s1

)
, (12)

where sa and sb, respectively, denote the unit direction vectors of Ra and Rb, ra and rb denote
the position vectors of the two R joints, θa and θb denote their rotational angles, s1, s2, and
s3 are the unit vectors of P1, P2, and P3, and τ1, τ2, and τ3 are their translational distances.
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Computing the composition displacements generated by all joints in P1P2P3RaRb,
Equation (12) can be rewritten as follows by utilizing the screw triangle product,

2 tan
θSR

2

(
sSR

rSR × sSR + tSR

2 tan θSR
2

sSR

)
= 2 tan

θC
2

(
sC

pba +
t×sC

2 + t
2 tan θC

2

)
, (13)

where

tan
θSR

2
= tan

θC
2

=

∣∣∣tan θa
2 sa + tan θb

2 sb + tan θa
2 tan θb

2 (sa × sb)
∣∣∣

1 − tan θa
2 tan θb

2 sT
a sb

,

sSR = sC =
tan θa

2 sa + tan θb
2 sb + tan θa

2 tan θb
2 (sa × sb)∣∣∣tan θa

2 sa + tan θb
2 sb + tan θa

2 tan θb
2 (sa × sb)

∣∣∣ ,
pba =

tan θa
2 (ra × sa) + tan θb

2 (rb × sb) + tan θa
2 tan θb

2 (sa × (rb × sb) + (ra × sa)× sb)∣∣∣tan θa
2 sa + tan θb

2 sb + tan θa
2 tan θb

2 (sa × sb)
∣∣∣

t = τ1s1 + τ2s2 + τ3s3

Using these equations, the forward kinematics can be derived in a straightforward
way, when the joint parameters are given.

When the end-effector pose is given, the two rotational parameters, θa and θb, can be
analytically solved through vector analysis,

θa = 2arctan

(
sT

SR(sa × sb)

sT
SRsb − sT

a sbsT
SRsa

)
, θb = 2arctan

(
sT

SR(sa × sb)

sT
SRsa − sT

a sbsT
SRsb

)
. (14)

In order to solve the three P joint parameters, τ1, τ2, and τ3, the mapping between
these three parameters and the given position is built as

t =

(
E3

2 tan θC
2

− s̃C
2

)−1(
rSR × sSR +

τSR

2 tan θSR
2

sSR − pba

)
. (15)

where s̃ba denotes the skew-symmetric matrix of sba, and E3 is a unit matrix of order three.
Computing the projections of the translation vector t on directions of s1, s2, and s3

leads to the parameters τ1, τ2, and τ3,

τ1 =
tT(s2 × s3)

sT
1 (s2 × s3)

, τ2 =
tT(s1 × s3)

sT
2 (s1 × s3)

, τ3 =
tT(s1 × s2)

sT
3 (s1 × s2)

. (16)

In fact, the displacement equation of any three-translational and two-rotational SR
with two fixed rotation directions can be rewritten into a form that is similar to Equation (13).
Thus, its two rotational parameters can be obtained using the mapping built in the similar
way. The differences between solving different three-translational and two-rotational SRs
come from the diversification mappings between the three translational parameters and the
given position of end-effectors. Hence, forward and inverse kinematics of the RaRaRaRbRb
robot can be solved as follows.

4.2. RaRaRaRbRb Robot

The RaRaRaRbRb robot in Figure 3 consists of three Ra and two Rb joints, and its
displacement equation can be formulated as

S f ,SR = 2 tan
θb2
2

(
sb
rb2 × sb

)
◦2 tan

θb1
2

(
sb
rb1 × sb

)
◦

2 tan
θa3
2

(
sa
ra3 × sa

)
◦2 tan

θa2
2

(
sa
ra2 × sa

)
◦2 tan

θa1
2

(
sa
ra1 × sa

) (17)
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where ra1 , ra2 , and ra3 denote the position vectors of the three Ra, θa1 , θa2 , and θa3 denote
their rotational angles, rb1 and rb2 are the position vectors of the two Rb, and θb1 and θb2 are
their rotational angles. The subscripts of the position vectors and rotational angles of the
Ra and Rb joints are, respectively, numbered from the joint near the fixed base to the joint
near the end-effector.
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Equation (17) can be rewritten as

2 tan
θSR

2

(
sSR

rSR × sSR + tSR

2 tan θSR
2

sSR

)
= 2 tan

θC
2

(
sC

pba +
t×sC

2 + t
2 tan θC

2

)
(18)

where

tan
θSR

2
= tan

θC
2

=

∣∣∣tan
θa1+θa2+θa3

2 sa + tan
θb1

+θb2
2 sb + tan

θa1+θa2+θa3
2 tan

θb1
+θb2
2 (sa × sb)

∣∣∣
1 − tan

θa1+θa2+θa3
2 tan

θb1
+θb2
2 sT

a sb

,

sSR = sC

=
tan

θa1+θa2+θa3
2 sa+tan

θb1
+θb2
2 sb+tan

θa1+θa2+θa3
2 tan

θb1
+θb2
2 (sa×sb)∣∣∣∣tan

θa1+θa2+θa3
2 sa+tan

θb1
+θb2
2 sb+tan

θa1+θa2+θa3
2 tan

θb1
+θb2
2 (sa×sb)

∣∣∣∣
,

pba =

tan
θa1+θa2+θa3

2 (ra3 × sa) + tan
θb1

+θb2
2

(
rb2 × sb

)
+

tan
θa1+θa2+θa3

2 tan
θb1

+θb2
2

(
sa ×

(
rb2 × sb

)
+ (ra3 × sa)× sb

)∣∣∣tan
θa1+θa2+θa3

2 sa + tan
θb1

+θb2
2 sb + tan

θa1+θa2+θa3
2 tan

θb1
+θb2
2 (sa × sb)

∣∣∣
t = (exp((θa1 + θa2)s̃a)− E3)(ra3 − ra2) + (exp(θa1 s̃a)− E3)(ra2 − ra1)

+ exp((θa1 + θa2 + θa3)s̃a)
(
exp

(
θb1 s̃b

)
− E3

)(
rb2 − rb1

)
Similarly, the forward kinematics can be derived in a straightforward way using these

equations when the joint parameters are given.
When the end-effector pose is given, the inverse kinematics of this robot is solved

as follows. It is easy to see from the expression of sC that the two rotations of the SR are,
respectively, generated by the three Ra and the two Rb. Thus, θa1 + θa2 + θa3 and θb1 + θb2
can be regraded to be the two rotational parameters. From the expression of t, it can be
seen that the three translations are, respectively, generated by the first two Ra, the first Ra,
and the first Rb. In this way, θa1 + θa2 , θa1 , and θb1 are the three translational parameters.
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The two rotational parameters θa1 + θa2 + θa3 and θb1 + θb2 can be solved in the similar
way as shown in Equation (14). The solutions are

θa1 + θa2 + θa3 = 2arctan
(

sT
SR(sa×sb)

sT
SRsb−sT

a sbsT
SRsa

)
,

θb1 + θb2 = 2arctan
(

sT
SR(sa×sb)

sT
SRsa−sT

a sbsT
SRsb

)
.

(19)

Thus, t can be obtained like Equation (15). Using Equation (18), the mapping between
t and the three translational parameters θa1 + θa2 , θa1 , and θb1 can be obtained as

exp((θa1 + θa2)s̃a)(ra3 − ra2) + exp(θa1 s̃a)(ra2 − ra1)
+ exp((θa1 + θa2 + θa3)s̃a) exp

(
θb1 s̃b

)(
rb2 − rb1

)
= t + (ra3 − ra1) + exp((θa1 + θa2 + θa3)s̃a)

(
rb2 − rb1

) (20)

Taking dot product of sa on both sides of Equation (20) to eliminate θa1 + θa2 and θa1 ,
the equation having the only parameter θb1 can be obtained as

A sin θb1 + B cos θb1 = C, (21)

where
A =

(
exp((θa1 + θa2 + θa3)s̃a)

(
sb ×

(
rb2 − rb1

)))Tsa,

B =
(

exp((θa1 + θa2 + θa3)s̃a)
(

rb2 − rb1 − rT
b2

sbsb + rT
b1

sbsb

))T
sa,

C =
(

t +
(

ra3 − ra1 − rT
a3

sasa + rT
a1

sasa

))T
sa.

In Equation (21), A, B, and C are known quantities. Thus, θb1 can be solved as follows
using the half-tangent formula

θb1 = 2arctan

(
A ±

√
A2 + B2 − C2

B + C

)
. (22)

We substitute the obtained θb1 into Equation (20) to solve θa1 + θa2 and θa1 ,

exp((θa1 + θa2)s̃a)(ra3 − ra2) + exp(θa1 s̃a)(ra2 − ra1)
= t + (ra3 − ra1)− exp((θa1 + θa2 + θa3)s̃a)

(
exp

(
θb1 s̃b

)
− E3

)(
rb2 − rb1

) (23)

In order to solve θa1 + θa2 and θa1 , the following two equations are obtained by using
Euler formula and taking variable substitutions θ1 = θa1 + θa2 and θ2 = θa1 ,

A1 sin θ1 + B1 cos θ1 + C sin θ2 = D1, (24)

A2 sin θ1 + B2 cos θ1 + C cos θ2 = D2, (25)

where

A1 = (sa × (ra3 − ra2))
T(sa × (ra2 − ra1)), B1 =

(
ra3 − ra2 − rT

a3
sasa + rT

a2
sasa

)T
(sa × (ra2 − ra1)),

C =
∣∣∣ra2 − ra1 − rT

a2
sasa + rT

a1
sasa

∣∣∣2,

D1 =

(
t +

(
ra3 − ra1 − rT

a3
sasa + rT

a1
sasa

)
− exp((θa1 + θa2 + θa3)s̃a)

(
exp

(
θb1 s̃b

)
− E3

)(
rb2 − rb1

) )T

(sa × (ra2 − ra1)),

A2 = (sa × (ra3 − ra2))
T
(

ra2 − ra1 − rT
a2

sasa + rT
a1

sasa

)
,

B2 =
(

ra3 − ra2 − rT
a3

sasa + rT
a2

sasa

)T(
ra2 − ra1 − rT

a2
sasa + rT

a1
sasa

)



Machines 2024, 12, 658 9 of 13

D2 =

(
t +

(
ra3 − ra1 − rT

a3
sasa + rT

a1
sasa

)
− exp((θa1 + θa2 + θa3)s̃a)

(
exp

(
θb1 s̃b

)
− E3

)(
rb2 − rb1

) )T(
ra2 − ra1 − rT

a2
sasa + rT

a1
sasa

)
Combining these two equations and using the half-tangent formula leads to a quartic

equation of tan θ1
2 as follows:(

B2
1 + B2

2 + D2
1 + D2

2 − C2 + 2B1D1 + 2B2D2
)

tan4 θ1
2

−4(A1B1 + A2B2 + A1D1 + A2D2) tan3 θ1
2

+2
(
2A2

1 + 2A2
2 + D2

1 + D2
2 − C2 − B2

1 − B2
2
)

tan2 θ1
2

+4(A1B1 + A2B2 − A1D1 − A2D2) tan θ1
2

+
(

B2
1 + B2

2 + D2
1 + D2

2 − C2 − 2B1D1 − 2B2D2
)
= 0

(26)

As Ai, Bi, C, Di (i = 1, 2) are known quantities, θa1 + θa2 can be solved using the quartic
formula. Here, we do not list the detailed results due to space limitations. Substituting the
analytical solution of θa1 + θa2 into Equations (24) and (25) leads to the solution of θa1 as
follows:

θa1 = arctan2

(
D1
C − A1

C sin(θa1 + θa2)−
B1
C cos(θa1 + θa2),

D2
C − A2

C sin(θa1 + θa2)−
B2
C cos(θa1 + θa2)

)
(27)

Consequently, using the displacement model based upon finite screw and the proce-
dures in Section 3, the forward and inverse kinematics of the two SRs are all solved, which
shows the validity of the proposed new method.

5. Matlab Simulation

Using finite screw as mathematical tool, the displacement models of P1P2P3RaRb
and RaRaRaRbRb robots are easily formulated, and the solutions for forward and inverse
kinematics of these two SRs are systematically derived in an analytical manner. In this
section, the obtained analytical solutions will be verified through Matlab simulation, which
leads to the correctness of the proposed method.

5.1. P1P2P3RaRb

As shown in Figure 2, P1P2P3RaRb is the basic and simplest three-translational and
two-rotational SR. Using Matlab software R2023b, the inverse kinematic solutions of the
five joint parameters obtained from the derivations in Section 4.1 are programmed. We
arbitrarily set the values of the unit vectors and position vectors of its joints and the pose of
end-effector as follows:

sT
1 =

(
1 0 0

)T, sT
2 =

(
0 1 0

)T, sT
3 =

(
0 0 1

)T,

sT
a =

(√
3

3

√
3

3

√
3

3

)T
, rT

a =
(
1 1 2

)T, sT
b =

(√
2

2 0
√

2
2

)T
,

rT
b =

(
0 0 4

)T,

sT
SR =

(√
2

2
1
2

1
2

)T
, rT

SR =
(
0 0 3

)T, θSR = 2.5717, τSR = 1

The joint parameters can be automatically solved in Matlab as follows:

τ1 = −1.3719, τ2 = 0.5791, τ3 = 2.1185, θa = 2.0944, θb = 0.5698

Substituting these joint parameters into the forward kinematic program shows that
the resultant pose is identical to the given pose (sSR, rSR, θSR, τSR). Hence, the analytical
solutions in Section 4.1 are verified to be correct.
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5.2. RaRaRaRbRb

RaRaRaRbRb is a rather complicated SR, as shown in Figure 3. The inverse kinematic
solutions of the five joint parameters obtained from the derivations in Section 4.2 are
programmed in Matlab software. Similarly, the unit vectors and position vectors of its
joints and the pose of end-effector are arbitrarily given values, as follows:

sT
a =

(√
3

3

√
3

3

√
3

3

)T
, rT

a1
=
(
1 1 1

)T, rT
a2
=
(
1 1 2

)T, rT
a3
=
(
1 1 3

)T

sT
b =

(√
2

2 0
√

2
2

)T
, rT

b1
=
(
0 0 3

)T, rT
b2
=
(
0 0 4

)T

sT
SR =

(√
2

2
1
2

1
2

)T
, rT

SR =
(
2 1 2.2

)T, θSR = 2.5717, τSR = 1

Matlab can automatically calculate the two sets of joint parameters as

θa1 = 2.4810, θa2 = −0.6874, θa3 = 0.3007, θb1 = −0.6281, θb2 = 1.1980

and
θa1 = 1.7936, θa2 = 0.6874, θa3 = −0.3867, θb1 = −0.6281, θb2 = 1.1980

Substituting each set of these joint parameters into the forward kinematic program
can verify the correctness of the analytical solutions in Section 4.2.

In fact, numerous groups of values of the joint axes and poses of the end-effector
are attempted in the inverse kinematic programs of both P1P2P3RaRb and RaRaRaRbRb
robots. All the solved joint parameters lead to the given pose in the forward kinematic
program. In this way, the correctness of the proposed finite screw method is verified
through Matlab simulation. Here, we just list one group of values and solutions for each
robot for an example.

6. Discussions and Conclusions

Employing finite screw as mathematical tool, this paper presents a new method for
displacement modelling. Forward kinematics of the SR can be directly carried out using the
formulated displacement equation. Meanwhile, the process for inverse kinematics is also
given. Two SRs with three translations and two rotations are given as examples to show
the validity of the proposed method. However, it should be pointed out that the detailed
computations on solving the inverse kinematics of SRs with more than two rotations are
still under investigations by the authors.

The following conclusions are drawn:
(1) The displacement equation of SR is algebraically formulated through describing

displacements generated by SR and its joints employing finite screws;
(2) The procedures for forward and inverse kinematics by analytically solving the

formulated displacement equation are discussed in detail;
(3) P1P2P3RaRb and RaRaRaRbRb robots are taken as examples to illustrate the pro-

posed finite screw method. The correctness of the obtained solutions is verified by
Matlab simulation.

This paper provides a new idea and method for displacement modelling and kinemat-
ics of SRs. The proposed method for displacement modelling of SR offers a novel approach,
which provides a more accurate and efficient way for displacement modelling, which
may have significant implications for various applications. Our study mainly focuses on
theoretical analysis and simulation. Though we have demonstrated the effectiveness of
our method in these aspects, further experimental validation is needed to fully assess its
performance in practical applications.
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