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Abstract: Board games like chess serve as an excellent testbed for human-robot interactions, where
advancements can lead to broader human-robot cooperation systems. This paper presents a chess-
playing robotic system to demonstrate controlled pick and place operations using a 3-DoF manipulator
with image and speech recognition. The system identifies chessboard square coordinates through
image processing and centroid detection before mapping them onto the physical board. User voice
input is processed and transcribed into a string from which the system extracts the current and
destination locations of a chess piece with a word error rate of 8.64%. Using an inverse-kinematics
algorithm, the system calculates the joint angles needed to position the end effector at the desired
coordinates actuating the robot. The developed system was evaluated experimentally on the 3-DoF
manipulator with a voice command used to direct the robot movement in grasping a chess piece.
Consideration was made involving both the own pieces as well as capturing the opponent’s pieces
and moving the captured piece outside the board workspace.

Keywords: image processing; pattern recognition; robotic control; human-robot interaction

1. Introduction

Human-robot interaction is one of many applications seeking to leverage the recent
advances in technology to realize the operation of robots in a shared space with people.
Based on the review in [1], human-robot interaction is enhanced through the combination
of modalities such as voice, vision [2], text, touch, and bio-signals [3] as methods of
intercommunication. Some of the collaboration efforts have been directed towards elderly
care, addressing the challenges of aging populations [4,5], in addition to physically assistive
robots [6]. Board games, such as chess and checkers, provide a rich domain for researching
human-robot cooperation due to their structured yet flexible nature [7]. Chess, a two-player
strategy board game played on a checkered board in an 8 x 8 grid, serves as an excellent
testbed for developing general human-robot cooperation systems requiring perception,
reasoning, and manipulation of physical pieces. It is characterized by turn-taking in
moving pieces to either an unoccupied square or one occupied by an opponent’s piece. The
defined and easy to understand rules make chess an appealing choice for incorporating
robotic systems. Progress made on the incorporation of robots in board games can in turn
pave the way for more general human-robot cooperation systems, not only in industrial
applications but also in health, entertainment, and educational fields [8]. Chess is also one
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of the few games and sports allowing everyone, including disabled individuals, to compete
equally under the same standards, fostering an inclusive environment where ratings and
international titles are awarded similarly.

The essential requirements to develop a robotic system for board games can be sum-
marized as recognizing the board state, deciding the optimal move, and controlling the
robot to execute the desired move [9]. In this research, speech recognition was considered
as one of the methods that can be used to address the challenges faced in the inclusion
of marginalized individuals with physical disabilities, by using a voice command from a
human player to decide the desired move for a robot system. A voice command-based
robotic system can prove to be useful for individuals with physical impairments such as
amputated arms, motor disabilities making hand—eye coordination difficult, and neuro-
logical disorders such as cerebral palsy. While the availability of virtual chess playing
platforms through computer games partially addresses some of the challenges such as
remote playing, a higher level of involvement and corresponding enjoyment is observed to
arise from face to face playing with a human or with a robot [10]. Physical embodiment is
therefore a key factor in chess playing and one which is also promoted by using an assistive
robot system in this research.

Voice command-based robot execution provides an inclusive and accessible chess-
playing experience and aims to further propose potential solutions for human equality
while at the same time advancing the efforts towards human-robot collaboration, furthering
the recommendations presented in [11]. The system is directed at the aforementioned
marginalized group affected by motor disabilities such as cerebral palsy, the most common
motor disability in childhood [12,13]. The inclusion of physically disabled individuals in
various aspects of life is a significant research focus [14], often encapsulated by the phrase
“physical disability is not inability”. Advances in technology, such as self-driving cars and
gesture-controlled appliances, have improved accessibility and this work aims to make a
step towards this end.

In this research, a low-cost semi-autonomous chess-playing robot prototype was
implemented. The system incorporated a 3-DoF robot manipulator, image segmentation,
and speech recognition. The system receives a voice command containing the location of
the desired chess piece location from the chess player, which is then processed through
the Microsoft Azure Speech Services API. As an intermediate step, color-based image
segmentation translates the command-derived coordinates into the detected coordinates
on the robot workspace, allowing individuals with motor disabilities to interact with
the system seamlessly. The output to the system is the piece movement by the robot
manipulator, with the manipulator functioning as an assistive grasping system of the chess
pieces. Integration of speech and image recognition ensures a smooth, accessible human-—
robot interaction providing for physical presence, which is lacking in normal computer
chess played against a computer, a contributing factor to the enjoyment of the game in
addition to cognitive benefits.

The research work is organized in four sections, as follows: Section 2 looks at the
related works. Section 3 describes the architecture of the robot used, methods considered in
robot kinematics, image processing, and speech recognition, as well as the specifications of
the software and hardware in the experimental setup. One of the main differences from the
works presented in Section 2 is the inclusion of speech processing in the implementation
scheme, leading to a human-assistive robot applied in board games, while reducing the
complexity and increased computational power associated with including a chess engine
for autonomous execution. Section 4 describes the results and discussion, with Section 5
presenting the conclusions based on the research work.

2. Related Works

Modern robots, equipped with sensors mimicking human sensory functions, have
revolutionized the manufacturing industry and extended their applications to tasks such as
welding, painting, drilling, and complex pick and place operations. The applications range
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from performing repetitive tasks, working in hazardous environments, and in numerous
industrial operations [15-17]. A significant advancement in this field is machine vision,
enabling robots to gather environmental data by integrating computer vision and thus en-
hancing their flexibility and adaptability [18]. With increasing computer processing power
and the affordability of advanced motors and sensory equipment, autonomous robots are
now poised to transition from industrial settings to household tasks and entertainment.

Remarkable advancements that have been made in the application of robotics in board
games are the coupling of robotic arms with other technologies, such as speech recognition
and image processing. Most automated chess-playing systems are divided into three basic
building blocks: the input, the processor, and the output (which is the move to be made).
One of the notable types of research works looking at the automation of chess playing
includes the use of Hall sensors as the input, an Arduino Nano as the microcontroller,
and a custom designed Printed Circuit board for the detection of chess positions [19].
The limitation to this is the use of a custom, expensive chess board and pieces, where it
becomes a challenge since most chess players have their own boards. Castling moves and
the allowed en passant moves are also not executable, and therefore limiting gameplay.

In [20] a simple autonomous robotic manipulator for playing chess against any oppo-
nent in real time was presented. Image processing using the OpenCYV library determined
the current orientation of the board given the previous orientations. The image processing
algorithm used the Shi-Tomasi corner detection algorithm to detect the four corners of
the chessboard and the Canny edge detection algorithm to detect the edges of the chess
pieces. The counter move was determined using the GNU Chess engine free software
and implemented using a robot arm. Gambit [7], an autonomous chess-playing robotic
system, is another noteworthy application of robotics in board games. The Gambit system
consists of a low-cost Kinetic-style visual sensor and a custom 6-DoF robot manipulator.
To recognize the chess pieces on the board, Gambit utilizes machine learning—in partic-
ular, Support Vector Machines (SVMs). Gambit then utilizes the difference between two
consecutive board game states to determine the move made by an opponent alongside the
GNU engine. Another approach uses the KUKA KR6 R900 sixx (Agilus),a robot made in
Augsburg, Germany and classified as one of the fastest industrial robots worldwide [21].
The system is integrated with a PLC-controlled conveyor belt and a vacuum cup with a
venturi nozzle designed for sucking and picking up the custom chess pieces.

In realizing controlled robot motion, motion planning is necessary to ensure no colli-
sions or singularities occur during motion execution. Motion planning is defined as the
process of generating a sequence of intermediate points to be followed by a manipulator as
it moves from an initial point to a desired goal point whilst satisfying a set of boundary
conditions. The sequence of intermediate points is referred to as a trajectory. Some of the
techniques used in generating a trajectory are outlined in [22,23], with quadrinomial and
quintic polynomials used in [24] for the trajectory planning of a biped robot simulating the
human gait. A quintic polynomial was preferred in producing a trajectory for this research
since it gives a simple solution, satisfying boundary conditions on velocity, acceleration,
and position through successive differentiation.

In presenting the application of an intelligent and collaborative robotic system for
playing checkers, ref. [9] highlights three essential requirements in developing a robotic
system for playing checkers or chess; namely, board recognition, decision on optimal move,
and robot-controlled execution. Chess and checkers are highly correlated, with both being
played on an 8 x 8 square board, and the main difference being in the rules of play and
the pieces used in gameplay. The implementation of the robot system considers a Franka
Emika robot with seven degrees of freedom, utilizing a decision-making checkers algorithm
in combination with computer vision to determine the board state. The computer vision
algorithm requires the user to manually point a camera to the position of the board corners
in the image in obtaining the board image. Any imprecision in positioning the camera is
corrected due to the regularity in the squares on a board. The inclusion of an Al-based game
engine determines the best move for the robot to play, based on the Italian checkers rules.
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The complete system can be used to play against a human opponent, as demonstrated in
the research.

Some of the works preceding [9] and related to the implementation of this current
proposal include [25], where a humanoid robot plays chess using visual control. The color-
space mapping is based on OpenCV and a Harris corner detection algorithm to identify the
corners of the square boxes. The humanoid robot employed in this research is the NAO
robot by Softbank Japan, an autonomous but expensive robot selling at more than $12,000
as of writing this paper. In [26] an autonomous robot system is implemented in playing
checkers using image processing to learn the game state. This system uses a modified
electromagnetic system to realize the gameplay. The implementation uses materials that
can easily be 3D-printed, therefore making it cheaper and more accessible. However, the
system required manually inputting the coordinates of the destination point, with image
processing only detecting the current board state.

In realizing the game state of board games, the utilization of various image pro-
cessing techniques, ranging from corner detection algorithms to color space mapping as
in [9,20,25,26], highlighted the importance of image processing. In [27], an image recog-
nition method based on convolutional neural networks is presented. The research then
develops a dataset and a transfer learning method to allow for the portability of the devel-
oped system to a new board by requiring taking only two images of the new board.

Human-robot collaboration is a landmark research area that requires care in the im-
plementation due to the possibility to inflict physical damage to people in the surrounding
workspace. As a result, in proactive human-robot collaboration work, ref. [8] presents
perspectives that should be considered towards human-centric development. These include
mutual cognition of the environment, predictability, and self-organizing capabilities where
techniques for adaptiveness, perception, and collision avoidance are presented. Use cases
of robots in human-robot collaboration for elderly care and as physically assistive robots in
feeding a person are presented in [4] and [6], respectively. Speech processing integration
stands out as being useful in the development of assistive robots. The authors of [11]
investigated the key engineering advances needed to realize effective integration of speech
processing in robotics. One of the factors is the need for real-time processing in ensuring
effective interaction between robots and humans.

Table 1 briefly shows the recent developments integrating various robotics systems to
checkers or chess, furthering the approach used in [9]. A comparison of these works with
this current proposal in terms of the cost effectiveness and the application scope is outlined.

Table 1. Review of recent developments in robotic systems for playing board games.

Reference—(Year)

Robot Cost

Game Estimation

Gameplay

Application

[25]—(2022)

[26]—(2023)

[9]—(2024)

Proposed research

Humanoid robot >$12,000

Gantry robot Low-cost frame

7-DoF Franka

Emika robot >$5000
3-DoF
MeArm robot <$500

Computer vision
based on RGB color
space and
corner detection
Computer vision
based on color space
and keyboard input

by player
Color-based
computer vision

Color-based image
processing, speech
recognition

Manual control of
the robot

Game engine with
manual input of
destination
coordinates
Checkers game
engine for
autonomous play
Voice command
based on a
human player

Research on
humanoid robots
in chess playing

Cartesian robot
system in checkers

Collaborative
robot for
playing checkers
Physically assistive
robot for
playing chess

3. Robot Architecture and Methods

The complete system is a pick and place control, based on image and pattern recog-
nition, for a 3-DoF robot manipulator. This pick and place operation is the foundation
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upon which the chess-playing robot prototype, which uses voice input to locate the source
and destination of the chess pieces, is implemented. The flowchart showing the general
overview of the execution base and interdependence of the various modules considered in

the methods is shown in Figure 1.

Image Processing

Image of Board and
Board dimensions
¥ Image read to MATLAB

Mapping on a Virtual
Board

Connected Component Labeling

Board with identified
square boxes

Centroid Detection
Fully identified virtual

Input Voice Command

A

Saved Speech Command

Speech to Text
Transcription

board

.| Workspace mapping based on voice

command and virtual Board

Desired Coordinates in

Forward Kinematics
Feedback

Robot Angular Position

the x-y plane

A

Arduino Uno Serial
Communication

Robot Manipulator

Feedback ¢

Figure 1. Algorithm for the general execution sequence based on the methodology.

The hardware and software tools used in realizing the general execution and develop-

Execution

\
Pick and Place System

based on Image Processing
and Speech Recognition

ing the complete system are shown in Table 2.

Table 2. Software and hardware tools used in proposed system.

Software

Hardware

Arduino IDE 1.8.12

MATLAB R2019b
MATLAB Image Processing Toolbox
MATLAB Speech Processing Toolbox
MATLAB Robotics Toolbox
Microsoft Azure Speech to Text Toolbox

MeArm 3-DoF robot (https:/ /shop.mearm.com/
(accessed on 25 June 2024))
Windows 10 PC—Core i3 with mic and speaker

Arduino Uno

20 x 20 cm wooden chess board

| MATLAB Audio recorder

1 Microsoft Speech to Text AP

Command verification and
l coordinates extraction

wTra]ec‘cory generation

Inverse Kinematics Model
y

Joint angles sent to robot
v


https://shop.mearm.com/
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3.1. Robot Arm and Kinematics

The main actuator of the pick and place-based chess-playing robot prototype was
the MeArm, as shown in Figure 2, a 3-DoF low-cost open-source robot arm that uses a
“double parallelogram” mechanism of operation. The parallel structure allows the servos
to be mounted on the base while still allowing them to be moved independently. The
MeArm had four SG90 micro servos, each having a weight of 9 g, rotation of 0°~180°, and a
torque of 1.3 kg/cm. It is worth noting that this task could be completed by a large variety
of robots, including those described previously [7,20,28]. The requirements needed for a
robotic arm to be viable in the domain of playing board games are related to the workspace,
end effector type, accuracy, and cost.

Figure 2. MeArm robot, as applied to pick and place in chess playing.

The workspace of the robotic arm should be such that it can reach any target on
the chess board and extend outside to remove captured pieces. The end effector should
be able to effectively pick and place the pieces within the board grids or squares while
realizing a good enough accuracy. The cost of the robot arm should not be too expen-
sive, as the solution should be economically manageable, ensuring inclusivity for the
physically challenged.

In achieving control of the 3-DoF robot manipulator with 4 servo motors, including
the gripper opening and closing servo, an Arduino Uno was used as the microcontroller,
through which commands for actuation could be sent to the manipulator due to its sim-
plicity and execution efficiency. The Arduino was connected to MATLAB through serial
communication, allowing data transfer between the two interfaces. MATLAB was used
as the interface on which the robot-based control algorithm was designed, due to its high
computational capability. Kinematics, trajectory generation, speech, and image processing
phases of the project were implemented in the MATLAB environment. The Arduino input
data comprised of joint angles based on the inverse kinematics calculation, which then led
to servo motor rotation.

Kinematics is the science of motion that treats the subject without regard to the forces
that cause it. A manipulator may thus be thought of as a set of bodies (links) connected in a
chain by joints. Forward kinematics (FK) involves computing the position and orientation
of the end effector given a set of joint angles. The forward kinematics were performed in
accordance with the Denavit-Hartenberg (D-H) convention. By considering the physical
architecture and motion of the 3-DoF MeArm robot, the relations between the robot base
frame in the workspace, and the moving frame at the joint locations, the D-H parameters
can be calculated, and are represented as in Table 3.
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Table 3. D-H parameter representation for the 3-DoF MeArm robot.

Link Joint Angle, 0 Link Length, a (cm) Twist, & Offset, d (cm)
1 01 0 90° 5.5
2 0, 8 0 0
3 03 12 0 0

Each homogeneous transformation A; is represented as a product of four basic trans-
formations, which evaluates to a 4 x 4 matrix that is used to transform a point from frame
n to n-1 such that:

A;j = Rot,g;Trans, 4 Transy,q; Roty q, (1)

The homogenous transformation matrix of each link was then obtained as:

cos(61) 0  sin(6y) 0
| sin(f1) 0 —cos(f1) O
A= 0 1 0 —dy @)
0 0 0 1
cos(6p) —sin(6,) 0 apcos(6y)
| sin(B2) cos(B) 0 apsin(6;)
Az = 0 0 1 0 ©)
0 0 0 1
cos(f3) —sin(f3) 0 azcos(63)
sin(f3) cos(63) 0 azsin(f3)
A= 0 1 0 @
0 0 0 1

The total homogenous transformation is obtained as the product of the individual
link transformations, from which the cartesian coordinates representing the end effector
positions are determined. This total transformation is represented as:

AT=A1><A2><A3 (5)
cos(0, + 03)cos(6y) —sin(B, + 63)cos(6)  sin(6q) 40qcos(67)
Ao — cos(fy + 63)sin(61) —sin(6 + 603)sin(6;) —cos(6;) 407 sin(61) 6)
r= Sin(@z + 93) COS(92 + 93) 0 —% +12 sin(@z + 93) + 8511’1(92)
0 0 0 1

The position of the end effector (x, y, z) could be determined based on the total
homogeneous transformation (6) as:

x (Bcos (B + 63 ) + 2cos(6, ))4 cos(61)
(y) = | (8cos (62 + 63 ) + 2cos(6; ))4sin(6; ) 7)
z —4 +125in(6; + 63) + 8sin(6,)

where 6;—1 5 3 is the joint angle with relation to links 1, 2, and 3 respectively.

The FK equation was helpful in determining the position of the end effector given
a set of joint angles; however, in the given research problem, verifying the correctness of
the forward kinematics was conducted through physical confirmation of the end effector
position. The process in the verification included actuating the robot based on desired input
angles and physically measuring the end effector position relative to the base frame. The
FK was then used to mathematically determine the end effector positions corresponding to
these input angles. A comparison of the two methods was conducted and equivalent results
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were obtained. In the complete pick and place system, forward kinematics were used as
feedback mechanism following the motion of the robot based on the inverse kinematics.

Inverse kinematics involves computing the joint angles given the position and ori-
entation of the end effector. Inverse kinematics were the most suitable control method,
since for most pick and place applications, the desired end effector position is the known
variable, while joint angles are to be determined. In the implementation of the research,
inverse kinematics involved determining the x-y coordinates of a chess piece located on a
chess square, translating those positions into joint angles, and then sending those angles
to the manipulator servos to move the robot arm to that desired position. In determining
the inverse kinematics, a geometric approach was used to decompose the spatial geometry
into several plane-geometry problems including the sine rule and the cosine rule, as shown
in Figure 3.

z
\ N
6@”’,% .
S ~2
Q;A'-’ ~\g \\\P‘P{,}
' 3 ENE)
a ”/’ i
-7 !
-7 1
JPtags |
=" h s
B :
Pras i
b\ 1
A 1
(-0, \ @ !
r x-y plane
(@) (b)

Figure 3. Inverse kinematics based joint angle determination: (a) determining angle 6;; (b) determin-
ing angles 6, and 0.

The angle 6; was determined by considering the base servo rotation. The triangle x, y,
r formed at the base as shown in Figure 3a allows 0; to be calculated, using the arctangent
as:
_ -1(Y
b = Tan"" (<) ®)

The hypotenuse r, connecting x and y was obtained using the Pythagoras theorem as:

r=4/x2+y>2 9)

The angle 0, formed between the shoulder and the arm was obtained by consider-
ing the plane formed by the second and third link, as shown in Figure 3b. Angle 0, is
responsible for the horizontal movement of the end effector. In this plane, s is the difference
between z (the distance of the end effector from the base) and d (the offset of the shoulder
from the base). Angle 6, can thus be calculated as the sum of angles « and 5, and « can be
found using the arctangent by considering the right triangle formed by s, h, and r.

18 _1( __azsin(b3)
62 = tan (r) +tan (az + a3 cos(603) (19



Machines 2024, 12, 665

90f19

The angle 03, made by the forearm, was also obtained by considering the plane formed
by the second and third link, as shown in Figure 3b. Angle 63 is responsible for the vertical
movement of the end effector.

2 2 2 .2 2
93:C05_1<x + 1% + 52 — % — a33 ) an
202&3

Any position within the reachable workspace of the manipulator can ideally be at-
tained by calculating the joint angles 61, 65, and 63. Angle 6; determines the length of the
arc made by the shoulder, angle 6, determines how much the end effector moves in the
forward and backward direction, and angle 83 determines the height of the end effector
from the base. Once the servo angles 61, 6;, and 3 were determined from the inverse
kinematics, they were later fed into the forward kinematics equation as part of feedback
mechanism, to verify if the manipulator had moved to the desired coordinates.

From inverse kinematics, the initial and final motor angles responsible for orienting
our manipulator as desired were obtained. However, for the purposes of control, there arose
the need to generate a continuous time-varying pose that moves smoothly in translation
and rotation over the duration of motion execution. Smoothness in this context alludes to
the fact that the trajectory’s first few derivatives are continuous. Therefore, we define a
trajectory over the execution period for the manipulator, spanning the range between the
initial and final angles.

To generate a trajectory, a quintic (fifth order) polynomial commonly used in motion
planning problems was used to give solutions satisfying the temporal constraints on
position, velocity, and acceleration [16].

The quintic polynomial used is given as:

S(t) = A> + Bt* + C£* + D + Et + F (12)

where: 0 <t <T.

These are the initial and final positions, (S(t = 0)) and (S(t = T)), respectively, of the
motor angles being defined as the boundary conditions. The equations for the angular
velocity and angular acceleration in determining the trajectory generation are as in (13).

S(t) = 5At* +4Bt® + 3Ct2 + 2Dt + E 13)
S(t) = 20At + 12Bt? + 6Ct + 2D

The boundary conditions for the first derivative, S(t), and second derivative, S(t),
were set to the angular velocity value which were constant and zero, respectively, in
obtaining the coefficients of A, B, C, and D. Evaluation was then conducted at t = 0 and
t = T. This evaluation yielded the six trajectory governing equations written in matrix
form as:

S0 0 0 0 0 0 171[A
St ™ T T8 T2 T 1||B
So 0 0 0 0 1 o||C
Sr| ~ | 574 413 372 2T 1 0| |D (14)
S0 0 0 0 2 0 O||E
8 20T* 12T 6T 2 0 O] LF

The resultant matrix was a square matrix and the coefficients were obtained by making
the coefficient vectors (A, B, C, D, E, F) the subject of the formula. These foundational
principles of the trajectory generation algorithm discussed above were realized by utilizing
the MATLAB robotics toolbox by Peter Corke. The trajectory was used in obtaining a
set of intermediate angles between the initial and final angle positions for three of the
servo motors, excluding the gripper servo motor. This was used as the path for the robot
motion where, after completion of execution, feedback depicting the actual manipulator
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movements during the execution cycle was sent back from the Arduino microcontroller
to MATLAB.

3.2. Image Processing

Image processing was implemented to make the robot adaptable to various kinds of
chess boards by mapping out the x-y coordinates of the board. The approach used in this
research only required an image of the checkerboard and the real dimensions (length and
width) of the chessboard. A virtual board created in MATLAB sufficed in mapping out the
real x-y coordinates of the board, thus eliminating the need for a camera in real-time as
the focus was not on tracking the game state. At a high-level overview, the algorithm was
tasked with detecting the white squares and then determining their centroid coordinates,
complementing the image to detect the black squares, and then determining their centroid
coordinates, rearranging the coordinate values to match the checkerboard image, mapping
the pixel coordinates to the board coordinates, and then assigning a name to each individual
square. The key features of this algorithm are connected component labeling, centroid
extraction, and pixel translation to x-y cm values.

Connected component labeling, CCL, is an algorithmic application of graph theory,
where subsets of connected components are uniquely labeled based on a given heuristic.
CCL is used in computer vision to detect connected regions in binary digital images with
black equal to pixel zero and white equal to 255. A 640 x 640 pixel checkerboard served
as the start of the image processing task. The checkerboard consisted of an 8 x 8 square
binary image with each side of the square having 80 pixels, and with clear and distinct color
segmentation making it easier to detect the individual squares in subsequent operations.
CCL uses a 4-connected component for binary images to detect connected pixels [29]. Two
pixels were considered as connected if their edges touch, and are part of the same object
if they are connected along both the vertical and horizontal directions. In this research
problem, CCL was used to identify the individual checkerboard squares by using a flood-fill
algorithm to label all the pixels in the connected component containing an unlabeled pixel.
This was first conducted for the white squares and then the black squares by complementing
the initially detected white squares. After this process, the 64 successfully detected and
extracted squares were notated by a unique coordinate pair consisting of a letter and a
number based on international chess notations. The horizontal squares (files) were between
the letters ‘A’ and “"H’ and the vertical squares (ranks) from ‘1’ to ‘8. All the squares on
the chess board could then be identified, and actuation carried out based on the voice
command. The overview of the image processing process is presented in Figure 4.

3.3. Speech Processing

The final objective for the speech processing system was to achieve the transfer of a
voice input by the human player into specific coordinates on the board, which would then
be mapped onto the manipulator workspace, as in image processing. The MeArm robot
would then execute the movement of the piece following the calculation of the joint angles
from the inverse kinematics. The computer microphone was used in capturing the voice
command by the user, utilizing the MATLAB-based “audio recorder” object at a sampling
frequency of 16 kHz. The input command was passed onto the speech to text translation.
The translation of the captured voice input into text was conducted using a speech to text
package on MATLAB, speech2text. This package provides the ability to use third party
APIs to perform the speech to text transcription. This package is free and compatible with
MATLAB once the package contents are added to the MATLAB path during setup.
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Creating a virtual Detecting white boxes Complementing the
checkerboard (255 px) using CCL image

Rearranging the ) Detecting white boxes
centroid values to Centrqld (previous black boxes)
match the image extraction using CCL

Assigning centroid
values to their
respective board
name ie A1-H8

Mapping pixel
centroid values to real
word x,y values in cm

Figure 4. Block diagram for the image processing task.

For this application, the Microsoft Azure Speech Services API was used while utilizing
the credits given per month for a student’s account, for a high accuracy model with
a low word error rate. The student account was free for 5 h per month of speech to
text transcription, which was adequate given the brevity of the input commands with a
maximum command time of 5 s. For the transcription, a speech to text resource group was
created in the Microsoft Speech to Text cognitive service [30]. The API was initialized and
verified by using subscription keys. On MATLAB R2019b, a speech client was created, and
the speech object called, resulting in a http request that, on being successful, had an output
of the translated transcription. The process is represented in Figure 5.

——— \

WEB API CALL — Microsoft
dEES
capture — Toxt

Y J U

MATLAB
Transcript TimeStamps callback
Output

"Al and B2 capture." 0.3 4,18

Figure 5. Speech to text transcription based on MATLAB API call.

Pattern recognition was used in constituting the voice input command where either a
three-word or four-word execution sentence based on the 8 x 8 chess board and on whether
a ‘normal’ or ‘opponent capture’ chess move was desired. In characterizing the desired
pick and place operation, a ‘normal’ move contained the initial chess piece location and
followed by the desired location of the piece as in “B3 and C4”. The order for the ‘opponent
piece capture’ command move was the same as the ‘normal” move, with the word capture
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appended after the coordinate containing the piece to capture, as in: “B3 and C4 capture”,
where C4 in this case is the coordinate for the piece to capture. The command format for
the letters could either be said using the letters ‘A to H’ or using the corresponding NATO
phonetic alphabets. The transcribed command in the format above was finally mapped
onto the virtual chess board pixel locations by using the centroid determined in the image
processing section.

3.4. Robot Manipulator Execution

From the image processing and speech processing, the current and final piece locations
were obtained on the two-dimensional virtual board via the pixel locations obtained from
the images of the board, before conversion into the equivalent workspace coordinates
corresponding to the locations of the chess pieces on the board. These locations mark the
end effector position on the board, with the inverse kinematics described above being used
to determine the joint angles necessary to actuate the robot. On completion of the joint
motion, the gripper opens to pick up the chess piece in the current piece location, closes
upon picking it, and moves it to the desired piece location. In the case of ‘opponent piece
capture’, the execution is conducted in four steps. The first step is capturing the opponent’s
piece, which is conducted by having the first end effector position being the desired piece
location. The opponent’s piece is picked followed by placing it outside the board on one
side as the second step. The third and fourth steps, same as the ‘normal’ piece motion,
involve picking the ‘own’ piece from the current location to the desired location. The
manipulator then retreats to its home position awaiting further commands. The execution
of these steps is iterated each time the player voices a command to the manipulator in the
required order, hence leading to a pick and place motion of the manipulator, akin to that
of a human player’s hand. Figure 6 shows the physical representation of the robot using
a pre-defined "home’ position, representing the origin of the manipulator execution, and
with the gripper open at one of the identified square boxes.

Figure 6. Robot orientation with respect to the chess board: (a) at the home position; (b) at the chess
board square box D3.

4. Results and Discussion

As evidenced by the literature review, research in robotics applied to board games,
particularly those requiring perception and manipulation, serves as a valuable testbed for
advancing real-world robot adoption and enhancing human-robot interaction.

The ability to effectively calculate forward kinematics, inverse kinematics, trace a tra-
jectory, and ensure effective human-robot interaction is key to the success of incorporating
robots in board games. To this end, this research presents a low-cost 3-DoF robot arm
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based on a pick and place operation as applied to the development of a chess-playing robot
prototype.

The inclusion of trajectory generation considering the quintic 5th order polynomial
ensured a smooth and controlled motion of the robot. This is achieved by interpolating
between the initial and final coordinate points. Figure 7 shows the joint angle variation
obtained for a given set of coordinates, with the ‘ideal’ representing the trajectory generated
path based on the quintic polynomial, while the ‘actual’ shows the output based on the
real-time motion of the robot.

140 T 140
Motor 1 - actual

Motor 2 - Actual
Motor 3 - Actual
Motor 1 - Ideal || 130
Motor 2 - Ideal
Motor 3 - Ideal

130 —

110 [~

Angle
=)
o

T

90

80 [~

B0 \ \ \ \ \ \ \ B0
0 2 4 6 8 10 12 14 16

Execution time
Figure 7. Comparison between actual and ideal trajectories based on a command sequence.

The sequence for the board positions considered in the trajectory generated in Figure 7
was:
Home position — C2 - F2 — E3 — F1 — C2 — Home position

In the sequence, the aim is to realize a set of joint angles that can be traced by the robot
arm. The quintic polynomial is used to interpolate for any two points in the sequence, such
as, in the first actuation step, the “Home position” being the initial position and “C2” the
final position. In the second actuation step, “C2” becomes the initial position and “F2” the
final position. The process is repeated until the sequence is completed.

The initial joint angles are obtained by using inverse kinematics to convert the posi-
tional coordinates on the board into joint angles. The execution path starts from a “Reset”
with the three servo motors having joint angles initialized to 90 degrees. The “Home
position” denotes a defined set of workspace coordinates representing the start and end
points for a complete sequence. Based on the execution sequence, the comparison show-
ing the ideal and actual variation of the angles presents the resemblance and correlation
between the ideal path based on ideal values against that of the actual execution by the
robot manipulator for the given trajectory path. The x-axis represents the actual time it
takes for the manipulator to complete the execution of a given x-y trajectory. The actual
manipulator trajectory represented the real-time position of each of the three motors, with
the differences observed between the smooth ideal and erratic actual curves being due to
servo motor limitations. This was because the SG90 servo motors are limited to a rotational
accuracy of 1 degree, resulting in the differences shown in Figure 7.



Machines 2024, 12, 665

14 of 19

Analysis based on the sequence above can be verified in Figure 7 by considering the
estimated time stamps in seconds based on the execution time, as follows:

The trajectory begins from the “Reset” position and proceeds to the “Home position”
at 2 s. This is followed by position “C2” at4.5s, “F2” at 6.5, “E3” at 8.5, “F1” at 10.5 s,
“C2” at around 12.5 s, and “Home position” as the last execution, ending at around 16 s.

The significance of trajectory generation is that it results in a smooth and consequently
more controlled robot motion between any two points, especially for longer displacements.
This is because it eliminates the jerky motion experienced when the distance between any
two joint angles is large, where the motor can overshoot due to inertial forces. Trajectory
generation is therefore crucial for achieving smooth and controlled robot motion, especially
for pick and place operations where precision is paramount.

From the trajectory data presented in Figure 7, it was possible to compare the actual
trajectory traced by the robot against the ideal trajectory generated by the quintic polyno-
mial. Forward kinematics were used in transforming the angles based on the trajectory into
end effector positions for comparison between the ideal and actual paths. The path traced
on the robot workspace and corresponding to the base frame’s Cartesian coordinates x and
y was obtained, as shown in Figure 8.

7

Direction of motion

|

Ideal path

—————  Actualpath

[

Resel
Positon |

XAxs

Figure 8. Real-time robot execution in the workspace based on a generated trajectory.

Figure 8 shows the “Ideal path” (red) which is determined as being the shortest path
between any two points, which, in the case of a two-dimensional workspace, is a line. The
arrows on the “Ideal path” curve denote the direction of movement of the robot motion
where, notably, the trajectory generation results in a continuous path from the start to the
end without any undesired discontinuity. The “Actual execution path” (blue) curve shows
the exact path followed by the end effector of the robot in real-time. This execution path
was determined by obtaining feedback from the Arduino to MATLAB and based on the
serial communication protocol. The servo reset position is a characteristic of the SG90 micro
servos, where whenever the Arduino restarts following the port opening on MATLAB, the
servo motors are initialized to 90 degrees.

While the correctness of the algorithm used in the system is demonstrated, in de-
veloping a real-life chess-playing system, it would be necessary to consider using higher
resolution motors to ensure a higher precision.
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In image processing, after each box was identified using connected component labeling,
the extraction of the centroid pixel coordinates of each detected box was conducted by
averaging the x-y coordinates of their pixels. All the detected boxes were then assigned a
different color for distinction. This is as shown in Figure 9.
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Figure 9. Detected centroids on grid with distinct colors and pixel locations: (a) for white squares;
(b) for black squares.

With all the boxes detected and their centroid pixel values known, the boxes could then
be named according to the algebraic notation. The algebraic notation is the standard method
for recording and describing the moves in a game of chess. A unique coordinate pair—a
letter and a number from “Al” to “H8” identifies each square of the chessboard. Based
on this convention, the boxes were named sequentially as the centroid coordinate values
increased from [40.5, 40.5] (A1) to [600.5, 600.5] (HS8), as shown in Figure 9. The centroid
pixels were then mapped and translated to their corresponding real-world x-y coordinates.
The image processing algorithm was therefore successful in achieving the specific objective
of mapping out the chessboard in terms of the real-world centroid coordinates of each
box. This served as a stepping stone for the subsequent modules of our research, such
as speech input. For instance, when a speech command “H3” is given, the box name is
already associated with specific coordinates and an inverse kinematics algorithm can then
be applied to generate servo angles that will move the arm to the desired box.

The correctness of the image processing step was verified by observing the centroid
locations based on the virtual board. This is due to the uniformity of the square boxes in the
board games, as presented in [27]. The determined centroids with the corresponding box
name could then be assigned to any board based on knowledge of the board dimensions,
which is the height and weight. Since the human player is also responsible for determining
the execution move, it is not necessary to monitor the game state in real-time, hence
minimizing the computational power.

The speech magnitude spectrum obtained before transcription for a sample audio
signal “Alpha 1 and Delta 4,” alternatively represented as “Al and D4”, is shown in
Figure 10. While Microsoft Azure Speech Services boast a high word error rate of around
5%, from the magnitude spectrum it is evident that it was necessary to properly articulate
the command distinctively, which is why having the option to use the NATO phonetic
alphabet was beneficial.
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Figure 10. Magnitude spectrum for the input voice command “Alpha 1 and Delta 4”.

The post-processing steps after the speech to text transcription in Figure 5, had two
major outcomes. The first outcome was to obtain the coordinates representing the start and
final destinations, and this was derived in text from the transcribed command statement.

The second outcome was to determine the execution sequence of the robot manipulator
based on the type of move, as applied in the chess application of pick and place. The type
of move could be either a normal move executed in two steps by moving the piece at start
position to the final coordinate position, or it could be a capture move as described in the
transcription above. The execution sequence of the capture move was conducted in four
steps, beginning with the picking of the opponent’s piece, placing it outside the board, and
then executing the normal two-step move sequence. As an example, the capture moves
could be broken down as in Table 4. The “OUT” coordinate was a value that is outside
the board workspace but within the robot workspace. The coordinates obtained from the
speech processing are then handed over to the image processing for mapping onto the
board space.

Table 4. Output coordinate sequence from transcription.

Sample Coordinate Sequence Considered in Transcription
Index 1 2 3 4
Coordinate sequence “B2” “out” “Al” “B2”

The verification for correctness in terms of the speech processing was a two-fold
process based on visual confirmation by the human player on the transcribed text, as well
as the program-based command check. The confirmation by the human player issuing the
command allowed for cancellation of a command based on issuing an incorrect command
or in case of a mispronunciation. The program-based error check was based on two options:
The first option was on whether the desired move was a ‘normal’ or ‘capture’ move. The
‘normal’ move had three keywords comprising the two coordinates connected by the ‘and’
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keyword. The capture move had the same order, with one additional keyword ‘capture’
appended. The verification was conducted by confirming the command size and presence
of keywords, in addition to being a coordinate existing in the workspace.

A word error rate of 8.64% was obtained in the experimental set up based on a sizeable
dataset. While this was a little higher than the proposed benchmark of 5%, it was still
within the 5-10% range considered as good quality [31] considering the three evaluation
categories: insertions, deletion, and substitution. Table 5 below represents an example of
the transcriptions containing the three categories considered in determining the WER:

Table 5. Transcriptions containing the three categories for word error rate.

Index Input Voice Command Transcription Output Category
1 Alpha 1 and Delta 4 “Al and D4.” Correct
2 Echo 2 and Charlie 3 “E2 and C3.” Correct
3 G2 and C3 “D2 and C3.” Substitution
4 G3 and A2 “G3 and A2 about.” Insertion
5 Charlie 2 and Echo 4 “C2 and echo.” Deletion

The independent development and verification of the image processing and speech
recognition modules, as described, in addition to the forward kinematics-based feedback
for verifying the inverse kinematics used in the pick and place, meant that a high certainty
in the performance of the pick and place was ensured and experimentally observed.

The developed system serves as a low-cost improvement to the approach presented
in [9], which used a game engine to autonomously play checkers. While G. Fabris et al.
in [9] considered developing a robot capable of autonomously playing checkers by inte-
grating image processing techniques with robotics, this research proposes a method to
realize a voice command control of robotics aimed at assistive works, in addition to imple-
menting image processing. Considering this proposal, the integration of image processing
and speech recognition enhanced the usability of robots for collaborative activities while
furthering inclusivity in applications of robotics to board games. This current proposal
presents a unique perspective for the use of an assistive robot, allowing for the inclusion
of people with motor disabilities in board games, specifically chess. This leads to reduced
complexity in the implementation, realizing chess playing without a game engine. This
is because the human player, aware of the rules of the game, issues the command move.
This research also considers a low-cost MeArm robot, costing less than $500, which further
leads to accessibility and portability. While industrial robots such as the Franka Emika
Robot and NAO robot are highly accurate and present state-of-the-art precision and control,
affordability is a big concern, especially in assistive robots aimed at marginalized groups.

5. Conclusions

This research successfully implemented a 3-DoF robot manipulator for controlled pick
and place operations using speech and image recognition. A chess-playing robotic task
was selected as the testbed of our research, whereby we explored the possibility of using
image and speech input to play chess. By providing voice-based control and achieving
a high degree of accuracy in chess piece manipulation based on image processing, this
system demonstrates the potential of affordable, assistive robotics, especially for physi-
cally impaired individuals. Although the system’s workspace is currently limited, future
improvements in manipulator precision and workspace range can extend its functionality.
This research paves the way for further exploration of inclusive robotic systems, particularly
in gaming and education, fostering new opportunities for human-robot collaboration.

The use of image processing led to the realization of an accurate mapping of the
centroid locations from a virtual board to the robot workspace, ensuring that the system
could be extended to various board sizes with minimal modifications. The incorporation of
speech recognition, on the other hand, resulted in a good word error rate of 8.64%. The
possibility to use the NATO phonetic alphabet led to an alternative to the determination
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of the desired moves, based on commands that could be misidentified such as “G” and
“D” based on individual accents. The speech recognition also led to an assistive robot that
works independently of a game engine to realize robot-assisted chess playing. The MeArm
being low-cost and light leads to the advantages of affordability, portability, and safety by
not posing any danger of harm to human beings.

Future works based on this research may include the realization of a full execution
of the chess-playing system by further developing the robot to achieve a higher accuracy.
Higher resolution motors would be included in the design, leading to improved perfor-
mance. Design for a bigger but lightweight 3D-printed robot that could fit into bigger board
sizes is also one of the targets in building a prototype that will be implemented outside the
research environment. Game state tracking using a camera and computer vision algorithms
would also be beneficial in helping players review their performance after a game. Research
towards more applications aimed at human-robot collaboration and enhancing automation
also constitutes future works.

Some of the limitations encountered while implementing this project include the
limited reachable workspace of the manipulator, where chess play was limited to only the
first four rows of the chessboard. The accuracy of the SG90 micro servo was limited to 1
degree, hindering the manipulator from tracing the ideal and smooth trajectory completely.
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