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Abstract: Cyber-Physical Systems (CPSs) offer significant potential to address the evolving demands
of industrial development. In the Industry 4.0 era, a framework integrating sensing, data exchange,
numerical analysis, and real-time feedback is essential for meeting modern industrial needs. However,
implementing this integration presents challenges across multiple domains, particularly in digital
analysis, information sensing, and data exchange during corporate transformation. Companies yet
to undergo transformation face distinct challenges, including the risks and trial-and-error costs of
adopting new technologies. This study focuses on a heavy-duty workpiece processing factory, with
a specific emphasis on the painting process. The complexity of this process frequently results in
congestion, which is approached as a multi-objective, multi-constraint optimization problem. This
paper proposes the Improved Non-dominated Sorting Genetic Algorithm II (INSGA-II) to address
the requirements of multi-objective optimization. The proposed approach uses multi-chromosome
structures, listeners, and recursive backtracking initialization to optimize the search for solutions
under constraints. This enables the factory to automatically streamline production lines based on
workpiece processing sequences, leading to increased efficiency. Additionally, a CPS framework
focused on simulation modeling has been designed. First, the INSGA-II algorithm processes order
data to generate production schedules. Next, the data transmission formats and input-output
interfaces are designed. Then, a simulation model is built using the algorithm’s results. These
components collectively form the CPS framework for this study. The proposed method offers an
automated digital solution through the algorithm, enabling verification of its feasibility via the
simulation model. As a result, it significantly enhances decision-making speed, reliability, and
equipment utilization.

Keywords: cyber-physical system; modeling and simulation; INSGA-II; multiobjective optimization;
production scheduling

1. Introduction

Currently, many companies are striving to transition to multivariety and small-batch
production, a trend particularly prevalent in China. However, due to facility changes and
production downtime, this transition often incurs high costs. In line with Industry 4.0,
numerous related studies have introduced the concepts of Cyber-Physical Systems (CPSs)
and digital twins. Dafflon et al. conducted a comprehensive review of extensive research
on CPS [1]. From this review, they identified the challenges, methods, and technologies that
drive CPS in Industry 4.0 manufacturing. Zamfirescu et al., in their research, highlighted
that traditional CPS frameworks often overlook the human factor. As a result, they proposed
a human-centered CPS framework to overcome this limitation [2]. Similarly, Hermann
proposed principles for achieving this goal from a Six Sigma perspective [3]. These methods
serve as one of the foundational elements for the design presented in this study.
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In this study, we adopt a suspension-chain-production system of a particular factory
as a model. The goal is to incorporate algorithms into the existing system to achieve process
improvements while retaining the current hardware. Most existing studies require hard-
ware modifications [4–6], a cost we aim to avoid. Our approach leverages existing hardware
facilities considerably while constructing a CPS tailored to the current production process.

Furthermore, this study explores a multiobjective, multiconstraint scheduling problem.
Notably, there is substantial research in this area. Issa categorized such problems into four
types: A, B, C, and D [7], and further outlined their frameworks, as shown in Figure 1. Our
study focuses on a multiobjective problem under limited resource constraints, specifically a
priority-constrained resource-constrained project scheduling problem (P-RCPSP), which
falls under category B. Heuristic algorithms are commonly employed for such problems,
and deliver outstanding performance. For example, the study by Kai Guo et al. focuses on
a cloud manufacturing service composition optimization (SCO) model [8]; Y. Wang et al.
proposed an optimal combination scheme for shared manufacturing services [9]. Further-
more, Weimin Jing et al. introduced a cloud-edge collaborative scheduling mechanism
aimed at optimizing the scheduling of local tasks about the cloud edge [10].

Figure 1. Classification diagram; the classifications of the project and multi-project scheduling problems.

The challenges of this problem are as follows. First, multiple constraints must be con-
sidered during the process to ensure the feasibility of the processing sequence. Additionally,
the factors involved in this process include changeover times, logistics transportation times,
painting time uncertainties, and workpiece reprocessing. Additionally, balancing the
granularity of simulations and simulation resources is a significant challenge.

Studies that have specifically addressed the reprocessing of workpieces are few, with
most focusing on designing algorithms that tackle constraints. The practical applications of
such scenarios are even rarer.

The following tasks will be executed in this study. (1) Analyze the problem and
define the objectives and boundary conditions or constraints. (2) Design a Cyber-Physical
Scheduling System (CPSS) specifically for logistics scheduling based on existing facilities
and assets. (3) Fit the parameters of the factory under actual conditions. (4) Analyze the
data transmission involved in the current system, and design a scheduling model based
on this analysis. (5) Design corresponding control and monitoring mechanisms around
the scheduling model. (6) Integrate these mechanisms and the scheduling model into a
simulation model for validation.
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2. Research Background
2.1. Cyber-Physical System and Digital Twins

As production methods evolve, traditional extensive production approaches can no
longer meet competitive demands. Achieving precise control is essential for significantly
enhancing production capacity, which is difficult to achieve manually. This is why CPSs
were introduced. Real-world control is often associated with errors that can prevent precise
decision-making. Fortunately, digitization can mitigate this. With the deepening integration
of digitization, intelligent algorithms are increasingly being utilized in production. This is
inevitable considering the current emphasis on precision in production. However, all of
these advancements require a robust real-time support system.

A CPS is a control system that integrates information acquisition, data storage, data
analysis, and feedback mechanisms into a unified framework. In 2008, Sha proposed the
potential of CPS development in the 21st century [11], emphasizing the importance of
reliability and predictability.

As Fei-Yue Wang stated, with the advancement of intelligent systems, CPSs are widely
applied in large-scale production processes [12]. Jay Lee further proposed the concept
of industrial metaverse in his study [13]. They are defined as “collaborative computing
system closely related to the surrounding physical world and its ongoing processes, while
providing and using data access and data-processing services available on the internet” [14].
Hung-An Kao, in his research, designed an algorithm using an adaptive health monitoring
algorithm through the Cyber Physical Interface for Automation Systems [15]. Meanwhile,
Eyup Cinar proposed a predictive maintenance plan that integrates machine learning into
CPS, achieving great results [16]. Tianjie Fu et al. designed a full-process digital twin
system to visualize the converter steelmaking process, enabling better control over the
process and quality. This system significantly reduced waste during smelting and nearly
doubled production capacity [17].

Hoffmann et al. proposed a standardized approach to building CPSs [18]. From a
Six Sigma perspective, Hermann provided a set of principles for designing CPSs from a
global viewpoint [3]. Hoffmann noted that in traditional production processes, the CPS
components are developed separately, and the CPS needs to integrate all instances, which
is a major challenge. Therefore, in this study, we also design corresponding input/output
(I/O) and data structures among the mentioned components. Data structures will be a
key focus.

Regarding the maturity of CPSs, Monostori provided an evaluation standard, catego-
rizing maturity into five levels, with the highest level being autonomous optimization [14].
Following lean thinking, this study aims to accommodate optimization, which is crucial for
subsequent designs.

In addition to the methodologies and practical applications of CPSs mentioned above,
several extensive studies focusing on information security have been conducted. A. Yaacoub
et al. provided a comprehensive review of the potential technical standards for CPS, as well
as the associated risks such as security vulnerabilities [19]. Ashraf Tantawy et al. further
developed potential attack models and designed corresponding defense mechanisms,
which are used to provide a solution [20]. S. Bernardi et al. proposed an anti-interference
method for hyper-realistic environments, and validated it through CPS [21]. Yu proposed
a comprehensive security approach across physical, virtual, and information interaction
layers [22].

2.2. Multiobjective Scheduling Problem

Since Nagar et al. published a survey paper on multiobjective and bi-objective schedul-
ing in 1995, multiobjective scheduling and flexible scheduling have gradually attracted
interest across various fields [23].

Most studies on solving multiobjective problems use heuristic algorithms, such as
the Genetic Algorithm (GA) [24–26], and other evolutionary algorithms, such as Grey
Wolf Optimization [27], Particle Swarm Optimization (PSO) [28,29], and Bacterial Foraging
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Optimization [30]. Hybrid algorithms, such as GASA, which combine GA and Simulated
Annealing, have also been developed for production scheduling systems [31]. Many of
these problems focus on energy optimization [32,33]. Additionally, technologies such as
reinforcement learning and deep learning have also been applied to multi-objective opti-
mization. For example, Tianjie Fu introduced the Slab Defect Generation (SDG) network,
which is highly effective for image generation and defect recognition [34].

Among these, Non-dominated Sorting Genetic Algorithm II (NSGA-II) has been widely
applied since its introduction in 2002 [24]. NSGA-II combines non-dominated sorting and
an elitism strategy, which helps prevent premature convergence and local-optima trapping,
making it advantageous for solving multidimensional multiobjective problems [35]. Simi-
larly, other algorithms construct Pareto fronts, such as PSO [36]. However, GA provides
comparatively good flexibility for different operators, which influences subsequent con-
straint adaptation. Additionally, NSGA-III can handle complex objective functions [37],
which is crucial for practical applications in this study.

Notably, some algorithms are applied to cloud platforms, requiring a CPS architecture
for real-time data support. Guo combined NSGA-II with cloud manufacturing to improve
a service composition optimization model [8], making it fully mappable to physical entities.
Due to the lack of flexibility in traditional cloud manufacturing service composition and
scheduling, Jing proposed cloud-edge collaborative composition and scheduling [10].

2.3. Multiconstraint Scheduling Problem

In addition to solutions for multiobjective problems, complex constraint conditions
are attracting significant research interest.

Fonseca proposed that the essence of evolutionary algorithms is unconstrained search [38].
Accordingly, a constrained evolutionary algorithm was introduced. From the perspective of
algorithm structure, related studies on multiconstraint conditions have gradually emerged.
Efrén Mezura-Montes et al. presented a prominent nature-inspired algorithms currently
used for constrained numerical optimization problems (CNOP) [39]. Mengjun Ming et al.
also designed an algorithm specifically for CNOP that better balances the solutions along
the Pareto front under different objectives [40]. In the industrial field, this problem has
become a focal point for researchers. Hongbin Qin et al. designed a discrete combina-
torial optimization problem under special constraints, focusing on processing interval
constraint (PIC) and job transportation time (JTT) [41]. Franco M. Novara et al. proposed a
solution of large-scale scheduling problem for multi-product, multi-stage batches under
constrained conditions [42]. These studies address constraint handling through direct
coupling with operators.

Kui et al. considered the workpiece transportation time. Their research included
adjusting operators and using inversion, crossover, and swapping for neighborhood search,
which can be considered a feasible solution transformation [43]. Another approach inte-
grated non-dominated sorting with PSO [44], one of the most common resource constraints
in industrial production. These methods are similar to those involved in NSGA-II, and
have shown good results when addressing multiobjective and multiconstraint problems.

Due to the limited logistics intensity of suspension chain transportation, similar to
other heavy workpiece transportation methods, logistics becomes an important factor to
consider during scheduling. Yiran Dan et al. proposed a process-optimization-scheduling
method considering process blockage [45], encountering similar constraints, such as non-
buffer areas and temporary stack storage difficulties, which are relevant to the current
study. However, their situation differs from the batch production of heavy components.
NSGA-II has also shown good effectiveness in solving complex constraint problems [46].

2.4. About Simulation and Modeling

Verification, Validation, and Accreditation (VV&A) is a crucial aspect of simulations,
significantly impacting their credibility and reliability.
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Simulation and modeling play a significant role in CPSs [47]. Through simulation
modeling, one can verify the processor’s results and gradually discover and improve the
solution during the simulation-development process. Therefore, simulations can consid-
erably reduce trial-and-error costs for enterprises. Regarding Modeling and Simulation
(M&S), this technology is already mature abroad, with extensive commercial, industrial,
and military activities revolving around M&S. However, academic researchers might be
more concerned with the reliability assessment of simulation models. As M&S technology
continues to develop and become widely applied, three major systems have gradually
evolved for the reliability assessment of simulation models: DOD VV&A RPG 2.5, primarily
developed by the Department of Defense [48]; IEEE STD 1730.2, by the Institute of Electrical
and Electronics Engineers (IEEE) [49]; and SISO GMVV, by the European Committee for
Standardization (CEN) [50,51].

Among these, DOD VV&A RPG 2.5 is the most prominent, and many concepts in
the other two systems are derived from it, making it the earliest standard developed for
VV&A research.

3. Model Establishment

This section primarily discusses the strategy for addressing current issues in planning,
as well as the applicable frameworks and technologies.

3.1. Design of Cyber-Physical Scheduling Systems

The CPSS was developed based on the principles of CPS and software design. Figure 2
illustrates the design of the CPSS, drawing inspiration from classical three-tier architectures
and the ModelView-Controller (MVC) principle to effectively tackle challenges.

Figure 2. CPSS architecture diagram: design integrating MVC and the classical three-tier architecture
to address current issues

In this context, the focus lies primarily on the order processor in the business and
persistence layers. The emphasis is on designing algorithms under specific constraints and
integrating them into practical applications. Assuming other layers are in place, existing
facilities retain I/O interfaces. The details of these I/O interfaces will be discussed in
subsequent sections.

In Figure 2, data are manually inputted from GWS cloud desktops into a cloud virtual
host. The system aggregates discrete independent orders and outputs them to the database.
Subsequently, these order details are processed by the order processor to derive the final
scheduling results. Thereafter, these results are batched and sent by the scheduler to the
data collection and monitoring system, which ultimately controls the transportation system.

Following this, real-time operational data from the system feeds back into the order
processor. The order processor utilizes this real-time data to send precise control signals,
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facilitating real-time and accurate scheduling of operations within the suspension–chain–
transportation system.

The evolution of the data-transmission structure within the system is illustrated
in Figure 3. Data transmission occurs in three stages: encoding, decoding, and control.
Initially, starting with the variable “orders”, order data are encapsulated into a list. Sub-
sequently, it is compiled into a two-dimensional collection containing multiple products.
Each row represents components destined for respective production lines, indexed by their
component numbers. These indices are crucial for chromosome encoding.

Figure 3. Data transformation diagram: data formats designed during database entry and propagated
along fixed paths to support M&S.

Following this, the optimal solution is obtained using NSGA-II. To simulate real
operational logic and construct a digital twin around the simulation, it is necessary to
transmit the optimal solution to the simulation model. Real-time observation through the
simulation program enhances the visibility of potential production issues.

3.2. Practical Application Context

This process involves loading different types of items onto hanging cars from multiple
input points, taking them through various stages (including cleaning, masking, multiple
spraying and leveling, and drying), and finally unloading by type, as illustrated in Figure 4.
Detailed parameters will be provided in Sections 4.8 and 6.1.

Than we define the nature of the problem, determining the parameters and attributes
required to build various models. The model construction is divided into three stages.

• First, the mathematical model is constructed, which will be used for the design and
improvement of the algorithm.

• Next, the discrete system simulation model is constructed to verify the algorithm’s
results through simulation.

• Finally, the logical control model is constructed. These models, derived from the
discrete system simulation model, will guide the operation of the suspension–chain–
transportation system.
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Figure 4. Flowchart of the production processes from loading to unloading of components, including
masking, cleaning, diversion, leveling, surface treatment, drying, and unmasking.

Ultimately, these models will be integrated to form a complete order processor. The ef-
fectiveness of this system will be conveniently demonstrated by accompanying simulations.

Furthermore, as depicted in Figure 5, the data transmission of the CPSS is managed
securely and efficiently. The physical layer includes carriers and rails. Information from
both is transmitted through several edge devices, which also control the carriers and
rails. The signals collected by these edge devices undergo data filtering, compression, and
initial processing, followed by transmission to an Industrial Internet of Things gateway via
Ethernet or Narrowband IoT (NB-IoT).

Subsequently, at the data layer, the database server is defined as a combination of per-
sistent databases and task execution. It primarily handles bottom-layer data reception and
top-layer feedback while interacting with edge devices, cloud servers, and order processors.

Lastly, at the virtual layer, the order data layer is constructed and integrated for
transmission to the database. Based on database information, the corresponding ERP, MRP,
CRP, etc., are formulated. The current production plan determines the set of orders to be
processed, which serves as a parameter for fitness calculation and decoding in algorithms.
The final results are returned to the database server, which issues instructions to complete
the corresponding scheduling activities. Ultimately, this information is fed back to the
cloud server to support the digital twin model.

This section primarily discussed the nature of the current problem and relevant technical
approaches. Subsequent sections will provide more detailed designs for model implementation.
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Figure 5. CPSS technical framework: enhancing the CPSS architecture from the perspective of
adopted technologies and existing facilities.

4. Algorithm Model Establishment

This chapter primarily discusses the selection of operators within algorithms and their
operational outcomes, alongside the algorithm refinement process.

4.1. Symbol Definitions

First, it is essential to clarify the parameters, hyperparameters, variables, and events
within the mathematical model. This section focuses on defining each element individ-
ually, along with explaining their roles in the simulation model. These definitions will
serve as the foundational control interface for the simulation model and subsequent algo-
rithm optimizations.

Notably, the definitions provided here are specific to the parameters, hyperparameters,
variables, and events required for the simulation model. Additional definitions will be
introduced separately to the interface with algorithmic optimization, allowing for better
decoupling and independent debugging of the model. The definitions of events, variables,
and parameters are presented in Tables 1–3. Here, i represents a positive integer. Note that
while other parameters may support the simulation model during actual runs, they are not
included in the mathematical model establishment discussed herein.

Table 1. Event definition.

Name Definition Range Meaning

checkHoldOnProduct i ∈ [1, 8] If workpiece be loaded
checkHoldOnOHC i ∈ [1, 8] Allow Carriers Loading
holdCheckOnInput - If the total input sufficient
testO f AutoControl - Activate Algorithm Logic

Table 2. Variable definition.

Name Definition Range Data Type Meaning

ContentInput i ∈ [1, 8] int Current Input Lane with Carriages
ContentInput1To8 - int All Input Lanes with Carriages
ContentInput1To4 - int First, Four Inputs with Carriages
ContentInput5To8 - int Last Four Inputs with Carriages
MoldChangeTimesi i ∈ [1, 8] int Number of Changeovers per Station
OrderOTimei i ∈ [1, OrdereNum] double Output Time for Each Order
OrderWeighti i ∈ [1, OrdereNum] double Importance Index for Each Order
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Table 3. Parameter definition.

Name Definition Range Data Type Meaning

CapacityIi i ∈ [1, 27] int Input Section Capacity
CapacityOi i ∈ [1, 6] int Output Section Capacity
CapacityCi i ∈ [1, 3] int Cleaning and Masking Section Capacity
CapacityPi i ∈ [1, 12] int Processing Section Capacity
CapacityRi i ∈ [1, 2] int Multiple Processing Section Capacity
CapacityDi i ∈ [1, 13] int Drying Section Capacity
ConveyorGap - double Safety Distance
Arrival Interval - List<double> Interval of Workpiece Arrivals
TransportRate - double Conveyor Speed
TransporterNum - int Number of Carriers
ClearTime − f (type, size) Cleaning Processing Time
CoverTime − f (type, size) Time of (un)Loading Masking
PaintTime − f (type, size) Time of Spray Coating
LoadTimei i ∈ [1, 8] double Workpiece Loading Time
UnloadTimei i ∈ [1, 8] double Workpiece Unloading Time
MoldChangeTime - double Changeover Time
OrderNum - int Number of Orders
ProductNum - int Number of Workpieces
ContentIi i ∈ [1, 27] int Input Section Current Inventory
ContentOi i ∈ [1, 6] int Output Section Current Inventory
ContentCi i ∈ [1, 3] int Cleaning and Masking Section Current Inventory
ContentPi i ∈ [1, 12] int Processing Section Current Inventory
ContentRi i ∈ [1, 2] int Multiple Processing Section Current Inventory
ContentDi i ∈ [1, 13] int Drying Section Current Inventory

4.2. Algorithm Framework Selection

NSGA-II is a framework primarily used for solving multiobjective problems. This
framework employs dominance relationships instead of fitness as the criterion, and utilizes
crowding distance to avoid premature convergence. Constructing Pareto fronts enhances
search efficiency, and crowding selection serves as a balancing strategy, enabling NSGA-II
to converge efficiently and stably.

The concept of non-dominated sorting, incorporated in the NSGA, adapts traditional
GA for solving multiobjective problems. The key idea is the dominance relationship. When
all objective functions of one individual are superior to those of another, the latter is said
to be dominated by the former. An individual not dominated by any other individual is
considered non-dominated individual. Multiple non-dominated individuals that do not
dominate each other can exist, which are defined as the Pareto front. The Pareto hierarchy
of an individual can be employed to evaluate its performance across multiple objectives.

However, individuals with similar Pareto rankings are frequently overly close in the
solution space, causing the trapping of the algorithm in local optima. NSGA-II addresses
this issue with elitism and crowding distance sorting. By calculating the sum of distances
between an individual and other individuals in the solution space, its crowding distance
is determined. Limiting the crowding distance of individuals effectively prevents the
algorithm from being trapped in the local optima. The elitism strategy ensures that superior
solutions are retained and not prematurely eliminated.

Here, NSGA-II is chosen for several reasons. First, it has already demonstrated mature
applications and favorable results in production scheduling problems [52,53]. The current
problem involves multiple objective functions and numerous factors due to production
control, necessitating more objective functions to represent the desired outcomes of the
study. As previously mentioned, NSGA-II is effective in solving multiobjective problems.
Additionally, due to some constraints, a more flexible solution approach is required for
the problem. Heuristic algorithms, such as NSGA-II, can be more adaptable in adjusting
various operators to achieve different complex functions, which is precisely what this
study requires.

Moreover, heuristic algorithms exhibit good compatibility with constraints, allowing
developers to adjust operators to accommodate complex constraints in practical applications.



Machines 2024, 12, 666 10 of 23

4.3. Encoding

The encoding in this study differ slightly from traditional scheduling problems. To
enhance solution search efficiency, each individual is endowed with multiple chromosomes.
Each chromosome’s gene values represent workpiece IDs, the index of the gene values
denotes the processing sequence, and chromosomes denote different processing lines.

4.4. Constraints

This study addresses two specific constraints. It can be formulated as follows, where m
represents one-fourth of the capacity of the repeat processing waiting queue, and assuming
S = {gen1, gen2, gen3, . . . , genn, } represents the processing sequence of a certain line:

• Within the same production line, no two operations on any workpiece should occur
consecutively more than once.

• Across all production lines, there should be no excessive distance between any two
consecutive operations on any workpiece.

Those constraints can be expressed in the following form:

∀i, j (geni = genj ⇒ {genk | i < k < j} ∩ {genk | j < k < i} = ∅) (1)

∀i, j (ai = aj ⇒ |{ak | i < k < j}| ≤ m) (2)

Subsequent sections will elaborate on the method through which these constraints
are ensured in the solutions proposed. In addition, there are other general constraints to
ensure the proper functioning of the model, as below:

Contenti < Capacityi (3)

Here, Contenti includes ContentI, ContentO, ContentC, ContentP, ContentR, and
ContentD. Similarly, Capacityi follows the same structure.

4.5. Objective Function

This study considers two objective functions.

1. Maximize the product of the weight wi and the last output time t f i of each order i,
summed over all orders n:

Z1 = max

{
n

∑
i=1

(wi × t f i)

}
(4)

where wi represents the weight of order i, and t f i denotes the output time of the last
workpiece of order i.

2. Minimize the number of tool changeovers across all production lines m, where tc is
the total time spent on tool changes per production line:

Z2 = min

{
m

∑
j=1

tc

}
(5)

Here, tc represents the total tool change time for production line j.

The choice of these objective functions is deliberate: while minimizing tool changeovers
can be considered a lower-level semantic feature relative to the first objective, which in-
herently includes the goal of minimizing tool changeovers, frequent tool changes not only
impact the processing times, but also involve material wastage. Thus, while the first ob-
jective function serves as a higher-level semantic feature for the second, it does not fully
encompass it.
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For the first objective function, K. Tamssaouet et al. proposed an optimization algo-
rithm that combines evaluation criteria with different weights, demonstrating the feasibility
of this approach [54]. The second objective function is more commonly encountered, fre-
quently appearing in multi-objective optimization problems and flexible job shop schedul-
ing problems. Yi Cheng, in his research, highlighted a current issue where mold changeover
is often overlooked in most multi-objective scheduling problems [55]. To address this, they
designed an objective function that incorporates mold changeover time, providing valuable
guidance for multi-objective scheduling problems that involve complex factors.

Although NSGA-II primarily utilizes dominance relations and crowding distance for
individual evaluations, for a clear comparison of individual performance and potentially
as a criterion for future evaluations, arbitrary weights are temporarily assigned here. These
weights can be adjusted according to specific enterprise requirements; the weights given
here are 0.8 and 0.2.

Based on the models discussed above, the mathematical model for this study can be
expressed as follows:

max
{

Z1 = ∑n
i=1(wi × t f i)

}
, min

{
Z2 = ∑m

j=1 tc

}
s.t.
∀i, j (geni = genj ⇒ {genk | i < k < j} ∩ {genk | j < k < i} = ∅)
∀i, j (ai = aj ⇒ |{ak | i < k < j}| ≤ m)
Contenti < Capacityi

4.6. Operator Design

Considering that the algorithm must satisfy the two constraints mentioned earlier,
certain operators must be improved accordingly. Various studies have addressed constraint
adaptation in optimization planning. Some employ listeners or penalty functions to phase
out infeasible solutions naturally. However, due to the vast solution space and sparse
feasible solutions in our study, these methods are unsuitable. Another approach involves
uniform distribution reference points, as in NSGA-III; however, even under constraints,
searching remains challenging because of the expansive solution space. Therefore, cer-
tain operators are restructured into constraint-aware operators here, enabling automatic
adaptation to constraints. This enhancement maximizes the heuristic algorithm’s potential
under constraints.

This section will focus on the refinement of each operator to ensure that the algorithm
produces only feasible solutions. Figure 6 illustrates the primary processes of the algorithm.

Figure 6. Algorithm flowchart: operators adjusted to ensure the generation of individuals adapting
to current constraints.
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4.6.1. Population Initialization

The population initialization directly influences the subsequent generation of feasible
solutions. Typically, to generate feasible solutions that meet constraints, random generation
is employed, followed by filtering or feasible solution transformations. However, random
generation followed by filtering often has a low probability of producing feasible solutions,
whereas feasible solution transformations struggle to ensure that the initial solutions are
sufficiently randomized. Therefore, this study employs recursive backtracking specifically
for generating feasible solutions. The pseudocode is depicted in Algorithm 1.

Algorithm 1 InsertGens

Require: sequence, gens, s_times_max, s_times_in_max
Ensure: t_sequence, t_gens, f lag

1: t_sequence← sequence , gen← gens[0] , t_gens← gens[1 :]
2: child_nodes← InsertGen(sequence, gen)
3: while length of child_nodes == 0 do
4: if s_times ≤ s_times_max or s_times_in < s_times_in_max then
5: select_node←, random.choice(child_nodes)
6: t_sequence.insert(select_node, gen)
7: if length(gens) == 1 then
8: f lag← 1 , s_times← s_times + 1
9: return t_sequence, t_gens, f lag

10: else
11: f lag← 2
12: t_sequence, t_gens, f lag← InsertGens(t_sequence, t_gens, f lag)
13: if f lag == 1 or −1 then
14: return t_sequence, t_gens, f lag
15: else
16: child_nodes.remove(select_node)
17: end if
18: end if
19: s_times_in← s_times_in + 1
20: else
21: return t_sequence, t_gens,−1
22: end if
23: end while
24: return t_sequence, ghttps : //boardmix.cn/app/homeens, 3

When generating a random individual, all unique elements are first shuffled to form an
initial sequence. The remaining elements that need to be duplicated are identified as “gens”,
and their insertion positions are evaluated sequentially by a random selection process.

However, situations where earlier insertions exhaust all possible insertion positions
for subsequent elements may be encountered, necessitating a backtracking step.

Given the inherently exhaustive nature of this method, it can be time-intensive. To
address this, a depth limit on the search is introduced. If the search exceeds this limit, the
program is re-invoked to regenerate the initial solution. Empirical testing has shown that
this effectively prevents excessively deep searches, significantly reducing the average time
required to generate each solution.

4.6.2. Crossover

In crossover, we aim to preserve as many features of both parent chromosomes as
possible. Traditional multi-point or single-point crossovers often result in invalid solutions,
leading to the development of a constraint-aware crossover. As illustrated in Figure 7, this
crossover method involves inheriting the order of the first occurrence of elements with the
same repetition count from both parents. This technique ensures that a valid solution can
be derived from another valid solution.
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Assuming two parent chromosomes have been selected, we record the positions of
each repeated element within each chromosome. Thereafter, we note the order of their first
occurrences. Subsequently, the first occurrence orders of elements in the two parents are
swapped. The repeated elements of one parent are replaced in the corresponding positions
of the other parent according to this order.

Figure 7. Constraint-aware crossover operator example: exchange the order of repeated elements
based on their occurrence sequence with equal repetition counts.

4.6.3. Mutation

Mutation is another crucial step that requires operating on chromosomes. Considering
the constraints, we adopt the mutation method illustrated in Figure 8. In each mutation,
two elements with the same repetition count are selected, and their values at each position
are swapped. This method, similar to the crossover operator, ensures that the resulting
solutions remain valid after mutation.

Figure 8. Constraint-aware mutation operator example: select any two elements with the same
repetition count and swap their positions.

Furthermore, since the length of chromosomes varies in practical production, the
number of mutations also varies with the length.

4.7. Fitting of Processing Time

In this study, a situation exists where there are over a thousand variations in product
sizes and models. Therefore, individually measuring the processing time for each item
is impractical.

Here, we assume that processing times follow a normal distribution. Through exten-
sive statistical analysis and linear fitting, we obtained the mean and coefficient of variation
values for the processing times based on product sizes and models. Using these parameters,
we derived the processing times for each product model. Notably, due to the discrete nature
of product types, fitting continuous functions is not meaningful. Products are categorized
into eight classes, Types 1–8, and each is fitted separately. The results are depicted in
the figures.

Parts of the fitted lines in Figures 9 and 10 are incomplete because the corresponding
product sizes for certain categories do not exist. The results from linear regression for the
mean processing times are shown in Figures 11 and 12. Notably, the processing time for
painting is significantly greater than that for other processes.
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Figure 9. Variation coefficient fitting graph for cleaning and loading/unloading masking materials
across different product types and sizes.
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Figure 10. Variation coefficient fitting graph for spray coating process across different product types
and sizes.
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Figure 11. Linear fitting bias line graph for different product types.
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Figure 12. Linear fitting weight line graph for different product types.

4.8. Algorithm Convergence Results

To ensure the algorithm’s convergence and reliability, multiple repeated experiments
were conducted. Confidence analysis was performed on the results. Consistency across
multiple runs indicates effective algorithm convergence. After conducting 10 consecutive
experiments, the ratio of the confidence interval width to the mean was adopted as a
measure of convergence accuracy. In the case study, 16 orders were inserted, totaling
125 different product types with various requirements; the detailed parameters are shown
in Table 4. The final weighted objective function convergence for each experiment is
presented in the table below.

Table 4. Assumed order parameters: several orders were generated using a random-number generator
to obtain uniformly distributed parameters. Each order was assigned a weight uniformly at random
by the generator.

Order Color Size Type Times Num Weight

1 3 8 1 1 6 0.60
2 1 10 1 2 3 0.65
3 1 5 2 2 9 2.90
4 2 6 2 2 11 0.68
5 3 4 3 2 14 0.53
6 1 3 3 1 11 0.07
7 1 3 4 2 6 1.70
8 2 1 4 1 3 0.22
9 3 1 5 1 6 1.80

10 1 3 5 2 12 0.01
11 3 1 6 2 3 0.47
12 3 3 6 2 9 0.48
13 1 1 7 2 11 1.55
14 1 3 7 1 3 0.48
15 3 1 8 2 14 1.24
16 3 1 8 2 4 0.43

Confidence analysis is a generally used method in experimental research, and the ma-
jority of randomized repeated experiments require confidence analysis to ensure the reliabil-
ity of the result [56–58]. Confidence analysis is necessary. It has been confirmed and widely
applied in the literature that confidence analysis ensures the credibility of conclusions.
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Based on the data above, after excluding the outlier from the seventh experiment,
there are nine effective samples to be calculated. Therefore, the degrees of freedom d f = 8.
Additionally, the confidence level is set to 0.9, resulting in a significance level of α = 0.1.
The mean and variance of these samples can be easily calculated as follows: x̄ = −0.4880,
s = 0.00041.

confidence interval = x̄± tα/2,d f ·
s√
n

(6)

Therefore, based on the experimental data in Table 5, the confidence interval can be
calculated as [−0.5011, −0.4775], with a width-to-mean ratio of 0.0482. From the results of
the confidence analysis, the algorithm can be considered to have effectively converged. This
conclusion is confirmed by examining the convergence curves from a randomly selected
run, as depicted in Figure 13. Figure 14 shows a Gantt chart obtained by decoding the
scheduling results from a selected experiment.

Figure 13. Convergence curve of a particular experiment: the algorithm tends to converge after
125 iterations.

Figure 14. Results of a particular experiment. We decoded the results of a specific experiment and
plotted them as a Gantt chart.
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Table 5. Experimental results: twenty simulation experiments were conducted, and the weighted
fitness of the optimal individual was recorded for each experiment.

Number of Experiments Weighted Fitness

1 −0.5000
2 −0.4999
3 −0.5000
4 −0.4687
5 −0.4999
6 −0.5000
7 −0.5000
8 −0.2490
9 −0.4892

10 −0.4460

5. Simulation Model Establishment

To assess the practical performance of the algorithm, further simulation and modeling
are essential. This chapter primarily outlines the key processes involved in constructing
the model.

5.1. Simulation Fidelity

VV&A is a guiding principle employed to ensure that simulations achieve the expected
results in modeling works. In this study, VV&A will be integrated throughout the entire
research cycle.

5.1.1. Randomly Repeated Experiments

Randomized repeated experiments are critical for ensuring the reliability of the sim-
ulation model. They will be designed and implemented here. Additionally, a confidence
interval analysis is conducted on the final results to ensure data credibility.

Regarding the simulation experiments, we will begin with 10 initial randomized
simulations. Following a confidence interval analysis of the results, we will determine the
number of subsequent experiments required.

5.1.2. Module Decoupling

Decoupling modules allows for easy modular debugging of the model. This approach
facilitates identifying current issues and functionalities to be implemented throughout the
model’s development cycle.

Eight modules have been designed here, including a suspension car input module,
workpiece input module, workpiece loading, cleaning and masking installation module,
processing module, drying module, unmasking module, and workpiece unloading module.

Due to global requirements and software characteristics, an agent-based programming
approach in Anylogic was adopted. Two main classes were designed: SuspensionCar and
Workpiece. The attributes and behaviors relevant to these two agents were constructed.
For simplicity, a detailed discussion is not provided here.

5.1.3. Constraints and Assumptions

There is no universally effective model. Clearly defining constraints and assumptions
can better frame the model’s boundaries and simplify it effectively. The purpose of these
assumptions is to reduce workload without compromising operational outcomes.

• The suspension chain is replaced with a roller conveyor line, and turntables are
employed at corners instead. Since their performance and parameters are identical
and Anylogic does not have a pre-packaged suspension chain model, substituting with
an existing roller conveyor line ensures equivalent effectiveness while considerably
simplifying the workload.
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• The tray’s speed during operation is constant, and the acceleration of the tray on the
conveyor belt is neglected. In production, trays move slowly; therefore, strict speed
requirements are not necessary. Additionally, due to the significant acceleration of
workpieces during movement, neglecting tray acceleration increases model stability.

To enhance the precision control of the model and prepare for potential future im-
provements, multiple listeners were designed within the simulation model. These listeners
are utilized for scheduling conveyors to various loading points and controlling the merging
and diverging of workpieces. While the listener mechanism may consume significant
memory, it enables finer control granularity and robustness optimizations during each
listening cycle, ensuring smoother model operation.

In summary, the entity model depicted in Figure 15 has been constructed. The corre-
sponding logical model is presented in Figure 16.

Figure 15. Entity modeling diagram: The image includes a partial representation of the entity model
throughout the factory. Each conveyor segment is assigned a unique identifier.
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Figure 16. Overall logic diagram: this diagram encompasses the entire simulation flow, including
definitions of logic modules, variables, events, and their interactions.

5.2. The Logic Control Scheme

It can be observed that the following five aspects require control:

• Output sequence from loading ports 1–4 to I22.
• Output sequence from loading ports 5–8 to I27.
• Output sequence from two loading-port convergence nodes into mainline C1.
• Output sequence from four processing lines to P12.
• Output sequence from the initial processing and repeat processing workpieces into

main processing line P1.

By controlling the on/off states or input sequences of the above points, it indirectly
controls the entire processing sequence. The control criterion is uniform throughout, which
involves verifying whether incoming workpieces should be processed at the current stage.

6. Joint Simulation

This section primarily discusses the operational results of the integrated simulation model.

6.1. Simulation Parameters

The simulation parameters are based on research conducted in an actual factory setting.
For crane movement speed, actual speeds are disregarded, and a simple delay is

adopted. Load and unload times are set to LoadTime = UnloadTime = 60 s. Mold change
time is set to moldChangeTime = 180 s.

Suspension chain operating speed is TransportRate = 1 m/s. There are 50 transporters
for the suspension chain, with a safety distance of ConveyorGap = 0.8 m between them.

6.2. Experimental Design

Considering hardware limitations, simulating over 180 workpieces simultaneously is
impractical. Therefore, a time-window simulation approach is adopted, where we focus
the data-collection process on a specific time interval. Through optimized memory usage,
the model runs smoothly up to the input of the 103rd workpiece. Therefore, the simu-
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lation experiment will terminate after inputting the 100th primary processed workpiece,
representing a typical simulation run. The virtual simulation time is approximately 65,000 s.

Subsequently, under these conditions, 10 pre-experiments will be conducted to eval-
uate the outcomes. Based on these results and confidence interval analysis, the required
number of subsequent experiments will be determined.

6.3. Simulation Result

As depicted in Figure 17, noticeable congestion relief is evident after the algorithm
integration compared to before. While spraying remains the current bottleneck operation,
deadlocks no longer occur. Given the stochastic processing times in the model, interference
among waiting queues for parallel production lines has significantly eased compared to
previous scenarios. The workstation-utilization rates across all production lines, balanced
against varying production demands and conditions, exhibit a confidence interval of
[0.7500, 0.7648] at a confidence level of α = 0.95. This indicates considerable improvement
from the initial conditions. Moreover, the average workstation-utilization rate increased
from 0.3 to 0.7226. Since the calculation here is identical to the one in Section 4.8, it will not
be reiterated.

The results demonstrate that this method effectively addresses the challenges faced
by factories. The order set used in this study, consisting of 16 orders, reflects the typical
number of orders companies process within a specific time frame. When handling larger
order volumes, the algorithm offers even greater benefits, as manual decision-making
incurs higher costs. Conversely, with lower order demand, management often consolidates
production lines. The algorithm’s parameters can be adjusted accordingly to accommodate
these changes. Therefore, this model is well-suited to adapt to similar production methods
across different companies.

Figure 17. Three-dimensional simulation perspective after algorithm integration: Workpieces shown
in the image are processed simultaneously.

7. Conclusions

This study leverages existing enterprise hardware and software infrastructure to de-
sign a CPSS. Detailed analysis and design of the data-processing aspects were conducted,
and the problem was effectively solved using NSGA-II. Finally, an Anylogic simulation
model was developed that integrates the algorithm with the simulation model. By control-
ling the simulation model with algorithmic results and corresponding logic, the integration
of simulation and algorithm as a cyber layer in CPSS was demonstrated to be feasible.
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