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Abstract: Bearings are critical components in mechanical systems, and their degradation
process typically exhibits distinct stages, making stage-based remaining useful life (RUL)
prediction highly valuable. This paper presents a model that combines correlation analy-
sis feature extraction with a Graph Neural Network (GNN)-based approach for bearing
degradation stage classification and RUL prediction, aiming to achieve accurate bearing
life prediction. First, the proposed Pearson–Spearman correlation metric, along with Kernel
Principal Component Analysis (KPCA) and autoencoders, is used to group and fuse health
indicators (HIs), thereby obtaining a health indicator (HI) that effectively reflects the bear-
ing degradation process. Then, a model combining Graph Convolutional Network (GCN)
and Long Short-Term Memory (LSTM) networks is proposed for bearing degradation stage
classification. Based on the classification results, the Adaptive Attention GraphSAGE–
LSTM (AAGL) model, also introduced in this study, is employed to precisely predict the
bearing’s remaining useful life.

Keywords: rolling bearing; RUL prediction; KPCA; autoencoder; stage classification;
GNN; LSTM

1. Introduction
Bearings are critical components in mechanical systems, directly influencing opera-

tional efficiency and lifespan [1]. As bearings degrade, their performance gradually declines,
eventually leading to failure. Therefore, accurately predicting the remaining useful life
(RUL) of bearings is essential for minimizing downtime and reducing maintenance costs.
Effective bearing life prediction enables preventive maintenance, helps avoid unexpected
failures, and enhances the reliability and safety of mechanical systems. During the bearing
degradation process, distinct stages of degradation typically emerge [2]. Initially, the bear-
ing remains in a healthy state, with the health indicators remaining stable. As degradation
progresses, the health indicators begin to rise gradually. Eventually, the bearing enters a
severe degradation phase, marked by a sharp increase in the health indicators, signaling
imminent failure.

HIs play a significant role in mechanical predictions. Suitable HIs can simplify model-
ing and yield accurate predictions. Common HIs include time-domain, frequency-domain,
and time-frequency domain indicators [3]. Various physics-based HIs (PHIs) have been
used for bearing life prediction. For instance, Zhang et al. [4] used kurtosis values ex-
tracted from band-pass filtered vibration signals for RUL prediction. Gasperin et al. [5]
extracted the power density of gear meshing frequencies from the envelope spectrum, and
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Soualhi et al. [6] utilized the Hilbert–Huang transform to analyze vibration signals and
extract defect frequencies as PHIs. Recently, virtual HIs (VHIs) that fuse multiple PHIs
to construct features reflecting degradation trends have been increasingly used. Fusion
methods such as principal component analysis (PCA) [7], KPCA [8], linear discriminant
analysis (LDA) [9], t-distributed stochastic neighbor embedding (t-SNE) [10], and locality
preserving projection (LPP) [11] are common, with PCA and its derivative KPCA being
the most prevalent. Akpudo et al. [12] employed a second-order KPCA algorithm to map
multiple features into a new feature space, generating a comprehensive degradation index
and using a deep long short-term memory (DLSTM) model for RUL prediction. Wang
et al. [13] calculated the Pearson correlation among features, grouped them, and used
KPCA within each group to obtain new feature sets, combining them with an LSTM-COX
model for bearing life prediction. However, this approach only considers linear correlations,
potentially overlooking nonlinear relationships.

As faults progress, the HI of machinery usually exhibits different degradation trends
as shown in Figure 1. Before predicting RUL, the degradation process should be divided
into different health stages (HSs) based on HI trends. Previous studies often divided the
degradation process into two main stages: healthy and degraded. For example, Wang
et al. [14] used the Mahalanobis distance to fuse fourteen statistics into a new feature,
employing an interval as an alarm threshold to determine the first prediction time (FPT)
and assess bearing degradation. Ni et al. [15] introduced techniques based on the rule to
divide the healthy stage and used a gated recurrent unit network to predict RUL. However,
these two-stage models might oversimplify the complex degradation process in practical
applications where bearings may exhibit multiple degradation trends due to healing effects
or varying operational conditions.
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To address these limitations, some researchers proposed multi-stage degradation mod-
els. El-Thalji [16] developed a five-stage dynamic model based on accelerated test results,
dividing the degradation process into run-in, steady operation, defect initiation, defect
propagation, and damage growth. Similarly, Zhao et al. [17] identified three degradation
stages through curve fitting and power spectral density analysis, while JB Ali et al. [18]
proposed the RMS Entropy Estimator (RMSEE) feature and classified bearing health states
using Simplified Fuzzy Adaptive Resonance Theory Maps (SFAMs). Based on the stage di-
vision, the RUL was obtained. Wang et al. [19] proposed an adaptive staged RUL prediction
method that uses Gath-Geva fuzzy clustering for stage division and applies tailored predic-
tion models for each degradation stage. However, these methods often depend on linear
assumptions, specific statistical thresholds, or predefined clustering criteria, potentially
overlooking the nonlinear relationships, feature dependencies, and the dynamic nature of
bearing degradation in real-world conditions. Similarly, RUL prediction methods for CFRP
structures face similar challenges, such as complex physical properties, limited labeled data,
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and nonlinear feature dependencies, which are also present in bearing degradation [20].
These challenges highlight the importance of adopting advanced methodologies to improve
the adaptability and generalizability of RUL prediction models.

Graph Neural Networks (GNNs) have emerged as a promising deep learning ap-
proach for bearing lifespan prediction. GNNs are particularly effective in modeling graph-
structured data, especially when handling multi-dimensional and spatiotemporal data.
However, bearing degradation is inherently sequential, with past operating conditions
influencing future performance. To address this, LSTM networks [13], a type of recurrent
neural network (RNN), are widely used for modeling time-series data due to their ability
to capture long-term dependencies. LSTMs are especially suitable for bearing degradation
prediction, where historical data plays a crucial role in forecasting future wear and failure.
This paper proposes a hybrid model that combines the strengths of GNNs in spatial mod-
eling and LSTMs in temporal prediction, aiming to more accurately predict bearing RUL
in complex operating environments. Yang et al. [21] transformed bearing time series data
into a graph structure and combined Graph Convolutional Networks (GCNs) with Gated
Recurrent Units (GRUs) to predict the RUL from both spatial and temporal perspectives.
Wen et al. [22] proposed a method that converts bearing time-frequency recursive graphs
into graph structures, integrating GCN with Long Short-Term Memory (LSTM) networks
to evaluate bearing degradation and predict RUL, overcoming the limitations of deep
learning methods when dealing with non-Euclidean space data. Cui et al. [23] introduced a
graph domain adaptation method driven by digital twins, where a dynamic twin model
of the bearing’s entire lifecycle generates rich twin data. This method, combined with
a multi-layer cross-domain gated graph convolution network (MGGCN), addresses the
limitations of traditional domain adaptation methods in processing non-Euclidean space
data, enabling effective RUL prediction under limited real-world data conditions. Yang
et al. [24] proposed a Spatiotemporal Multi-Scale Graph Convolutional Network (STMS-
GCN) framework, which incorporates features that capture dynamic changes in vibration
energy and uses a sliding window method to automatically detect fault occurrence times,
significantly improving the accuracy of RUL predictions. Although significant progress has
been made in the application of GNNs for bearing lifespan prediction, most existing models
overlook the segmentation of degradation stages or rely on simple two-stage classification,
which fails to capture the complex multi-stage degradation patterns observed in real-world
bearing performance. While some studies have attempted to explore multi-stage RUL
prediction, these approaches still suffer from limitations in accurately reflecting the full
degradation process of bearings. Specifically, many GNN-based models do not effectively
model the gradual transitions between degradation stages or fail to integrate spatial and
temporal features that are essential for capturing the dynamic nature of the degradation
process. This is a critical issue, as accurate RUL prediction requires not only understanding
the final failure stage but also forecasting the intermediate degradation states that occur
throughout the bearing’s lifecycle. To address these gaps, this paper proposes an innova-
tive multi-stage prediction approach based on GNNs, which leverages both spatial and
temporal features to model the full spectrum of bearing degradation. By capturing the
non-linear relationships within the degradation process, the proposed method demon-
strates robust performance and significantly improves prediction accuracy across various
degradation stages.

To address these issues, this paper proposes an improved method. First, a Pearson–
Spearman correlation coefficient-based approach is introduced to group bearing degra-
dation HIs, considering both the linear and nonlinear relationships between the health
indicators. Next, KPCA and autoencoders are employed to extract health indicators that
accurately reflect the bearing degradation trend. Then, a bearing degradation stage classi-
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fication model based on GCN–LSTM is developed, and a global attention mechanism is
applied to precisely segment the degradation stages. Finally, based on the classification
results, an adjacency matrix is constructed and used, along with the feature matrix, as input
to the proposed AAGL network for RUL prediction, significantly improving the accuracy
and robustness of the predictions.

The overall process of this study is illustrated in Figure 2.
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2. Methodology
2.1. Methodological Approach to HI Extraction

The extraction of HIs plays a crucial role in monitoring bearing degradation, as
it provides a quantitative representation of the bearing’s operational condition. These
indicators are essential for detecting early signs of degradation and tracking the progression
of wear and damage. By accurately extracting and analyzing HIs, specific patterns or trends
in bearing health can be identified and correlated with different stages of degradation. This
not only enables more precise predictions of the RUL but also supports the implementation
of proactive maintenance strategies. In the subsequent study, effective health indicators
will be extracted by combining comprehensive correlation analysis with KPCA.

2.1.1. HIs

Time-domain signals play a crucial role in bearing life prediction, enabling effective
monitoring and forecasting of bearing health. The commonly used time-domain features
are listed below.

Kurtosis [25] describes the thickness of the tails of the signal’s probability distribution,
with high kurtosis indicating outliers and aiding in detecting wear or damage. The kurtosis
indicator directly reflects changes in kurtosis, tracking abnormal peaks. The interquartile
range (IQR) [26], robust to asymmetrical noise and outliers, reflects statistical dispersion.
Mean absolute deviation (MAD) [27] indicates the average absolute deviation level, sensi-
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tive to outliers. The margin indicator, reflecting the safety margin during operation, helps
prevent failures from excessive wear. Modulus maximum [28], the signal’s maximum
absolute value, detects the strongest vibrations or impacts. The peak indicator monitors
maximum peaks, crucial for early damage detection. Peak-to-peak measures the amplitude
difference between the signal’s maximum and minimum values. The pulse indicator iden-
tifies repeating pulse patterns, recognizing periodic faults. Root mean square (RMS) [29]
represents the energy of the signal, assessing overall vibration levels and detecting wear-
type faults. Signal entropy describes randomness or complexity, identifying irregular fault
patterns. Skewness measures distribution asymmetry, with changes indicating bearing
condition shifts. The Teager energy mean [30] estimates energy content, capturing dynamic
load changes. Variance monitors signal variability to track operating condition changes.
Lastly, the waveform indicator detects impacts and anomalies by comparing the peak value
of the signal to its mean.

In Table 1, xi represents the time series, Q1 and Q3 denote the first and third quartiles
respectively, and p(xi) represents the probability of signal x occurring at a value of xi.

Table 1. Time domain health indicators formula.

Feature Formula Feature Formula

Interquartile range IQ = Q3 − Q1 Peak to peak Xpp = Max(xi)− Min(xi)

Kurtosis β = 1
n ∑n

i=1 x4
i Root mean square xrms =

√
1
n ∑n

i=1 x2
i

Kurtosis indicator Kr =
β

x4
rms

Signal entropy H = −∑k
i=1 p(xi) log p(xi)

Waveform indicator s f =
xrms
|x| RMSEE

xrmsee =

1
10

10
∑

i=1
−RMS(i) · log(RMS(i))

Margin indicator XCL f =
xmax[

1
n ∑n

i=1

√
|xi |

]2 Modulus maximum Mmod = Max(|xi|)

Skewness Xs =
1
n ∑n

i=1 x3
i

Xrms
Teager energy mean

Mean(Φ[x]) =
Mean((x(n)2 − x(n − 1) · x(n + 1)))

Peak indicator XC f =
xmax
xrms

Variance Xσ2 =
1
n ∑n

i=1 [xi −
1
n ∑n

i=1 xi]
2

Pulse indicator I f =
xmax
|x|

Mean absolute
deviation M = 1

N ∑N
i=1|xi − x|

Frequency-domain features, derived from the analysis of vibration signal frequencies,
enable us to identify frequency patterns specific to different fault types, which is crucial
for accurately predicting bearing health and RUL. The commonly used frequency-domain
features are listed below.

Center frequency [31] describes the centroid of the frequency spectrum, identifying
the frequency region where the main energy of the vibration signal is concentrated. The
frequency domain amplitude average (FDAA) [32], calculated by averaging the amplitude
in the frequency domain, measures the overall energy level of the signal. Peak frequency
refers to the frequency at which the maximum amplitude occurs in the vibration signal,
often corresponding to specific bearing faults and serving as a key indicator for identifying
fault types. Root mean square frequency (RMSF) [33] provides a measure of the average
energy distribution in the frequency domain, useful for analyzing the overall energy char-
acteristics of the vibration signal. Spectral energy represents the total energy of the signal
in the frequency domain. Spectral entropy measures the randomness and complexity of the
spectrum; high spectral entropy indicates the presence of multiple frequency components,
aiding in the identification of complex or irregular fault patterns. Spectral flatness assesses
the uniformity of the frequency components in the signal spectrum. Spectral kurtosis [34]
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measures the thickness of the spectrum tails; high kurtosis indicates prominent peaks in
the spectrum, often associated with mechanical faults. Spectral skewness describes the
asymmetry of the spectrum; changes in skewness can reflect changes in bearing condition,
especially in the early stages of damage development. Spectral spread represents the width
of the spectral energy distribution, indicating the dispersion of frequencies in the signal.
Standard deviation frequency (SDF) measures the dispersion of amplitude distribution in
the frequency domain, used to analyze the variability and instability of the signal in the
frequency domain.

In Table 2, X(k) represents the characteristic frequency-domain amplitude spectrum,
and fk is the kth frequency component. pk denotes the probability density of the kth spectral
component. pk and P represent the power of the kth frequency component in the frequency
domain and the average power of all frequency components, respectively. Fc is the spectral

centroid, and the formula of Fc is Fc =
∑N

k=1 fk P(k)
∑N

k=1 P(k)
.

Table 2. Frequency domain health indicators formula.

Feature Formula

Center frequency F1 = 1
∑N

k=1 X(k)∑N
k=1 fkX(k)

Frequency domain amplitude average F2 = 1
N ∑N

k=1 X(k)
Root mean square frequency F3 =

√
1

∑N
k=1 X(k)∑N

k=1 f 2
k X(k)

Standard deviation frequency F4 =
√

1
N ∑N

k=1 ( fk − F1)
2X(k)

Peak frequency F5 = ∑N
k=1 ( fk−F1)

2X(k)
NF4

4

Spectral energy F6 = ∑N
k=1|X(k)|2

Spectral entropy F7 = −∑N
k=1 pk · logpk

Spectral flatness
F8 =

exp(
1
N ∑N

k=1 log X(k))

1
N ∑N

k=1 X(k)

Spectral kurtosis F9 =
N∑N

k=1 (P(k)−P)4

(∑N
k=1 (P(k)−P)2

)
2

Spectral skewness F10 =
N∑N

k=1 (P(k)− P)3

(∑N
k=1 (P(k)− P)2

)

3
2

Spectral spread F11 =

√
∑N

k=1 ( fk−Fc)
2P(k)

∑N
k=1 P(k)

Following the analysis of time-domain and frequency-domain features, time-frequency
domain feature analysis provides a more comprehensive perspective. It combines both time
and frequency information, allowing us to explore the dynamic changes and complexity of
signals in greater depth. We extract the energy features of the first five frequency bands
based on Wavelet Packet Decomposition (WPD) and the energy features of the first five in-
trinsic mode function (IMF) components based on Empirical Mode Decomposition (EMD).

2.1.2. Feature Selection Based on Variance

Before conducting feature correlation analysis, this study employs the Variance Thresh-
old method for feature selection. This method evaluates the variance of features within the
sample, with lower variance indicating limited information and minimal contribution to
the model. By eliminating low-variance features, this approach optimizes the input feature
set for model training and reduces interference from irrelevant information.
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2.1.3. Pearson–Spearman Correlation Analysis

Pearson correlation analysis is a statistical method used to evaluate the strength of
the linear relationship between two variables [35], suitable for continuous data following
a normal distribution. The Pearson correlation coefficient ranges from −1 to 1, where
1 indicates a perfect positive correlation, −1 indicates a perfect negative correlation, and
0 indicates no linear relationship. The calculation is based on the deviation of the observed
values from their mean. The formula for calculating the Pearson correlation coefficient is
as follows:

rp =
∑n

i=1 (Xi − X)(Yi − Y)√
∑n

i=1 (Xi − X)
2
√

∑n
i=1 (Yi − Y)2

(1)

where Xi and Yi are the ith observations of features X and Y, respectively, X and Y are the
means of features X and Y, and n is the number of observations.

Spearman correlation analysis measures the monotonic relationship between variables
without requiring a specific distribution, making it suitable for nonlinear relationships [36].
The Spearman correlation coefficient also ranges from −1 to 1, with larger absolute values
indicating stronger relationships. It is calculated based on the rank differences of the
data pairs:

rs = 1 −
6∑n

i=1 d2
i

n(n2 − 1)
(2)

where di = rank(Xi)− rank(Pi) represents the rank difference for the ith data pair, and n is
the number of data pairs.

This study proposes a method combining Pearson and Spearman correlation analyses.
By calculating the absolute mean of these two coefficients, a new comprehensive index, the
Pearson–Spearman correlation coefficient r, is formed:

r = Corr(x, y) =

∣∣rp
∣∣+ |rs|

2
(3)

where Corr(x, y) represents the correlation between feature X and feature Y.
This index comprehensively considers both linear and nonlinear relationships in the

data, aiming to provide a deeper insight into the interactions between feature signals and
offer a broader analytical perspective.

2.1.4. HIs Fusion with KPCA and Autoencoders

Despite initial screening, data redundancy remains a significant challenge. Therefore,
this study further reduces the dimensionality of HIs by combining KPCA and autoencoders.
The dimensionality reduction process involves the following steps:

• Correlation analysis and grouping: First, perform correlation analysis on the features
and set a threshold to group highly correlated features together.

• KPCA processing: Apply KPCA to each group of features, retaining principal compo-
nents that explain 90% of the cumulative variance.

• Autoencoder optimization: Input the retained principal components and ungrouped
features into an autoencoder, adjusting the learning weights according to the original
number of features. The output from the bottleneck layer of the autoencoder is used
as the final HI, representing the bearing’s degradation state.

Technical background:
KPCA [37] is a nonlinear dimensionality reduction technique that maps data into a

high-dimensional feature space and performs linear PCA, effectively capturing the data’s
nonlinear structures.
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The autoencoder [38] is an unsupervised learning neural network that automatically
learns low-dimensional representations of data while capturing nonlinear relationships.
The network structure includes the following components:

Input layer: This layer receives the original high-dimensional data X.
Encoder: This is composed of several hidden layers, it gradually reduces the number

of neurons to compress the input data into a low-dimensional latent representation.
Bottleneck layer: Located at the end of the encoder, this forms the low-dimensional

representation of the data, capturing key features.
Decoder: Symmetrical to the encoder, this gradually increases the number of neurons

to reconstruct the data back to its original high-dimensional space.
Output layer: Outputs the reconstructed high-dimensional data X′.
In this study, the output from the bottleneck layer of the autoencoder is used as the

final HI to represent the bearing’s degradation process. The schematic diagram of the
autoencoder is shown in Figure 3.
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2.2. Bearing Degradation Stage Classification
2.2.1. Gaussian Mixture Model (GMM)

Before constructing the stage classification model, it is necessary to first obtain the
stage labels. The GMM [39] is a probabilistic clustering algorithm that assumes the data
are composed of multiple Gaussian distributions. Each Gaussian distribution is defined
by its mean vector and covariance matrix, and these parameters are estimated using the
Expectation–Maximization (EM) algorithm. The EM algorithm iteratively optimizes the
parameters in two stages:

Expectation step (E-step): Compute the posterior probability, known as the responsi-
bility γ(zik), that each data point belongs to each Gaussian distribution. The formula is as
follows:

γ(zik) =
πk N( xi|µk, ∑k)

∑K
j=1 πjN( xi|µj, ∑j)

(4)

where πk is the mixing coefficient of the k-th Gaussian distribution, and N is the Gaussian
probability density function.

Maximization step (M-step): Update the parameters of each Gaussian distribution
(mean, covariance, and mixing coefficient) to maximize the log-likelihood function. The
update formulas include the following:
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1. Mean vector µk:

µk =
∑N

i=1 γ(zik)xi

∑N
i=1 γ(zik)

(5)

2. Covariance matrix ∑k:

∑k =
∑N

i−1 γ(zik)(xi − µk)(xi − µk)
T

∑N
i=1 γ(zik)

(6)

3. Mixing coefficient πk:

πk =
1
N ∑N

i=1 γ(zik) (7)

After training is completed, each data point is assigned to the Gaussian distribution
with the highest posterior probability, achieving clustering as follows:

label(xi) = argmaxkγ(zik) (8)

In this study, the GMM is used to cluster the health indicators (HIs) extracted in
Section 3.1, dividing them into three stages: healthy, slight degradation, and severe degra-
dation. These stages provide labels for the subsequent stage classification model training.

2.2.2. Graph Convolutional Network

The Graph Convolutional Network (GCN) [40] is a specific type of GNN that excels
in capturing the structural relationships between nodes. Unlike traditional deep learning
methods, the GCN utilizes adjacency matrices to aggregate features from nodes and their
neighbors, effectively preserving topological information during feature extraction. This
property allows the GCN to demonstrate stronger expressive power when dealing with
non-Euclidean data that has complex relationships, making it particularly well-suited for
extracting HIs and classifying states in the bearing degradation process, especially when
there are complex nonlinear relationships between features at different degradation stages.

The basic structure of the GCN is shown in Figure 4.
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The network input includes the feature matrix X, with dimensions N × F, and
the normalized adjacency matrix A, with dimensions N × N. The graph convolutional
layer updates the representation of each node by aggregating features from its neighbors
as follows:

H(l+1) = σ(AH(l)W(l)) (9)
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where H(l) represents the node feature representation at the l-th layer (for the 0-th layer,
H(0) = X, i.e., the initial feature matrix), and W(l) is the learnable weight matrix for the l-th
layer. σ is a non-linear activation function, such as ReLU. A is the normalized adjacency
matrix used to aggregate features from each node and its neighbors.

After each layer of GCN, a non-linear activation function like ReLU is applied. The
ReLU function is defined as follows:

σ(x) = max(0, x) (10)

The activation function introduces non-linearity, allowing the model to learn more
complex relationships.

2.2.3. GCN–LSTM

During the bearing degradation process, the health state is often associated with com-
plex spatiotemporal dependencies, which traditional classification methods may struggle
to fully capture. To address this, the present study proposes a model architecture that
combines GCN and LSTM networks to improve the classification accuracy of degradation
stages. The model integrates the spatial feature extraction capability of the GCN with
the temporal modeling strengths of LSTM, thereby enhancing classification performance.
Specifically, the GCN aggregates features from nodes and their neighbors to capture spatial
dependencies in the degradation process, while LSTM models the dynamic evolution of
these features over time [41]. This synergy enables the GCN–LSTM model to simultane-
ously capture the complex relationships between nodes during bearing degradation and
the temporal trends in the sequence data. Furthermore, by incorporating a global attention
mechanism, the GCN–LSTM model can automatically identify critical time steps in the
degradation process, further improving classification accuracy and robustness.

The structure of the GCN–LSTM model is illustrated in Figure 5.
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The input data consist of two components: the feature matrix X and the adjacency
matrix A. The feature matrix captures X, the characteristics of bearing nodes at each time
step, while the adjacency matrix A represents the connectivity relationships between these
nodes. The construction of the adjacency matrix is detailed as follows:

1. Euclidean distance calculation:
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First, the Euclidean distance between each node and all other nodes is calculated, with
smaller Euclidean distances indicating higher similarity between nodes. The Euclidean
distance between nodes i and j is computed as follows:

d(i, j) =

√
n

∑
k=1

(xi,k − xj,k)
2 (11)

where xi,k represents the feature value of the k-th feature for node i.

2. Initial connections:

Each node is initially connected to itself via a self-loop, ensuring that every node has
at least one connection. In addition, each node is connected to its three preceding and three
succeeding neighbors based on their time steps. Specifically, node i is connected to nodes at
time steps i − 3, i − 2, i − 1, i + 1, i + 1, i + 2, and i + 3, with periodic boundary conditions
(i.e., connections wrap around at the beginning and end of the time sequence).

3. Additional neighbors selection:

In addition to the aforementioned connections, each node is connected to the three
nodes with the smallest Euclidean distances (i.e., the closest neighbors in terms of feature
similarity). This step ensures that the connectivity reflects not only the temporal order but
also the feature-based similarity between nodes.

4. Weight distribution:

The weight of the self-loop is set to 0.1. For the other connections (both the preceding,
succeeding, and nearest neighbors), the weights are inversely proportional to the Euclidean
distances. Specifically, the weight w(i, j) between two nodes i and j is calculated as follows:

w(i, j) =
1

d(i, j) + ε
(12)

where ε is a small positive constant to avoid division by zero. To ensure that the sum of all
weights for a given node equals 1, we normalize the weights:

w′(i, j) =
0.9w(i, j)

∑j′ w(i, j′)
(13)

where the denominator is the sum of the weights of all connections for node i, excluding
the self-loop. After normalization, the total weight of these connections equals 0.9, and
together with the self-loop weight of 0.1, the sum equals 1.

The process of constructing the adjacency matrix, as described above, can be imple-
mented through the following Algorithm 1.

To capture temporal dependencies, the data are divided into sequences of length, with
each sequence containing T consecutive time steps, and the input shape is (batch_size, T,
N, F), where N is the number of nodes and F is the feature dimension of each node. For
each time step, the GCN processes the node feature matrix Xt and the adjacency matrix
At. Through multiple layers of graph convolution, GCN effectively aggregates information
from each node and its neighbors, thereby generating updated node representations. The
GCN output Ht is used as input to the LSTM layer. The LSTM captures long-term depen-
dencies and short-term variations in the temporal sequence. For each sequence, the input
dimension to LSTM is (batch_size, T, F′), where F′ is the node feature dimension generated
by the GCN.
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Algorithm 1. The pseudocode for constructing the adjacency matrix in the RUL
prediction model.

Input: Feature matrix X, Node count N, Number of neighbors k, Self-loop weight Ws

Output: Adjacency matrix A

for i in range(1, N) do:
for j in range(1, N) do:

if i != j:
distance(i, j) = compute_distance(X[i], X[j]);

end if
end for
A[i][i] = Ws;
for offset in range(−3, 4):
neighbor_idx = (i + offset) % N;
if neighbor_idx != i:

A[i][neighbor_idx] = 1;
end if

end for
sort distances[i] in ascending order;
nearest_neighbors = distances[i][:k];
for neighbor in nearest_neighbors do:
A[i][neighbor] = 1/(distance(i, neighbor) + epsilon);
end for
row_sum = sum(A[i]) − A[i][i];
for j in range(1, N) do:
if A[i][j] != 0:

A[i][j] = (1 − Ws)*A[i][j]/row_sum;
end if

end for
return A;

To further enhance the model’s classification accuracy, a global attention mechanism is
introduced after the LSTM layer. The global attention mechanism weights each time step in
the entire sequence, automatically identifying the most critical time steps for determining
the bearing degradation stage, and assigning higher weights to these critical moments.
This mechanism allows the model to focus on the key moments related to degradation
while avoiding over-reliance on less relevant time steps, thereby improving classification
accuracy. The output of the LSTM is further used for stage classification.

To achieve three-stage classification, this study employs two GCN–LSTM networks to
classify between healthy/slight degradation and slight degradation/severe degradation.

2.3. Bearing Remaining Useful Life Prediction
2.3.1. GraphSAGE

GraphSAGE [42] is an efficient GNN model designed to address the challenge of
learning from large-scale graph-structured data. Unlike traditional GCN, GraphSAGE
utilizes a sampling strategy that aggregates information from a fixed number of neigh-
boring nodes to generate node embeddings. This aggregation mechanism enhances the
model’s expressive power while significantly reducing computational complexity, making
it particularly suitable for processing large-scale graph data.
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One of the primary advantages of GraphSAGE is its inductive learning capability,
which enables the model to make predictions on unseen nodes, making it highly effective
in dynamic graph environments. Specifically, GraphSAGE learns to aggregate local neigh-
borhood features to create a global representation, making it particularly effective for tasks
such as node classification and prediction.

The basic structure of GraphSAGE consists of the following steps:
Neighbor sampling: A fixed number of neighboring nodes are randomly sampled for

each node, reducing computational costs and improving training efficiency.
Feature aggregation: Features from the sampled neighbors are aggregated using

techniques such as mean aggregation, max-pooling, or LSTM-based aggregation.
Node embedding update: The aggregated neighbor features are concatenated with the

node’s own features and transformed using a learnable linear transformation to generate
the updated node embedding.

This flexible sampling and aggregation mechanism enables GraphSAGE to effectively
capture local relationships within the graph while maintaining scalability and memory
efficiency. When applied to bearing degradation prediction, GraphSAGE can extract both
local and global features, providing high-quality feature representations for subsequent
RUL prediction tasks.

The architecture of GraphSAGE follows these key steps: first, the model samples
local neighborhood information for each node to ensure that the node’s embedding incor-
porates its surrounding graph structure. Next, the aggregation strategy combines these
neighboring node features to form a new feature representation. These aggregated features
are concatenated with the node’s own features and transformed using learnable weight
matrices to generate the updated node embeddings. This process can be repeated across
multiple layers to refine the node representations.

The network architecture is illustrated in Figure 6.
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GraphSAGE’s flexibility and efficiency make it well-suited for handling large-scale
data in bearing degradation prediction, particularly in scenarios where capturing and
modeling degradation features at different stages is crucial. By effectively aggregating
local node information, GraphSAGE provides reliable input for the AAGL model, thereby
improving the accuracy and robustness of RUL predictions for bearings.



Machines 2025, 13, 43 14 of 29

2.3.2. Adaptive Attention GraphSAGE–LSTM

This study proposes the Adaptive Attention GraphSAGE–LSTM (AAGL) model,
which integrates the spatial feature extraction capabilities of GraphSAGE with the temporal
sequence modeling power of LSTM and incorporates an adaptive attention mechanism.
Additionally, the adjacency matrix in the model’s input is constructed based on the degrada-
tion stage, in order to better address the complex characteristics of the bearing degradation
process. The input to the model includes both the feature matrix and the adjacency matrix.
The construction of the adjacency matrix in this model differs from the classification model,
as it is adjusted according to the bearing’s degradation stages to better capture the varying
feature changes over time.

The overall structure of the model consists of the following components, as shown in
Figure 7:

1. GraphSAGE feature extractor: First, GraphSAGE is used to extract both local and
global spatial features from bearing data. These features reflect the bearing’s state
during both healthy and degraded phases, providing input for subsequent time-series
modeling. The multi-layer structure of GraphSAGE allows it to iteratively aggregate
information from neighboring nodes, capturing high-order dependencies. This is
especially well-suited for bearing degradation data with complex topologies.

2. LSTM temporal dynamics modeling: The extracted spatial features are fed into an
LSTM network to capture the temporal dynamics of the bearing degradation process.
LSTM effectively models long-term dependencies over time, helping to identify
trends and changes across different degradation phases. Given that degradation
process features often exhibit significant temporal dependencies, LSTM’s memory
mechanism is well-equipped to model these, providing more accurate predictions of
degradation states.

3. Adaptive attention mechanism: The model incorporates different attention mech-
anisms at various stages of degradation to better capture critical features. In the
early stages of degradation, where it is important to detect overall trends, the model
uses a global attention mechanism to identify key features across the entire sequence,
aiding in the early detection of degradation trends. In the severe degradation stage,
where short-term features become more significant, the model applies a local attention
mechanism to focus on rapid changes over short periods, providing a more detailed
description of severe degradation.
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The construction of the adjacency matrix is adjusted according to the different degra-
dation stages of the bearing, as described in the following logic:

• Healthy stage: Since feature changes are minimal, the adjacency matrix construction
remains simple. Each node is connected to itself, as well as to its preceding and
following neighbors, with the weights evenly distributed (each edge weight set to 0.33).
This ensures basic connectivity while avoiding overfitting by irrelevant information.

• Slight degradation stage: As feature changes begin to manifest, each node is connected
to the two preceding and two following neighbors, as well as to the two other nodes
with the smallest Euclidean distances. This results in a total of seven connected nodes,
including itself. The self-loop weight is set to 0.1, while the weights for the other
connections are assigned based on the inverse of the Euclidean distances, as described
in Equations (12) and (13), ensuring that more similar nodes receive higher weights.

• Severe degradation stage: As feature changes become more pronounced, each node
is connected to the two preceding and two following neighbors, along with the four
other nodes with the smallest Euclidean distances. This forms connections to a total of
nine nodes, including itself. The self-loop weight remains at 0.1, and the weights for
the other nodes are distributed according to the inverse of the Euclidean distances, as
described in Equations (12) and (13).

The adjacency matrix construction allows the model to dynamically adjust its feature
extraction and attention mechanism based on the bearing’s degradation stage, enhanc-
ing the model’s adaptability and improving the accuracy of the RUL prediction. The
pseudocode for the construction of the adjacency matrix is shown in Algorithm 2.

The model’s output is the prediction of the remaining useful life (RUL), which is
estimated using both the spatial and temporal features extracted from the degradation
process. The model’s performance is evaluated by comparing predicted values with actual
RUL values from the test data, showcasing its effectiveness in predicting the lifespan of
bearings under different operational conditions.

Algorithm 2. The pseudocode for constructing the adjacency matrix in the RUL
prediction model.

Input: Feature matrix X, Node count N, Stage type (Healthy, Slight Degradation, Severe
Degradation), Self-loop weight Ws
Output: Adjacency matrix A

for i in range(1, N) do:
for j in range(1, N) do:

if i != j:
distance(i, j) = compute_distance(X[i], X[j]);

end if
end for

if stage_type == “Healthy”:
A[i][i] = Ws;
for offset in range(−1, 2):

neighbor_idx = (i + offset) % N;
if neighbor_idx != i:

A[i][neighbor_idx] = 0.33;
end if

end for
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Algorithm 2. Cont.

else if stage_type == “Slight Degradation”:
A[i][i] = Ws;
for offset in range(−2, 3):

neighbor_idx = (i + offset) % N;
if neighbor_idx != i:

A[i][neighbor_idx] = 1;
end if

end for
sort distances[i] in ascending order;
nearest_neighbors = distances[i][:2];
for neighbor in nearest_neighbors do:

A[i][neighbor] = 1/(distance(i, neighbor) + epsilon);
end for

else if stage_type == “Severe Degradation”:
A[i][i] = Ws;
for offset in range(−2, 3):

neighbor_idx = (i + offset) % N;
if neighbor_idx != i:

A[i][neighbor_idx] = 1;
end if

end for
sort distances[i] in ascending order;
nearest_neighbors = distances[i][:4];
for neighbor in nearest_neighbors do:

A[i][neighbor] = 1/(distance(i, neighbor) + epsilon);
end for

end if

if stage_type != “Healthy”:
row_sum = sum(A[i]) − A[i][i];
for j in range(1, N) do:

if A[i][j] != 0:
A[i][j] = (1 − Ws)*A[i][j]/row_sum;

end if
end for

end if
end for

return A;

3. Experimental Results
3.1. HI Extraction

This study utilized the IMS bearing dataset provided by the Intelligent Maintenance
System Center at the University of Cincinnati. During testing, four Rexnord ZA-2115
double-row bearings were mounted on a shaft, with accelerometers attached to the bearing
housings to monitor vibrations. Figure 8 illustrates the test setup, which includes an oil
circulation system for lubrication and a magnetic plug on the oil feedback pipe to collect
debris. When the debris accumulation exceeds a predefined threshold, an electrical switch
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automatically stops the test. After testing, the bearings were inspected to record their
failure modes in detail.
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The test results yielded 2156, 984, and 6324 data points for the three sets, respectively.
Specific failures included inner race defects for Bearing 1-3 and rolling element defects for
Bearing 1-4 in the first set. Outer race failures were observed for Bearing 2-1 in the second
set and Bearing 3-3 in the third set. This paper analyzes the data starting from the 500th
time step for Bearings 1-3 and 1-4, while using the full dataset for Bearings 2-1 and 3-3. For
data acquisition, each bearing in the first set had two signal acquisition channels, whereas
each bearing in the second and third sets had only one signal acquisition channel.

Forty-one features were extracted from the vibration data of each signal channel
(see Table 3 for details). We calculated the variance of each feature for Bearings 1-3, 1-4,
2-1, and 3-3 and summed the variances of the same features. A threshold θ of 0.025
was set, and features below this threshold were eliminated. This threshold was chosen
based on the distribution of feature variances (as shown in Figure 9). Specifically, the first
five features exhibited significantly lower variances compared to the others, indicating
minimal variation across samples and potentially limited contribution to the prediction
task. By setting the threshold to 0.025, these low-variance features, including mean, WPE1,
median, LSS, and mean square value, were effectively filtered out while retaining most
high-variance, informative features.
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Table 3. Features before and after initial selection.

Features Before Initial Selection Features After Initial Selection

IQR FDAA IQR Spectral entropy
Kurtosis Peak frequency Kurtosis Spectral flatness

Kurtosis indicator RMSF Kurtosis indicator Spectral kurtosis
MAD Spectral energy MAD Spectral skewness

Margin indicator Spectral entropy Margin indicator Spectral spread
LSS Spectral flatness Modulus max SDF

Mean Spectral kurtosis Peak indicator EMD1
Mean square value Spectral skewness Peak to peak EMD2

Median Spectral spread Pulse indicator EMD3
Modulus max SDF RMSEE EMD4
Peak indicator EMD1 Root mean square EMD5
Peak to peak EMD2 Signal entropy WPE2

Pulse indicator EMD3 Skewness WPE3
RMSEE EMD4 Teager energy mean WPE4

Root mean square EMD5 Variance WPE5
Signal entropy WPE1 Waveform indicator

Skewness WPE2 Center frequency
Teager energy mean WPE3 FDAA

Variance WPE4 Peak frequency
Waveform indicator WPE5 RMSF

Center frequency Spectral energy

The choice of 0.025 as the threshold is not arbitrary; it aligns with the observed data
characteristics and is consistent with commonly accepted practices in feature engineering,
where variance thresholds typically range between 0.01 and 0.05. The variance ranking and
the changes in features before and after initial screening are shown in Figure 9 and Table 3.

To ensure consistency across features, the initially screened features were normalized.
Pearson–Spearman correlation coefficients were then calculated between each feature and
all other features, with a threshold set at 0.75. The selection of this threshold was based on
the following considerations: Wang et al. [13] employed the Pearson correlation coefficient
with a threshold of 0.8. However, in this study, the Spearman correlation coefficient was
additionally introduced to account for both linear and nonlinear relationships, resulting in
a Pearson–Spearman composite coefficient that tends to be slightly lower compared to the
standalone Pearson coefficient. Experimental results showed that setting the threshold to
0.8 led to overly sparse correlation results, making subsequent feature grouping challenging.
By slightly reducing the threshold to 0.75, more reasonable correlation results were obtained,
which better aligned with the requirements of feature grouping. The correlation results for
Bearings 1-3 and 1-4 are shown in Figures 10 and 11, where the red areas indicate significant
correlations between features.

The highly correlated HIs were grouped together. Specifically, the grouping results for
Bearings 1-3 and 1-4 are shown in Tables 4 and 5, respectively.

KPCA was applied to each group of HIs using an RBF kernel, with the gamma
parameter set to 0.01, retaining principal components that explain over 90% of the variance.
These principal components, along with the ungrouped HIs, were used as inputs to the
autoencoder. Specifically, for Bearing 1-3, seven principal components were retained along
with three ungrouped HIs, totaling ten HIs. For Bearing 1-4, three principal components
and four ungrouped HIs were retained, totaling seven HIs.
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Table 4. Bearing 1-3 HI grouping results.

Group1 Group2 Group3 Group4

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15,
16, 18, 19, 20, 21, 22, 23, 24, 26, 27, 28, 29,
30, 31, 32, 35, 36, 37, 38, 41, 42, 43, 44, 45,
46, 48, 50, 53, 54, 55, 56, 57, 58, 59, 60, 61,

62, 63, 65, 66, 67, 68, 69, 70, 71, 72

33, 34, 39, 40 17, 25 47, 49
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Table 5. Bearing 1-4 HI grouping results.

Group1 Group2

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15,
16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27,
28, 29, 30, 31, 32, 35, 36, 37, 40, 41, 42, 43,
44, 45, 46, 51, 52, 53, 54, 55, 56, 57, 58, 59,

60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72

33, 34, 38, 39

In this study, only the encoder part of the autoencoder structure was utilized to reduce
the dimensionality of the input HIs into a low-dimensional latent space representation,
effectively capturing the degradation process of the bearings. The encoder consists of
two fully connected (FC) layers: the first layer maps the input features from their original
dimension to 64 dimensions with a ReLU activation function, while the second layer
further compresses the features into a latent space of one dimension. During training,
the autoencoder minimizes the mean squared error (MSE) between the reconstructed and
input data to ensure the effectiveness of the latent representation. Although the decoder
is involved in the training process to enhance the latent space’s quality, only the output
of the encoder (i.e., the bottleneck layer) is used for dimensionality reduction in practical
applications. The hyperparameters for the encoder were set as follows: the input dimension
is determined by the number of health indicators, the output dimension is fixed at one
(latent space), the learning rate is 0.001, the optimizer is Adam, and the number of training
epochs is 200 to ensure sufficient training and convergence. This design enables the fused
HIs to effectively extract low-dimensional features, resulting in HIs that are suitable for
bearing health assessment. The HI fusion process for Bearings 1-3 and 1-4 is illustrated in
Figure 12.
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KPCA and autoencoder dimensionality reduction were also performed on the HIs
for Bearings 2-1 and 3-3, generating the final HI. To improve the accuracy of the stage
classification model, the Savitzky–Golay filter was applied to smooth the HIs. The results
are shown in Figure 13.
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Figure 13. Result of HI smoothing.

The final HI is used for the subsequent construction of the stage classification model
and the RUL prediction model.

3.2. Stage Classification

The GMM was used to perform clustering analysis on the HIs obtained for bearings
1-3, 1-4, 2-1, and 3-3 in Section 3.1. The clustering results served as stage labels for the data.
The detailed clustering results are shown in Figure 14.
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This study employs two binary classification networks based on GCN–LSTM to classify
the stages of bearing degradation data. Specifically, the two classification networks are
as follows:

1. Healthy stage vs. slight degradation stage classification network: This network is used
to distinguish between the healthy stage and the slight degradation stage of bearings.
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2. Slight degradation stage vs. severe degradation stage classification network: This
network is used to differentiate between the slight degradation and severe degrada-
tion stages.

The network parameters are detailed in Tables 6 and 7.

Table 6. Health/slight degradation classification model parameters.

Parameters Parameter Value Parameters Parameter Value

GCN layers 3 Activation function ReLU
GCN channels 32 Optimizer NAdam
LSTM layers 6 Learning rate 0.0001

LSTM hidden layers 64 Loss function CrossEntropyLoss

Table 7. Slight degradation/severe degradation classification model parameters.

Parameters Parameter Value Parameters Parameter Value

GCN layers 3 Activation function ReLU
GCN channels 64 Optimizer NAdam
LSTM layers 8 Learning rate 0.00015

LSTM hidden layers 64 Loss function CrossEntropyLoss

The inputs to these classification networks include the feature matrix and the adjacency
matrix. The feature matrix is composed of previously obtained health indicators (HIs),
while the adjacency matrix represents the relationships between nodes, as described in
Section 2.2.3. The training set for the model consists of data from Bearing 1-3, which
includes all three degradation stages—healthy, slight degradation, and severe degradation—
allowing the model to comprehensively learn feature variations and degradation patterns.
To evaluate the model’s generalization capability, the complete datasets of Bearings 1-4, 2-1,
and 3-3, which were not used during training, were designated as the test set.

Before being fed into the model, all HI data were normalized to the range [0, 1] to
eliminate dimensional disparities and improve training efficiency. Additionally, the training
labels were generated based on clustering results obtained using the Gaussian Mixture
Model (GMM). The training process lasted for 300 epochs to ensure sufficient model con-
vergence, with a batch size of 128 to balance training efficiency and computational resource
usage. The experimental results, as shown in Figure 15, illustrate the classification out-
comes for the healthy vs. slight degradation and slight degradation vs. severe degradation
stages. Figure 15A1/A2, B1/B2, and C1/C2 present the classification results for Bearings
1-4, 2-1, and 3-3, respectively, validating the model’s ability to accurately classify data from
unseen bearings.

To demonstrate the superiority of this model over other models in stage classification
accuracy, this study also compared the GCN–LSTM results with those from CNN, GCN,
and CNN–LSTM models. Each model involved two binary classification tasks, and the
classification accuracies are listed in Table 8:

Table 8. Comparison of the performance of stage classification models.

Models Bearing 1-4 Bearing 2-1 Bearing 3-3

GCN–LSTM 99.31%/98.92% 98.42%/98.50% 99.53%/97.33%
CNN 82.27%/76.13% 79.81%/80.29% 72.45%/69.88%
GCN 88.40%/83.44% 84.62%/82.46% 86.91%/87.69%

CCN–LSTM 94.57%96.83% 89.45%/90.68% 93.40%/94.74%
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The experimental results indicate that the GCN–LSTM model can accurately distin-
guish the bearing state across different degradation stages, providing a solid foundation
for subsequent RUL prediction.

3.3. RUL Prediction

After completing the stage classification, this study employed an RUL prediction
model to estimate the lifespan of bearings.

In this study, the training process includes pre-training during the healthy stage and
formal training during the degradation stages. The inputs to the model consist of a feature
matrix and an adjacency matrix. The feature matrix is composed of the HIs of the bearings,
while the construction logic of the adjacency matrix is described in Section 2.3.2.

During the healthy stage, pre-training was performed using data from Bearings 1-3,
enabling the model to fully learn the baseline characteristics of bearings under normal
operating conditions. This served as a robust starting point for the subsequent modeling
of the degradation stages. The GraphSAGE module was employed to extract the spatial
features of the nodes, with feature dimensions set to (8, 16), (16, 32), (32, 64), and (64, 128)
across four layers. The extracted spatial features were fed into a multi-layer LSTM module,
which consists of five layers with hidden units set to (128, 50), (50, 100), (100, 150), (150,
200), and (200, 100), respectively. The model’s parameters were optimized using the mean
squared error (MSE) loss function, with AdamW as the optimizer. The learning rate was
set to 0.0015, and the pre-training process lasted for 52 epochs.

During the degradation stages, formal training was conducted using data from Bear-
ings 1-3 during the slight and severe degradation stages. The GraphSAGE module contin-
ued to extract spatial features from the degradation data, which were then processed by the
LSTM module for multi-layer time series modeling. Attention mechanisms were employed
to enhance the model’s capability to adapt to different degradation stages:

For the slight degradation stage, a global attention mechanism was utilized to capture
critical features across the entire time sequence.

For the severe degradation stage, a local attention mechanism was applied to focus on
rapid changes within short time windows, improving sensitivity to local features.
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During formal training, the learning rate was set to 0.008, and the model was trained for
400 epochs using the AdamW optimizer. To prevent overfitting, regularization techniques
such as Dropout and early stopping were incorporated.

The validation process utilized data from Bearings 1-4, 2-1, and 3-3, which were not
included in the training set, to assess the model’s generalization ability. The prediction
results, shown in Figure 16. The performance of the model was comprehensively evaluated
using multiple metrics, including root mean squared error (RMSE), mean absolute error
(MAE), mean absolute percentage error (MAPE), coefficient of determination (R2), and
adjusted R2, as shown in Table 9. These metrics provide complementary perspectives on the
model’s prediction accuracy and generalization ability. RMSE and MAE measure absolute
errors, with RMSE emphasizing larger deviations, while MAPE evaluates relative errors
as percentages. R2 and adjusted R2 assess the proportion of variance in the actual RUL
explained by the model, with adjusted R2 accounting for the complexity of the model.
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Table 9. RMSE, MAE, MAPE, and R2 evaluation for bearing lifespan prediction.

Bearings RMSE MAE MAPE R2 Adjusted R2

Bearing 1-4 0.00706 0.00599 0.04994 0.997555 0.997552
Bearing 2-1 0.00494 0.00403 0.07415 0.998545 0.998542
Bearing 3-3 0.00265 0.00180 0.17506 0.978568 0.978509

From Table 9, it can be observed that the proposed model achieves consistently low
RMSE, MAE, and MAPE values across Bearings 1-4, 2-1, and 3-3, demonstrating high
prediction accuracy and robustness. The R2 and adjusted R2 values, all exceeding 0.97,
confirm the model’s ability to effectively capture the variance in the actual RUL. The
prediction results were further compared with the bearing lifetime predictions from three
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other studies using the IMS bearing dataset, as shown in Table 10. This comparison
highlights the superior performance of the proposed model in predicting RUL across
different degradation stages. By comparing the predicted values with the actual ones, it is
evident that the model accurately captures degradation patterns with minimal prediction
errors, underscoring its reliability and generalization capability.

Table 10. RMSE comparison for bearing life prediction across different studies.

Models 1-4 2-1 3-3

AAGL 0.00706 0.00494 0.00265
[43] 0.00772 0.00525 0.00732
[44] 0.1739 - -
[45] 0.0691 0.1071 0.0822

To prevent overfitting during training, regularization techniques such as early stopping
and dropout were implemented. The validation results further confirm that the model can
make accurate predictions on bearings it has not encountered during training, highlighting
its robustness and generalization ability.

This study compares the proposed AAGL model with three baseline models: LSTM,
CNN–LSTM, and GCN–LSTM. All models incorporate an adaptive attention mechanism,
and both GCN–LSTM and AAGL share the same phase-based adjacency matrix construction
logic. Table 11 presents the RMSE results of RUL prediction across these models.

Table 11. RMSE comparison for bearing life prediction across different models.

Models 1-4 2-1 3-3

LSTM 0.02732 0.01492 0.02346

CNN–LSTM 0.01613 0.00963 0.01372

GCN–LSTM 0.00967 0.007670 0.00663

AAGL 0.00706 0.00494 0.00265

Using the LSTM model as the baseline, the CNN–LSTM model demonstrates a signif-
icant improvement by leveraging the CNN module’s capability to extract local features,
resulting in an overall RMSE reduction of 39.91%. The GCN–LSTM model further enhances
prediction accuracy by utilizing graph neural networks to model spatial dependencies and
leveraging the phase-based adjacency matrix to capture relationships between degradation
phases, achieving a 63.52% overall RMSE improvement compared to LSTM.

In comparison, the AAGL model outperforms all other models by introducing the
GraphSAGE module, which employs neighborhood sampling and aggregation mechanisms
to efficiently capture local features in the graph structure. Combined with the LSTM
module’s ability to model temporal dependencies, AAGL excels at capturing the complex
spatiotemporal relationships inherent in the bearing degradation process. Consequently,
AAGL achieves the best prediction performance, with an overall RMSE reduction of 77.72%
compared to LSTM, demonstrating its superiority in the RUL prediction task.

3.4. Parameter Analysis

Different parameter settings can have varying impacts on the predictive performance
of the model. In this experiment, different combinations of pre-training and formal training
learning rates were used, and the mean root mean square error (RMSE) of the prediction
results for different bearings from the test set was compared. The pre-training learning
rates L1, L2, L3, and L4 were set to 0.015, 0.01, 0.0015, and 0.00015, respectively, while
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the formal training learning rates L1, L2, L3, and L4 were set to 0.02, 0.01, 0.015, and
0.008, respectively. The experimental results, shown in Figure 17, reveal that as both
the pre-training and formal training learning rates decrease, the RMSE also decreases,
with the optimal combination of learning rates being 0.0015 for pre-training and 0.008 for
formal training.
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Additionally, the number of connections each node has with other nodes in the ad-
jacency matrix at different degradation stages significantly influences the model’s per-
formance. In this study, different combinations of node connections were tested, with
each node connected to four, five, six, and seven nodes, respectively, during the slight
degradation stage, and to seven, eight, nine, and ten nodes, respectively, during the severe
degradation stage. By comparing the mean RMSE of the prediction results for different
bearings on the test set under these different combinations, the optimal adjacency matrix
construction strategy was identified. This strategy was then used to optimize the model’s
performance. The comparison results of different combinations are shown in Figure 18.
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4. Discussion
In this study, we proposed an innovative hybrid model combining GNNs and LSTM

networks for predicting the RUL of bearings. The results demonstrate that the proposed
model outperforms traditional machine learning and deep learning approaches, particu-
larly in capturing the complex multi-stage degradation patterns of bearings under varying
operational conditions. The GNN component excels at modeling spatial dependencies,
while the LSTM network captures temporal dynamics, both of which are crucial for ac-
curate RUL prediction. This hybrid approach offers a comprehensive solution by ad-
dressing both spatial and temporal aspects simultaneously, overcoming the limitations of
existing methods.

The implications of this research are significant, especially in the field of predictive
maintenance for industrial systems. By accurately predicting the RUL of bearings, this
model can help optimize maintenance schedules, reduce downtime, and extend the op-
erational life of machinery. Moreover, the proposed method can be extended to other
machinery components or systems exhibiting similar degradation patterns.

However, several limitations remain. First, the model’s performance could be further
enhanced by incorporating additional sensor data or integrating advanced techniques
such as reinforcement learning or transfer learning to address data scarcity and improve
generalization. Additionally, while the hybrid model has shown promising results in
controlled environments, further validation in real-world industrial settings is necessary to
assess its robustness under diverse operating conditions.

Future research will focus on leveraging transfer learning to improve the model’s
generalization across different operational environments. A key part of this future work
will be the development of a new full-lifecycle dataset, which will be used to evaluate
the model’s performance in more complex and varied conditions. This new dataset will
also allow for further validation of the model’s practical applicability and help to refine its
predictive capabilities in real-world scenarios.
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5. Gašperin, M.; Juričić, Ð.; Boškoski, P.; Vižintin, J. Model-based prognostics of gear health using stochastic dynamical models.
Mech. Syst. Signal Process. 2011, 25, 537–548. [CrossRef]

6. Soualhi, A.; Medjaher, K.; Zerhouni, N. Bearing health monitoring based on Hilbert–Huang transform, support vector machine,
and regression. IEEE Trans. Instrum. Meas. 2014, 64, 52–62. [CrossRef]

7. Tayade, A.; Patil, S.; Phalle, V.; Kazi, F.; Powar, S. Remaining useful life (RUL) prediction of bearing by using regression model
and principal component analysis (PCA) technique. Vibroeng. Procedia 2019, 23, 30–36. [CrossRef]

8. Li, Z.; Jiang, W.; Zhang, S.; Xue, D.; Zhang, S. Research on prediction method of hydraulic pump remaining useful life based on
KPCA and JITL. Appl. Sci. 2021, 11, 9389. [CrossRef]

9. Zhao, M.; Tang, B.; Tan, Q. Bearing remaining useful life estimation based on time–frequency representation and supervised
dimensionality reduction. Measurement 2016, 86, 41–55. [CrossRef]

10. Dong, S.; Wu, W.; He, K.; Mou, X. Rolling bearing performance degradation assessment based on improved convolutional neural
network with anti-interference. Measurement 2020, 151, 107219. [CrossRef]

11. Yang, D.; Lv, Y.; Yuan, R.; Yang, K.; Zhong, H. A novel vibro-acoustic fault diagnosis method of rolling bearings via entropy-
weighted nuisance attribute projection and orthogonal locality preserving projections under various operating conditions. Appl.
Acoust. 2022, 196, 108889. [CrossRef]

12. Akpudo, U.E.; Hur, J.W. A feature fusion-based prognostics approach for rolling element bearings. J. Mech. Sci. Technol. 2020, 34,
4025–4035. [CrossRef]

13. Wang, Y.; Zhao, J.; Yang, C.; Xu, D.; Ge, J. Remaining useful life prediction of rolling bearings based on Pearson correlation-KPCA
multi-feature fusion. Measurement 2022, 201, 111572. [CrossRef]

14. Wang, Y.; Peng, Y.; Zi, Y.; Jin, X.; Tsui, K.-L. A two-stage data-driven-based prognostic approach for bearing degradation problem.
IEEE Trans. Ind. Inform. 2016, 12, 924–932. [CrossRef]

15. Ni, Q.; Ji, J.C.; Feng, K. Data-driven prognostic scheme for bearings based on a novel health indicator and gated recurrent unit
network. IEEE Trans. Ind. Inform. 2022, 19, 1301–1311. [CrossRef]

16. El-Thalji, I.; Jantunen, E. A descriptive model of wear evolution in rolling bearings. Eng. Fail. Anal. 2014, 45, 204–224. [CrossRef]
17. Zhao, H.; Liu, H.; Jin, Y.; Dang, X.; Deng, W. Feature extraction for data-driven remaining useful life prediction of rolling bearings.

IEEE Trans. Instrum. Meas. 2021, 70, 1–10. [CrossRef]
18. Ben Ali, J.; Chebel-Morello, B.; Saidi, L.; Malinowski, S.; Fnaiech, F. Accurate bearing remaining useful life prediction based on

Weibull distribution and artificial neural network. Mech. Syst. Signal Process. 2015, 56, 150–172. [CrossRef]
19. Wang, Z.; Zhao, W.; Li, Y.; Dong, L.; Wang, J.; Du, W.; Jiang, X. Adaptive staged RUL prediction of rolling bearing. Measurement

2023, 222, 113478. [CrossRef]
20. Liu, C.; Chen, Y.; Xu, X. Fatigue life prognosis of composite structures using a transferable deep reinforcement learning-based

approach. Compos. Struct. 2025, 353, 118727. [CrossRef]
21. Yang, X.; Zheng, Y.; Zhang, Y.; Wong, D.S.-H.; Yang, W. Bearing remaining useful life prediction based on regression shapalet and

graph neural network. IEEE Trans. Instrum. Meas. 2022, 71, 1–12. [CrossRef]
22. Wen, G.; Lei, Z.; Chen, X.; Huang, X. Remaining Life Assessment of Rolling Bearing Based on Graph Neural Network. In New

Generation Artificial Intelligence-Driven Diagnosis and Maintenance Techniques: Advanced Machine Learning Models, Methods and
Applications; Springer Nature: Singapore, 2024; pp. 281–298.

23. Cui, L.; Xiao, Y.; Liu, D.; Han, H. Digital twin-driven graph domain adaptation neural network for remaining useful life prediction
of rolling bearing. Reliab. Eng. Syst. Saf. 2024, 245, 109991. [CrossRef]

24. Yang, X.; Li, X.; Zheng, Y.; Zhang, Y.; Wong, D.S.-H. Bearing remaining useful life prediction using spatial-temporal multiscale
graph convolutional neural network. Meas. Sci. Technol. 2023, 34, 085009. [CrossRef]

25. Ran, B.; Peng, Y.; Wang, Y. Bearing degradation prediction based on deep latent variable state space model with differential
transformation. Mech. Syst. Signal Process. 2024, 220, 111636. [CrossRef]

26. Cho, I.; Park, S.; Kim, J. A fire risk assessment method for high-capacity battery packs using interquartile range filter. J. Energy
Storage 2022, 50, 104663. [CrossRef]

27. Sehgal, R.; Jagadesh, P. Data-driven robust portfolio optimization with semi mean absolute deviation via support vector clustering.
Expert Syst. Appl. 2023, 224, 120000. [CrossRef]

28. Vatanshenas, A.; Länsivaara, T.T. Estimating maximum shear modulus (G0) using adaptive neuro-fuzzy inference system (ANFIS).
Soil Dyn. Earthq. Eng. 2022, 153, 107105. [CrossRef]

29. Hou, D.; Chen, J.; Cheng, R.; Hu, X.; Shi, P. A bearing remaining life prediction method under variable operating conditions
based on cross-transformer fusioning segmented data cleaning. Reliab. Eng. Syst. Saf. 2024, 245, 110021. [CrossRef]

30. Zhang, X.; Wan, S.; He, Y.; Wang, X.; Dou, L. Teager energy spectral kurtosis of wavelet packet transform and its application in
locating the sound source of fault bearing of belt conveyor. Measurement 2021, 173, 108367. [CrossRef]

31. Jiang, X.; Shen, C.; Shi, J.; Zhu, Z. Initial center frequency-guided VMD for fault diagnosis of rotating machines. J. Sound Vib. 2018,
435, 36–55. [CrossRef]

https://doi.org/10.1016/j.ymssp.2010.07.003
https://doi.org/10.1109/TIM.2014.2330494
https://doi.org/10.21595/vp.2019.20617
https://doi.org/10.3390/app11209389
https://doi.org/10.1016/j.measurement.2015.11.047
https://doi.org/10.1016/j.measurement.2019.107219
https://doi.org/10.1016/j.apacoust.2022.108889
https://doi.org/10.1007/s12206-020-2213-x
https://doi.org/10.1016/j.measurement.2022.111572
https://doi.org/10.1109/TII.2016.2535368
https://doi.org/10.1109/TII.2022.3169465
https://doi.org/10.1016/j.engfailanal.2014.06.004
https://doi.org/10.1109/TIM.2021.3059500
https://doi.org/10.1016/j.ymssp.2014.10.014
https://doi.org/10.1016/j.measurement.2023.113478
https://doi.org/10.1016/j.compstruct.2024.118727
https://doi.org/10.1109/TIM.2022.3151169
https://doi.org/10.1016/j.ress.2024.109991
https://doi.org/10.1088/1361-6501/acca9b
https://doi.org/10.1016/j.ymssp.2024.111636
https://doi.org/10.1016/j.est.2022.104663
https://doi.org/10.1016/j.eswa.2023.120000
https://doi.org/10.1016/j.soildyn.2021.107105
https://doi.org/10.1016/j.ress.2024.110021
https://doi.org/10.1016/j.measurement.2020.108367
https://doi.org/10.1016/j.jsv.2018.07.039


Machines 2025, 13, 43 29 of 29

32. Chen, P.; He, A.; Zhang, T.; Dong, X. Weak vibration signal detection based on frequency domain cumulative averaging with DVS
system. Opt. Fiber Technol. 2024, 88, 103834. [CrossRef]

33. Mahapatra, A.G.; Horio, K. Classification of ictal and interictal EEG using RMS frequency, dominant frequency, root mean
instantaneous frequency square and their parameters ratio. Biomed. Signal Process. Control 2018, 44, 168–180. [CrossRef]

34. Hashim, S.; Shakya, P. A spectral kurtosis based blind deconvolution approach for spur gear fault diagnosis. ISA Trans. 2023, 142,
492–500. [CrossRef]

35. Han, S.; Li, D.; Li, K.; Wu, H.; Gao, Y.; Zhang, Y.; Yuan, R. Analysis and study of transmission line icing based on grey correlation
Pearson combinatorial optimization support vector machine. Measurement 2024, 236, 115086. [CrossRef]

36. Jiang, J.; Zhang, X.; Yuan, Z. Feature selection for classification with Spearman’s rank correlation coefficient-based self-information
in divergence-based fuzzy rough sets. Expert Syst. Appl. 2024, 249, 123633. [CrossRef]

37. Zhang, Z.; Tang, X.; Liu, C.; Li, X.; Ren, S. Multiple ultrasonic partial discharge DOA estimation performance of KPCA Pseudo-
Whitening mnc-FastICA. Measurement 2024, 231, 114596. [CrossRef]

38. Zhang, M.; Zhong, J.; Zhou, C.; Jia, X.; Zhu, X.; Huang, B. Deep learning-driven pavement crack analysis: Autoencoder-enhanced
crack feature extraction and structure classification. Eng. Appl. Artif. Intell. 2024, 132, 107949. [CrossRef]

39. Chaleshtori, A.E.; Aghaie, A. A novel bearing fault diagnosis approach using the Gaussian mixture model and the weighted
principal component analysis. Reliab. Eng. Syst. Saf. 2024, 242, 109720. [CrossRef]

40. Song, L.; Jin, Y.; Lin, T.; Zhao, S.; Wei, Z.; Wang, H. Remaining Useful Life Prediction Method Based on the Spatiotemporal Graph
and GCN Nested Parallel Route Model. IEEE Trans. Instrum. Meas. 2024, 73, 1–12. [CrossRef]

41. Kamat, P.; Kumar, S.; Sugandhi, R. Vibration-based anomaly pattern mining for remaining useful life (RUL) prediction in bearings.
J. Braz. Soc. Mech. Sci. Eng. 2024, 46, 290. [CrossRef]

42. Tao, L.; Wu, H.; Zheng, X. Remaining Useful Life Prediction of Lithium-ion Batteries Based on Multi-graph-network model. In
Proceedings of the 2024 43rd Chinese Control Conference (CCC), Kunming, China, 28–31 July 2024; pp. 8477–8482.

43. Ding, H.; Yang, L.; Cheng, Z.; Yang, Z. A remaining useful life prediction method for bearing based on deep neural networks.
Measurement 2021, 172, 108878. [CrossRef]

44. Yang, C.; Ma, J.; Wang, X.; Li, X.; Li, Z.; Luo, T. A novel based-performance degradation indicator RUL prediction model and its
application in rolling bearing. ISA Trans. 2022, 121, 349–364. [CrossRef] [PubMed]

45. Ding, G.; Wang, W.; Zhao, J. Prediction of remaining useful life of rolling bearing based on fractal dimension and convolutional
neural network. Meas. Control 2022, 55, 79–93. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1016/j.yofte.2024.103834
https://doi.org/10.1016/j.bspc.2018.04.007
https://doi.org/10.1016/j.isatra.2023.07.035
https://doi.org/10.1016/j.measurement.2024.115086
https://doi.org/10.1016/j.eswa.2024.123633
https://doi.org/10.1016/j.measurement.2024.114596
https://doi.org/10.1016/j.engappai.2024.107949
https://doi.org/10.1016/j.ress.2023.109720
https://doi.org/10.1109/TIM.2024.3370801
https://doi.org/10.1007/s40430-024-04872-4
https://doi.org/10.1016/j.measurement.2020.108878
https://doi.org/10.1016/j.isatra.2021.03.045
https://www.ncbi.nlm.nih.gov/pubmed/33845998
https://doi.org/10.1177/00202940211065674

	Introduction 
	Methodology 
	Methodological Approach to HI Extraction 
	HIs 
	Feature Selection Based on Variance 
	Pearson–Spearman Correlation Analysis 
	HIs Fusion with KPCA and Autoencoders 

	Bearing Degradation Stage Classification 
	Gaussian Mixture Model (GMM) 
	Graph Convolutional Network 
	GCN–LSTM 

	Bearing Remaining Useful Life Prediction 
	GraphSAGE 
	Adaptive Attention GraphSAGE–LSTM 


	Experimental Results 
	HI Extraction 
	Stage Classification 
	RUL Prediction 
	Parameter Analysis 

	Discussion 
	References

