
Academic Editor: Davide Astolfi

Received: 3 December 2024

Revised: 30 December 2024

Accepted: 6 January 2025

Published: 13 January 2025

Citation: Mohammadi, S.;

Rahmanian, V.; Sattarpanah

Karganroudi, S.; Adda, M. Smart

Defect Detection in Aero-Engines:

Evaluating Transfer Learning with

VGG19 and Data-Efficient Image

Transformer Models. Machines 2025,

13, 49. https://doi.org/10.3390/

machines13010049

Copyright: © 2025 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license

(https://creativecommons.org/

licenses/by/4.0/).

Article

Smart Defect Detection in Aero-Engines: Evaluating Transfer
Learning with VGG19 and Data-Efficient Image
Transformer Models
Samira Mohammadi 1,2,3, Vahid Rahmanian 1 , Sasan Sattarpanah Karganroudi 1,2,* and Mehdi Adda 3

1 Centre National Intégré du Manufacturier Intelligent, Université du Québec à Trois-Rivières, 575 Boul de
l’Université, Drummondville, QC J2C 0R5, Canada; samira.mohammadi2@uqtr.ca (S.M.);
vahid.rahmanian@uqtr.ca (V.R.)

2 Équipe de Recherche en Intégration CAO-Calcul, Department of Mechanical Engineering, Université du
Québec à Trois-Rivières, 575 Boul de l’Université, Drummondville, QC J2C 0R5, Canada

3 Departement of Mathematics, Informatics and Engineering, Université du Québec à Rimouski, 1595 Bd
Alphonse-Desjardins, Lévis, QC G6V 0A6, Canada; mehdi_adda@uqar.ca

* Correspondence: sattarpa@uqtr.ca

Abstract: This study explores the impact of transfer learning on enhancing deep learning
models for detecting defects in aero-engine components. We focused on metrics such as
accuracy, precision, recall, and loss to compare the performance of models VGG19 and
DeiT (data-efficient image transformer). RandomSearchCV was used for hyperparameter
optimization, and we selectively froze some layers during training to help better tailor the
models to our dataset. We conclude that the difference in performance across all metrics
can be attributed to the adoption of the transformer-based architecture by the DeiT model
as it does this well in capturing complex patterns in data. This research demonstrates
that transformer models hold promise for improving the accuracy and efficiency of defect
detection within the aerospace industry, which will, in turn, contribute to cleaner and more
sustainable aviation activities.

Keywords: transfer learning; defect detection; aero-engine components; transformer
models; deep learning

1. Introduction
Defects in aero-engine parts affect security, increase the danger of energy inefficiency,

and endanger the ecosystem. For safety reasons, details like gaps or other structural
fractures might be stress raisers, which may affect the reliability of the parent engine,
resulting in a higher probability of extreme failure or repair that was not planned [1].
Moreover, these faults can also reduce aerodynamic and thermal efficiency and, therefore,
increase the work requirements to maintain thrust levels of the engine and hence its fuel
use [2,3]. Cracks, which are minor details, can increase fuel requirements, which can then
lead to increased emissions [4]. Therefore, to maintain operational safety and operational
cost through fuel economy, replacing or mending broken parts should be performed
expeditiously in the aerospace industry. IoT devices for automated defect detection can
minimize these inefficiencies not only in fuel economy but also in operational cost [5,6].
ICAO, in one of its reports, noted that advanced detection of fuel fraud systems can stop
millions of metric tons of fuel from being burned by processes other than the combustion of
greenhouse gases [6]. Furthermore, degradation in key aero-engine components can result
in additional fuel consumption, emphasizing the importance of early detection. Techniques
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like Engine Health Monitoring (EHM) can significantly reduce inefficiencies and extend
component lifespan by identifying defects before they lead to severe performance issues [7].

Defects in aero-engine components lead to increased fuel consumption and environ-
mental impact. Studies show that engine deterioration can cause up to a 4.5% increase in
fuel consumption over the engine’s lifecycle [8]. This results in higher operational costs
and adds to carbon emissions. By employing predictive maintenance techniques such
as Engine Health Monitoring (EHM), airlines can reduce inefficiencies, saving fuel and
lowering emissions [7]. For instance, when engines operate under degraded conditions,
their fuel efficiency drops, which can cause a significant rise in exhaust gas temperatures.
Incorporating advanced diagnostic tools can prevent such inefficiencies, allowing for timely
maintenance interventions that minimize energy loss and extend component life [9]. The
presence of cracks and surface imperfections on components like turbines and compressor
blades in aero-engines is a significant concern since such defects limit the aircraft engines’
performance and reliability. These blades are subject to extreme temperatures and pressures,
but even the slightest structural defects make these blades vulnerable to several mechan-
ical failures [10]. For instance, if any small crack appears, it changes the flow dynamics
throughout the blade, which, in turn, causes imbalance and increased drag areas, thus
altering overall engine efficacy. Such disruptions make the engine work harder to provide
the same thrust, forcing the engine to burn through more fuel, which ultimately raises both
operational costs and the carbon footprint [11]. If not compensated, such a defect can be
quite detrimental as it shifts the blade angles, directly affecting their hydrodynamic perfor-
mance as air cannot drown smoothly around the blade’s surface. Over time, this changed
angle increases fuel usage and, ultimately, more greenhouse gas emissions. Furthermore,
cracks also lead to localized high stresses, which further damage the engine parts and
result in lower service lives for the components and even less economical maintenance [12].
Nondestructive inspection techniques like eddy current testing, ultrasonic testing, and
radiography have traditionally been used to detect these defects in aero-engine blades [13].

Nevertheless, these techniques remain dependent on highly competent inspectors
and may overlook small surface irregularities, which result in the inability to comprehend
a given defect in its entirety [14]. The reliance on deep learning-based AI algorithms in
automating the detection process has increased the likelihood of obtaining even the most
minor cracks with more excellent repeatability while decreasing the amount of human error
present [15]. Predictive maintenance techniques can significantly augment industrial sys-
tems by enabling intelligent, multi-omics approaches that include decision making during
real-time control. Such strategies are particularly suitable for the problems and objectives
in the field of aero-engine maintenance and repair within the fracture zone and above [16].
Furthermore, experimental analyses of TA-48 multi-stage centrifugal compressors enrich
the understanding of fault diagnosis and prediction methodologies in the manufacturing
domain, thereby validating the role of machine learning algorithms in the reliability and ef-
ficiency of the system [17]. In addition, the advanced technologies of Industry 4.0 have also
made smart inspections emerge in industries, including wind energy production [18,19].
For example, smart inspection frameworks for wind turbine blades are crucial in ensuring
the sustainability and efficiency of these devices, thus further demonstrating the need for
smart inspection strategies in damage assessment and planning of general maintenance. In
addition, non-contact inspection techniques, including thermography, laser stereography,
and machine vision, are quickly becoming important tools for inspecting wind turbine
blade defects, considering techno-economic issues and the concept of the Fourth Industrial
Revolution [20]. The robustness of fixtureless inspection methods for nonrigid parts has
been validated using a Kolmogorov–Smirnov (K–S) test to compare Computer-Aided In-
spection (CAI) results with actual measurement of defects. By integrating the finite element



Machines 2025, 13, 49 3 of 21

nonrigid registration (FENR) technique and compensating for synthetic noise effects, these
techniques accurately measure defect amplitude, area, and distance distributions, even
under noisy conditions [21]. The efficiency of utilizing CAI in smart inspection systems is
the minimization of human efforts in system usage. Integrating CAI leveraging Industry
4.0 tools enables automated quality control with less human effort. This methodology
aligns with a comprehensive intelligent framework for defect detection and real-time
monitoring, as discussed in the smart inspection and sustainability model [22]. Some
of the attributes of Maintenance 4.0 modernization include the incorporation of digital
twins, continuous monitoring, and predictive maintenance. Large and small- to medium-
scale industries implementing these approaches enable green manufacturing practices
as these processes should be of utmost concern for industries promoting an eco-friendly
economy [23]. By eliminating the need for physical fixtures, automatic virtual inspection
methods for nonrigid parts deliver accurate defect detection by effectively separating true
geometric deviations from flexible deformations. Leveraging advanced filtering techniques
such as curvature and von Mises stress, these methods increase accuracy while reducing
reliance on costly fixtures, as demonstrated in aerospace applications [24]. Smart geometric
nondestructive evaluation methods mark a major step forward in incorporating AI and
Industry 4.0 technologies into inspection systems. They enhance efficiency, boost detection
rates, and improve the interpretability of inspection processes. In contrast to traditional
approaches, these innovations enable virtual inspection systems to adopt automated smart
inspections, as highlighted in recent research [25]. Integrating automated detection can
significantly improve gas turbine engine efficiency. Deep learning-based approaches now
target microscopic defects in aero-engine blades, using models like convolutional neural
networks (CNNs) and enhanced YOLO variants. These architectures achieve high-accuracy,
real-time defect classification, substantially cutting down on manual inspections. A system-
atic review shows that these frameworks improve detection accuracy and streamline the
entire maintenance process, reducing fuel consumption and emissions [26]. Furthermore,
the review addresses the exploitation of advanced deep learning approaches. Moreover,
the review explores advanced deep learning techniques, such as Global Prior Transformer
Networks (GPT-Net) for aero-engine maintenance. This model offers enhanced capabilities
in detecting and classifying defects, enabling more proactive maintenance strategies to
prevent system failures. Such deep network applications align with sustainability objectives
by minimizing fuel usage and lowering the aerospace sector’s cost [27].

Deep learning improves defect inspection and quality control by automating processes
and increasing accuracy. Traditional methods use handcrafted features, which may not
always represent the large diversity of defects well. In contrast, deep learning architectures
may be more robust and discerning because they are trained to take these characteris-
tics straight from the data. Systems that use convolutional neural networks (CNNs) for
defect detection offer substantial advantages over other approaches, largely due to their
strong performance in image processing. One standout example is VGG19, introduced by
Simonyan et al., which is recognized for its deep architecture and small receptive fields,
enabling detailed feature extraction. VGG19 has also found applications in defect detection
across several industries [28]. Wan et al. [29] thus used a form of transfer learning based on
the VGG19 model to learn to detect defects in the surface of strip steel. The study faced
the detection of numerous and complicated surface defects in the strip steels, which the
conventional pictures could not effectively solve as they are less efficient in recognition and
generalization. By freezing the appropriate pre-trained layers in VGG19 and modifying
their learning rate to fit the use of the model, the group obtained a recognition rate of 97.5%
on the NEU surface dataset. This method showed considerable improvement over other
types of machine learning techniques. It proved the potential of using deep learning and
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transfer learning for defect detection when the number of samples or the image quality
is low. In a recent study, Thakkallapally [30] introduced a VGG19-based CNN model
for classifying weld defects in radiography images. The model was trained on a dataset
of 3000 images (128 × 128 pixels), divided into three categories. By leveraging transfer
learning on a Tesla K80 GPU, the model achieved a training accuracy of 93.17%, a validation
accuracy of 91.14%, and a test accuracy of 91%. This approach highlights the potential
of deep learning to streamline inspection processes and reliably detect weld defects in
industrial environments. Another study carried out by Alptekin Durmuşoğlu et al. [31]
investigated the identification of fabric defects using convolutional neural networks during
an IEEE Conference. It was observed in their study that fabric defects result in a reduction
in the quality of the product, and this is often controlled by visual inspection, which is
quite faulty, with errors as high as 40%. To address this, the authors implemented the con-
volutional neural network classifier VGG19 model to automatically classify fabric defects.
Their findings revealed that the application of the VGG19 model could detect fabric defects,
indicating that this model can efficiently automate the fabric quality assurance process,
thereby reducing manual interventions and improving the performance of the processes in
the textile sector.

Transformer-based approaches were originally designed for natural language pro-
cessing, but transformers have recently been adapted to computer vision tasks, yielding
promising outcomes [32]. The papers of Dosovitskiy et al. [33] provide evidence of a
paradigm shift in the processing of image data, where instead of treating images as sin-
gle states, they began to be treated as sequences of image patches, with self-attention
mechanisms being employed to extract intricate structures within the data. In addition,
Touvron et al. [34] suggested the DeiT model, whose purpose is primarily efficiency and
achieving performance even when smaller datasets impact scalability. Evidence of some
safety nets within these practices can be found in a greater number of effective long-range
dependencies and greater contexts within images, as became evident when transformers
were being used to detect defects [35]. In their research, Xie et al. [36] presented yet another
model. In this case, DPiT was intended for defect detection of photovoltaic solar cells
using a transformer-based approach. The model significantly outperformed others when
tested against common methods, including CNN-based approaches, achieving a first-rate
accuracy level of 91.7% in the Elpv dataset, which reinforces the case for the applicability
of transformers in this niche. Likewise, An et al. [37] noted improved performance in
detecting manufacturing defects of printed circuit boards when using the transformer
model, which enhances the strong edge of traditional models in terms of small and com-
plex defects. Wang et al. [38] conducted a comparison between hybrid transformers and
CNN in detecting geological faults. They discovered that although CNN-based models,
especially those combining CNNs and ViTs, are proficient in feature extraction, pure ViT
models demonstrate greater noise tolerance and data efficiency. ViT models, particularly
those pre-trained on ImageNet, offer precise fault predictions with minimal training data,
underscoring their potential to enhance seismic fault detection [39]. In a recent study,
Sarmadi et al. [40] explored how vision transformer (ViT) models can be used to diagnose
osteoporosis by analyzing X-ray images. They compared the performance of these ViT
models with more traditional CNNs and discovered that the ViTs outperformed their CNN
counterparts. This finding points to the significant potential of vision transformers in
medical image analysis.

The aerospace sector imposes rigorous requirements on the inspection and upkeep of
essential components like aero-engines. Traditional manual inspections are increasingly
complemented by automated techniques enabled by deep learning, which provide the
potential for quicker, more precise, and more reliable defect detection. Shen et al.’s [41] aim
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was to provide a deep learning framework that would enable greater and faster damage
detection to aircraft engines. The framework applies Fully Convolutional Networks (FCN)
to identify and classify damaged parts using video images from a borescope, like cracks
and burns. Everybody wins when the authors apply fine-tuning techniques; the neces-
sary training measurement decreases, and the entire system becomes more efficient. This
alien framework was tested on real-world data from an airline, and the results of damage
detection performed by the framework defined it as more advanced than the classical
solutions built on CNN architectures. Upadhyay et al. came up with a deep learning
framework to detect defects in aircraft engines, which satisfied the precision and recall
metrics above 90%. The model comprises customized U-Net and a GAN to enhance the
images, but it has limitations in detecting extremely tiny defects. Abdulrahman et al. [42]
prepared a survey on deep learning approaches used to detect defects in aero-engine blades.
This research also mentions the promise of models like CNN and YOLO for increasing
inspection effectiveness and some limitations, including the lack of data and sensitivity
to noise. The present authors emphasize that future studies should target unsupervised
learning, real-time processing of the incoming data, and multi-modal means to improve
the quality of defect detection and system resiliency. Zubayer et al. [43] developed a deep
learning approach using YOLOv8 to detect surface defects on the turbine and compressor
blades of jet engines made using additive manufacturing. This method achieved 99.5%
accuracy in only 280 s, representing a rapid and cost-effective quality control alternative
for the aerospace industry. Zhang et al. [44] proposed a transformer-based approach for
the detection of defects in turbine blades of aero-engines with advanced multi-scale fusion
and attention to detail. This method is helpful for problems such as multi-scale defects and
imbalanced datasets as it beats previous techniques and is beneficial for aerospace quality
control. A new multi-headed attention network for intelligent borescope inspection of
aero-engine blades has been proposed by Shang et al. [45]. Their Global Prior Transformer
Network enhances surface damage identification by establishing pixel-to-pixel relation-
ships and label information via a graph convolution network. The approach achieved
an 84.9 mAP on a simulated blade dataset, demonstrating its effectiveness in practical
applications. Table 1 outlines the core literature themes, covering the impact of cracks on
fuel efficiency, traditional vs. automated NDI, predictive maintenance within Industry 4.0,
deep learning methods, and advanced aero-engine detection [27].

Table 1. Overview of key literature themes and their relevant references.

Main Subject/Focus References

Cracks and Fuel Efficiency
Discusses how minor imperfections (e.g., cracks) in aero-engine components
increase fuel consumption and emissions and emphasizes the need for early
detection to mitigate performance losses.

[1–10,12]

Traditional vs. Automated NDI
Compares conventional nondestructive inspection (NDI) techniques (eddy current,
ultrasonic, and radiography) with automated or AI-based methods, highlighting
the limitations of manual approaches.

[13–15,18,19,25–27,41–45]

Predictive Maintenance and Industry 4.0
Covers real-time monitoring, Industry 4.0 frameworks, fixtureless inspection
methods, and smart inspection systems that reduce downtime, extend equipment
life, and enhance sustainability.

[16–25]
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Table 1. Cont.

Main Subject/Focus References

Deep Learning Approaches (CNN and Transformers)
Demonstrates the use of CNNs (e.g., VGG19) and transformer-based models (e.g.,
ViT, DeiT) for detecting micro-level defects in various domains, including
aero-engine components.

[14,15,26–45]

Advanced Aero-Engine Defect Detection
Focuses on specialized models (FCN, YOLO, and Global Prior Transformer) and
case studies for high-accuracy defect detection and smart borescope inspections,
showing how these methods improve reliability and reduce fuel consumption.

[26,27,41–45]

The recent literature confirms that AI-driven inspection is viable for Maintenance,
Repair, and Overhaul (MRO) facilities and on-wing scenarios. Shang et al. proposed
a Mask R-CNN-based pipeline that accurately localizes and segments blade damage in
borescope images, while Uzun employed Faster R-CNN with an Inception v2 feature
extractor to detect cracks, burns, dents, and nicks in actual borescope data with average
accuracies above 88% [46]. A subsequent study by Shang et al. [47] introduced a graph
neural network to handle irregular texture patterns better and enhance in situ detection
reliability. Meanwhile, comparative analyses by Aust and Pons indicate that deep learning
approaches can perform at least as consistently as human operators, mitigating issues like
fatigue or subjectivity; Aust et al. [48,49] extended these insights with a decision support
system for gas turbine blade inspections. Other works address specialized tasks, such as
the automated detection of surface irregularities on additively manufactured blades [44],
systematic risk assessments of visual inspection [50,51], and performance prognostics from
an airline perspective. Studies by Ezhilarasu et al. [52] and Doğru et al. [53] highlight
how CNN-based frameworks can integrate into broader aircraft maintenance workflows,
while additional advances like knowledge transfer in aircraft design, long short-term
memory networks for remaining useful life estimation, and sensor-based load monitoring
point to a growing industrial focus on deep learning solutions [53–55]. Collectively, these
deployments validate CNN- and transformer-based methods for practical, near real-time
defect detection in aero-engine MRO environments, underscoring the industrial relevance
of our proposed approach.

Recent advances in deep learning have yielded significant progress in the automated
detection of aero-engine defects. For instance, Li et al. propose a coarse-to-fine framework
tailored explicitly for high-resolution blade images, demonstrating improved accuracy
in detecting tiny surface flaws by combining region filtering with a deep convolutional
architecture [56]. Similarly, Li et al. introduces an improved YOLOv5 variant for real-time
surface defect detection, using anchor tuning and an attention mechanism that boosts
mean average precision to nearly 98.3% [26]. Beyond these application-specific approaches,
Abdulrahman et al. offer a comprehensive review of deep learning techniques for aero-
engine blade inspection, underscoring the consistent outperformance of modern methods
over traditional machine vision algorithms [42].

In parallel, the growing body of research on transfer learning in industrial defect
detection suggests that pre-trained models can enhance accuracy and robustness under
data-scarce conditions. Liu et al. [57] apply transfer learning to small datasets of injection-
molded products, achieving near-perfect detection accuracy by leveraging data augmenta-
tion and knowledge distillation from large-scale vision tasks. In the realm of casting and
welding inspection, Ferguson et al. [58] demonstrate how combining Mask R-CNN with a
multi-task transfer strategy can significantly reduce the volume of labeled training data
needed while preserving high detection rates. A similar trend is evident in the work of
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Abu et al. [59], who evaluated multiple architectures, including ResNet, VGG, DenseNet,
and MobileNet, for steel surface defect detection, concluding that the choice of network
and proper augmentation are critical for handling multi-class classification in industrial set-
tings. Meanwhile, several studies have highlighted VGG19’s potential for accurate feature
extraction on challenging defect datasets. Wan et al. [29] designed a transfer learning-based
approach for strip steel surface detection, revealing how freezing certain layers in VGG19
helps mitigate generalization problems arising from limited data. Madhavan et al. [60]
explored the same architecture for radiographic weld inspection, attaining high preci-
sion by focusing on fine-tuning the network’s deeper layers. Sun et al. [61] built upon
transformer-based frameworks (i.e., DETR) to achieve high precision in aero-engine blade
surface detection, leveraging attention modules that facilitate the modeling of non-local
dependencies. Comparable findings appear in Vasan et al. [62], who investigated a vision
transformer for steel surface anomalies and reported ~96.39% accuracy across multiple
defect categories.

Broader industrial contexts support these observations. For example, Liu et al. ’s [57]
detailed approach to injection molding aligns with the insights from Ferguson et al. on
casting defects [58], suggesting that transfer learning and carefully engineered deep models
are central to reliable fault detection across different manufacturing domains. A similar
methodology is confirmed by Abu et al. [59], whose experiments with multiple CNNs
and small industrial datasets reinforce the utility of fine-tuning models. Moreover, Apos-
tolopoulos and Tzani propose a multi-path version of the VGG19 network, illustrating
how extra feature-fusion layers can further boost classification accuracy in general in-
dustrial defect scenarios [63,64]. Additional enhancements to vision transformers are
observed in civil structural inspections, where Eltouny et al. [65,66] shows that carefully
designed scaling networks can retain fine-grained details in large images without com-
promising computational feasibility. Even outside the traditional defect landscape, such
as medical image analysis for eye disorders, VGG19 exhibits notable performance in
identifying subtle features of faults [67]. These combined results underscore the grow-
ing consensus that both convolutional architectures (e.g., VGG19) and transformer-based
approaches can be optimized—even with limited or unevenly distributed datasets—to
yield robust, high-accuracy defect detection models across a broad range of industrial
and research applications. Table 2 compares CNN-based methods with transformer-based
approaches for defect detection, highlighting typical accuracy ranges, key benefits, and
potential limitations.

Recent studies on automated defect detection in aero-engine components have pre-
dominantly relied on CNN-based architecture or shallow machine learning algorithms that
do not fully capture complex texture variations. While models such as VGG19 have shown
promising results, few investigations have systematically evaluated and contrasted these
methods with the more recent transformer-based architecture, particularly in safety-critical
aerospace contexts. Moreover, conventional transfer-learning approaches often freeze too
many or too few layers, leading to suboptimal feature extraction in limited-data scenarios.
These practices highlight a key gap in leveraging state-of-the-art transformers alongside
optimal hyperparameter tuning strategies to ensure robust detection, especially when
dealing with diverse defect classes and image quality variability.
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Table 2. Comparison of CNN-based and transformer-based approaches for industrial defect detection,
highlighting typical accuracy, key observations, and representative references.

Approach Typical Performance &
Observations References

CNN-Based (e.g., YOLO,
VGG19, Mask R-CNN, ...)

Generally, achieves ~80–99%
accuracy for defect detection or
classification in various industrial
domains (aero-engine blades, strip
steel, weld radiography, etc.).
Performance benefits greatly from
transfer learning, data
augmentation, and proper
hyperparameter tuning. CNNs are
often faster to train but can miss
subtle defects if not carefully
fine-tuned or if data are limited.

[14,15,26,28–31,41–43,45,53,56–60,63,64,67]

Transformer-Based (e.g.,
DETR, vision transformer)

Commonly yields ~90–99%
accuracy due to the self-attention
mechanism’s strength in capturing
global context and fine-grained
details. Particularly advantageous
for large, high-resolution images
and diverse defect types. However,
these methods can be more
resource-intensive, requiring
greater computational power for
training and inference.

[27,32–37,39,40,44,61,62,66]

To address these challenges, this paper applies and compares VGG19 and a DeiT
(data-efficient image transformer) model under a unified, carefully controlled experimental
design. We selectively freeze layers to fine-tune each model on the specialized aero-engine
dataset, identifying the ideal transfer learning strategy using RandomSearchCV for hyper-
parameter optimization. In contrast to existing work, our approach offers (1) a rigorous
head-to-head performance comparison between CNN and transformer architectures us-
ing standard accuracy, precision, recall, and AUC metrics; (2) UMAP-based visualization
to illuminate how learned feature embeddings separate distinct defect types; and (3) an
evidence-based demonstration that DeiT achieves a measurable performance boost (up to
7–10% higher accuracy and recall) over conventional CNN solutions. By systematically
evaluating and refining both CNN- and transformer-based pipelines, this study contributes
a novel roadmap for achieving more efficient and reliable defect detection in aero-engine
components, with implications for greener, safer aviation practices.

2. Materials and Methods
Convolutional neural network (CNN): CNN belongs to a family of deep learning

models intended for picture analysis. It is able to examine the images and interpret basic
features, including, but not limited to, edges and textures. The layers of the network are
composed such that they locate the relevant part of the image, compress the information,
and, finally, encode the meaning of the whole picture into a single ‘vector’. CNN models
are commonly used to perform object detection in images. The most widely used CNN
models are ResNet50, VGG16, and VGG19 [67]. Apart from the last two, which are layers
that are fully connected, VGG19 is made up of nineteen fully connected layers and sixteen
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convolutional layers. Because it has been previously trained on the ImageNet dataset, it
learns more about the multitude of images that it can see [68].

Vision transformer (ViT): ViT transforms the traditional usage of transformer architec-
ture for visual tasks by breaking the image into patches and treating it as a sequence. These
patches, which are highly processed to learn details as well as global features, are finally
connected to a prediction layer. ViT models have also been demonstrated to be efficient for
image recognition with configurations that consider the relationship between individual
patches and the whole patch layout as well [33]. ViT-base-patch16-224 (pre-trained) con-
siders an image as made of 16 × 16 pixel square patches and applies a transformer-based
encoder to examine inter-patch relationships. It is pre-trained on the ImageNet dataset and
thus has the capabilities of recognizing considerably diverse visual features, which, in turn,
enhance its performance in image classification tasks [34].

Transfer learning: Transfer learning is an approach in which a model developed for a
certain task is reused as a starting point for a model on a second task [69]. This method
enables speed-up in the training phase as the model does not have to begin de novo and
also minimizes the requirement for obtaining vast amounts of supervised data, which is
expensive and time-consuming [70]. Since these models have developed an understanding
of general concepts and spatial relationships, they can be further trained to do well on
any specific task with only a few additional training examples. This attribute is exactly
what makes transfer learning very important in conditions where there is limited data
availability, as well as enhancing the efficiency and performance of the model [71].

Aero-engines are the major components of aviation technology, whereby flying from
point A to B is carried out safely and efficiently. Inevitably, finding defects in aero-engine
design and functionality is important as it helps ensure safety and operability. Incorpo-
rating artificial intelligence and machine learning into areas such as inspections, routine
checks, and maintenance of aviation machines significantly enhances safety while reducing
operational costs. AI-powered technologies have effectively inspected aero-engines so
that small defects that may be difficult to see during inspections are not missed. Through
image analysis and video, AI tools get to analyze overhead defects not visible to the human
eye. Such computer vision algorithms have proved adequacy in the detection of issues in
the engine parts; hence, problems or failures can be prevented or diagnosed at an early
stage [72]. The other branch of artificial intelligence has to do with predictive maintenance,
where historical records for maintenance inspections of parts of a machine are put into a
machine learning algorithm, which can then predict how long a given component of an
engine is likely to remain intact. This helps reduction in cases of unplanned unavailability
of the aero-engines, thereby assisting greatly in enhancing the reliability and safety of the
aero-engines [73]. Regarding this study, we target the finding of defects in aero-engines,
which are integral components that enable flying safely and efficiently. We apply AI and
ML technologies in inspecting engines to detect tiny defects that might go unnoticed in
regular inspections.

Dataset: For this research, we utilized a specialized dataset from Kaggle specifically
designed for detecting and identifying defects in aero-engines (https://www.kaggle.com/
discussions/accomplishments/, accessed on 3 December 2024). The dataset consists of high-
resolution images of turbine blades from different engine types, each carefully annotated
with detailed information about the defects’ location and nature. This structure allows for
precise analysis and the application of machine learning algorithms for defect detection and
predictive maintenance, ultimately enhancing the reliability and safety of aircraft engines.
Figure 1 shows the samples of defects. To address the class imbalance in the dataset, class
weights were calculated using the compute class weight function from scikit-learn [74].

https://www.kaggle.com/discussions/accomplishments/
https://www.kaggle.com/discussions/accomplishments/
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These weights were incorporated into the loss function during training to ensure that the
model treated all classes equitably, preventing it from favoring the more frequent classes.
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Environment setup: The experimental setup was established using Python, incor-
porating key libraries such as PyTorch, torchvision, transformers, UMAP-learn, plotly,
scikit-learn, and SHAP. These libraries were chosen for their strengths in deep learning,
data augmentation, dimensionality reduction, and model interpretability. The environment
was configured on a GPU-enabled machine to speed up model training.

Data augmentation and preprocessing: Data augmentation was employed to enhance
the diversity of the training dataset and minimize the risk of overfitting. By artificially
expanding the dataset, the model was exposed to a broader range of scenarios, helping to
improve its generalization to unseen data. The augmentation pipeline included several key
transformations aimed at altering the images while maintaining their crucial features. A key
transformation was the Random Resized Crop, which resized each image to a random size
and aspect ratio before cropping it to the model’s required input size of 224 × 224 pixels.
This technique helps the model handle varying image scales, enhancing its robustness to
size variations. Additionally, Random Horizontal and Vertical Flips were applied, enabling
the images to be flipped in both directions. This transformation mimics different viewing
angles and orientations, which is especially helpful for capturing the natural variations
found in real-world image data. To further increase diversity in the dataset, Random
Rotation was employed to rotate the images within a ±15-degree range. This adjustment
helps the model remain unaffected by minor rotations that may occur in real-world situa-
tions. Another transformation applied in the pipeline was Color Jitter, which randomly
adjusted the brightness, contrast, saturation, and hue of the images. These changes in color
properties helped train the model to manage variations in lighting and color conditions
typically encountered in different environments. Additionally, Random Grayscale was
used to convert the images to grayscale with a certain probability, simulating different
lighting conditions and ensuring the model could generalize across various color informa-
tion. Finally, normalization was performed to standardize the images, adjusting the pixel
values to a mean of [0.485, 0.456, 0.406] and a standard deviation of [0.229, 0.224, 0.225],
aligning with the input requirements of the pre-trained models used in this study. This
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step is crucial for ensuring that the input data match the distribution expected by the
models, facilitating effective learning. All of these transformations were implemented
using the torchvision.transforms module and were consistently applied to both the training
and validation sets. This consistency ensured that the model learned from a diverse yet
standardized dataset, enhancing its performance on both seen and unseen data [75,76].

Feature extraction: Feature extraction is the process of transforming raw data into
features or a set of features in such a way that their use optimizes multiple algorithms’
performance in terms of accuracy and efficiency. It involves the selection and representa-
tion of the main attributes of the data and often entails data dimension reduction to the
most prominent factors. In the case of an image, feature extraction methods perform the
identification of edges, textures, shapes, and colors, which is essential for classification and
recognition purposes. As indicated by Bengio et al. [77], feature extraction is one of the
key conditions for success in working with deep learning models, as this operation makes
it possible to create models that progressively incorporate the knowledge of structures
within the data by passing through several layers, enhancing its generalization to novel
tasks and datasets. The VGG19 model was selected for its deep convolutional layers to
obtain feature representations of the images [30]. The classification layer was modified
to achieve the elimination of the last fully connected layer such that the model was able
to create embeddings appropriate for the tasks of classification that followed. Moreover,
the last two layers of the model were modified to match the distinctive properties of the
aero-engine defect dataset more closely. So, we used a DeiT model, which is based on
the transformer architecture for image classification [34]. Like the previous approach, the
DeiT model was also fine-tuned, but, in this case, it was only unfreezing the last few layers
of its transformer encoder that allowed it to learn the features of the dataset. The model
made sense of the images and created feature embeddings, which were used for categorical
classification. These feature embeddings, once created by both models, were placed in
a DataFrame and then were integrated with the associated class labels for the next steps
of examination.

Dimensionality reduction and visualization: UMAP (Uniform Manifold Approxima-
tion and Projection) was employed for dimensionality reduction [78]. This reduced the
high-dimensional feature space into two dimensions for ease of visualizing the distribution
of the classes in the given dataset. The UMAP projections were shown in the form of scatter
plots to bring out how well the classes could be discriminated against based on the features
that were extracted.

Model training and hyperparameter tuning: The feature embeddings were classified
by a specially developed neural network model. It was composed of dense layers with
ReLU activation functions, dropout layers for regularization, and a SoftMax layer, which
produced class probabilities. To improve the efficiency of the model, hyperparameter tuning
was performed with RandomizedSearchCV, which set hidden layer sizes, a learning rate,
dropout rate, and weight decay [79]. This process revolved around the search for the grid
of parameters defined beforehand that would ensure the best possible metric performance
of the configuration. Therefore, for the study, we used random search techniques to find
out the most suitable hyperparameters for our model. The random search was conducted
over a predefined space of hyperparameters, including the following: learning rate, weight
decay, hidden layer sizes, and dropout rate. The best hyperparameters are shown in
Table 3.
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Table 3. Best hyperparameters and search ranges.

Hyperparameter Search Area Best Value

Weight Decay [1 × 10−5, 1 × 10−4, 1 × 10−3, 1 × 10−2] 1 × 10−5

Learning Rate (lr) [0.001, 0.01, 0.1] 0.01

Hidden Size 1 [64, 128, 256] 128

Hidden Size 2 [128, 256, 512] 256

Dropout Rate [0.2, 0.3, 0.5] 0.5

Cross-validation and model evaluation: The model’s performance was evaluated
using stratified K-fold cross-validation. This technique ensures each fold contains a bal-
anced representation of all classes, reducing bias in the assessment. Metrics like accuracy,
precision, recall, and ROC-AUC were measured, providing a comprehensive evaluation of
the model’s performance across different data splits [80].

Figure 2 shows the end-to-end workflow of our proposed aero-engine defect detection
approach. It begins with data preparation and augmentation, followed by model initializa-
tion using either VGG19 or DeiT architectures. Next, we perform hyperparameter tuning
using RandomizedSearchCV, implement K-fold cross-validation to evaluate and refine
the models, and then conduct a final evaluation. Lastly, interpretability and visualization
provide insights into model decisions and the learned representations.
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3. Results
In this section, we present the UMAP projections of the embeddings from both the

DeiT and VGG19 models. The UMAP projections of the embeddings of VGG19 and
DeiT models are depicted in Figures 3a and 3b, respectively. For example, Figure 3a
demonstrates the integration of UMAP and the embedding projections derived from the
VGG19 model. The plot shows the distribution of the embeddings across damage feature
classes, such as dot, scratch, crease, and damage. Similarly, Figure 3b illustrates the
UMAP projection of the embeddings using the DeiT model, with the embeddings for the
same set of defect classes (scratch, damage, crease, and dot) visualized. These figures
provide a visual representation of how each model encodes the different classes within the
embedding space.
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We assessed the performance of two different deep learning models, VGG19 and DeiT,
over ten training epochs, using various metrics: loss, accuracy, precision, and recall. The
evaluation was conducted separately for both the training and validation datasets. The
results are presented in Figure 4 and Table 4. The training phase for VGG19 showed a
consistent decrease in loss from 1.796 to 0.354, demonstrating effective learning across
epochs. The accuracy improved significantly from 31.36% in the first epoch to 80.49% by
the tenth epoch. Similarly, precision and recall all exhibited upward trends, indicating
improved predictive performance and reliability of the model over time. In the validation
phase, the loss for VGG19 decreased from 1.054 to 0.590, and accuracy saw a steady increase,
reaching up to 73.40% in the final epoch. For the DeiT model, the training metrics showed a
sharp reduction in loss from 1.091 to 0.204, paired with a notable increase in accuracy from
59.77% to 88.19%. The precision and recall metrics showed a similar pattern, highlighting
the model’s growing ability to classify accurately and with minimal errors. Validation
results for DeiT further confirmed its robustness, with loss tapering down from 0.606 to
0.244 and accuracy progressively climbing to 87.71% by the tenth epoch. Precision remained
exceptionally high, showcasing the model’s consistent performance.
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Table 4. VGG19 vs. DeiT: metrics and performance comparison.

Model Epoch Loss
(Train/Val)

Accuracy
(Train/Val)

Precision
(Train/Val)

Recall
(Train/Val)

VGG19 1 1.7957/1.0539 0.3136/0.4185 0.4698/0.6847 0.3136/0.4185

VGG19 10 0.3541/0.5902 0.8049/0.7340 0.8498/0.7962 0.8049/0.7340

DeiT 1 1.0906/0.6063 0.5977/0.7883 0.6849/0.8314 0.5977/0.7883

DeiT 10 0.2037/0.2438 0.8819/0.8771 0.9110/0.9142 0.8819/0.8771

VGG19 ROC (Receiver Operation Characteristic) curve analysis: The ROC curves for
the VGG19 model, as shown in Figure 5a, demonstrate the model’s performance across
four classes during the training and validation phases. The AUC (area under the curve)
scores for the training sets are 0.85 for class 0, 0.97 for class 1, 0.93 for class 2, and 0.93
for class 3. In the validation sets, the AUC scores are slightly lower at 0.81 for class 0,
0.96 for class 1, 0.90 for class 2, and 0.90 for class 3. For the DeiT model, illustrated in
Figure 5b, the ROC curves highlight consistent and high performance across all classes.
The training phase AUC scores are impressive: 0.94 for class 0, 0.98 for class 1, 0.97 for class
2, and 0.99 for class 3. The validation phase maintains this high level of performance, with
AUC scores of 0.95 for class 0, 0.98 for class 1, 0.97 for class 2, and 0.99 for class 3. These
results showcase the DeiT model’s exceptional ability to classify defects accurately across
all evaluated classes.
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4. Discussion
The UMAP projections included in Figure 3a,b were helpful in understanding how

VGG19 and DeiT models could classify the defect classes in accordance with the features
they have learned. In the case of the VGG19 UMAP projection, some clustering of the defect
classes, including dot, scratch, crease, and damage, is shown. However, there appears to be
a noticeable overlap among the classes, particularly between scratch and crease. This could
imply that VGG19 might have difficulty in differentiating some classes from others due to
its ability to extract the necessary features being somewhat limited. This situation could be
a consequence of the architecture of VGG19, where deep convolutional layers are used, and
they are not always reliable in discriminating between classes. In contrast, the clustering
of the defect classes in the UMAP projection for the DeiT model was more dispersed. The
separation between classes appears to be less marked than the VGG19, which may suggest
that DeiT may be picking up more general but unreliable spatial patterns of the classes.
This could be because of the architecture of DeiT, which uses transformers to capture
dependencies over long distances, which might result in class distinctions that are less
clean-cut and more subtle. Figure 4 and Table 4 serve as a foundation for the discussion by
providing a comparison of performance between VGG19 and DeiT models with respect to
ten epochs and various performance metrics, such as loss, accuracy, precision, and recall.
The interplay among the training data, validation dataset, and how each model forks out
upon learning varies from one model to another.

Loss: The graphs show that there is a consistent decrease in loss in all epochs for both
models, which is a good sign for any model in terms of training. VGG19, for instance,
records a higher training loss at the first epoch at 1.7957, which later reduces to 0.3541
at epoch 10. On the other hand, with regards, conversely, to DeiT, it recorded a loss of
1.0906 and 0.2037 at the first and last epoch, respectively. The thicker line in the case of
DeiT implies that the model is learning a great deal more, and this could be due to the
model architecture of the transformer, which seems to be able to learn intricate features
and relationships in the dataset.

Accuracy: DeiT has a rate of performance that is above that of VGG19, and this trend is
observed in the model throughout the training. Accuracies in VGG19 began at 31.36% and
improved to 80.49%, while the figures for DeiT started at 59.77% before reaching 88.19%
at the end of its training. The higher starting accuracy for DeiT could signify that due to
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its architecture, the model is able to extract the required features well enough even before
completing the initial phases of the training, resulting in better overall performance during
the training.

Precision and recall: The other distinctive trends when comparing the two models are
the trends in precision and recall. For the case of VGG19, precision goes up from 0.4698 to
0.8498, and recall rises from 0.3136 to 0.8049, indicating consistent improvement. On the
other hand, DeiT performs better, as precision increases from 0.6849 to 0.9110 and recall
increases from 0.5977 to 0.8819. The better performance of DeiT in these metrics can be
attributed to its architecture, which makes it possible to attain a higher performance of the
respective defect classes with great accuracy.

The similarities regarding the training and validation metrics in both models imply
that the models are able to perform well with different splits of data. The results achieved
using DeiT seem to suggest that there is a steady increase in score across all metrics, and
perhaps this is due to the strength of the transformer architecture used. VGG19 also shows
significant improvements, for example, in precision and recall values, and this indicates that
it is able to learn and recognize the defective classes very well. The comparison presented
in Figure 4 and Table 2 clearly demonstrates the advantages of DeiT in terms of learning
speed, generalization, and performance on the model metrics. This contrasts with VGG19,
which, though good and showing considerable improvement, may take longer to achieve
the same performance because of the differences in the architecture of the two models.
These results support the conclusion that DeiT’s transformer-based technology may offer
potential advantages for operations requiring more accurate and robust defect classification.

The ROC curves of VGG19 and DeiT, as illustrated in Figure 5, allow further assess-
ment of each model’s ability to classify the different defect classes. The ROC curves for
VGG19 indicate that there was an anticipated achievement of between 0.85 and 0.93 AUC
scores during the training of the network. However, the AUC figures were somewhat lower
than expected, especially the AUC of class 0, which fell from 0.85 to 0.81 on average. This
drop in performance might suggest that the VGG19 model is struggling to generalize on
unseen data and, therefore, might be overfitting the training data. The deeper network
might be learning some of the noise variants as well as useful features, which affects its
performance on the testing datasets. The ROC curves for DeiT are satisfactory, with an AUC
score of 0.95 and great reach across the targeted goal across the training set and validation
set. Perhaps this could suggest that the adaptive transformer architecture in DeiT does
equip the model to generalize well on challenging unseen data when classifying different
classes. The high AUC measures have been indicative that the defect classification tasks
that are performed by DeiT are likely to be more accurate, robust, and reproducible.

5. Conclusions
The focus of this work was on the application of transfer learning techniques for the

purposes of enhancing the generalization of deep learning models for the aero-engine defect
detection task. The idea behind transfer learning was to utilize models that had already
been trained so that meaningful features could be extracted from them using only a small
amount of training on a limited dataset. For transfer learning purposes, the models were
first tuned using the RandomSearchCV to adjust the learning parameters, and partially
frozen layers were used for the length of the model to ensure that learned features were
kept and that the model’s application to a new function was possible. Our comparative
analysis suggested that the main parameters of the DeiT model were better than the VGG19
model in terms of metrics such as accuracy, precision, and recall. Among various reasons,
this performance can be attributed to DeiT’s transformer-based architecture, which is
relatively outstanding in complex pattern recognition of the data. Although there were
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some significant enhancements with VGG19 as well, the performance metrics of VGG19
showed weaker performance than the DeiT model.

Apart from aiding in the achievements of the detection of defects, this research focuses
on the broader use of such developments in terms of improving the efficiency of aviation
operations. The use of deep learning networks, such as DeiT, for defect detection may
enhance maintenance regimes and consequently cut maintenance time. This is consistent
with green aviation objectives, since it assists in achieving robust engine performance
in-field. In subsequent works, perhaps more advanced approaches, such as unsupervised
learning or domain adaptation, might be tested to make the model more robust. Moreover,
the problems faced in this work could be solved with the use of alternative model config-
urations or by including different sources of data that could enhance defect detection in
aerospace systems.

In the future, several further enhancement actions would bolster the contributions of
this work to the real world and broaden the scope of practical applicability under actual
aero-engine environments. First, their application for borescope inspection, integrating the
proposed system, means that the pictures are taken on the wing or at MRO (Maintenance,
Repair, and Overhaul) facilities, which would test the system under various light, angle,
and operational parameters. Second, expanding the types of defects to include rub-tipping,
erosion, and frond object damage would increase the generalizability and ensure that
the method addresses a larger proportion of engine abnormalities. Third, with regard to
the domain adaptation methods, the success of the research dataset and the operational
engine image is achieved with minimal loss of accuracy even though the images are taken
under different conditions. Finally, the introduction of semi- or unsupervised learning
may ease the burden of labeling data but preserve a high detection rate in industrial
circumstances involving a sole feature of intricate or little data, which is of great significance.
Following these developments, the suggested framework is expected to be closer to large-
scale applications, thereby improving the predictive maintenance approaches, reducing
operational expenses, and reinforcing the security and environmentally friendly principles
of the aerospace industry.
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