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Abstract: In this article, the results of an experimental investigation and a 1D modeling
activity on the steady-state performance of a wastegated turbocharger turbine for spark
ignition engines are presented. An experimental campaign to analyze the turbine per-
formance for different waste-gate valve openings was conducted at the test bench for
components of propulsion systems of the University of Genoa. Thanks to the experimental
activity, a 1D model is developed to assess the interaction between the flow through the
impeller and the by-pass port. Advanced modeling techniques are crucial for improving
the assessment of turbocharger turbines performance and, consequently, enhancing the
engine–turbocharger matching calculation. The initial tuning of the model is based on
turbine characteristic maps obtained with the by-pass port kept closed. The study then
highlights the waste-gate valve behavior considering its different openings. It was found
that a more refined model is necessary to accurately define the mass flow rate through the
waste-gate valve. After independently tuning the 1D models of the turbine and the waste-
gate valve, their behavior is analyzed in parallel-flow conditions. The results highlight
significant interactions between the two components that must be taken into account to
reduce inaccuracies in the engine-turbocharger matching calculation. These interactions
lead to a reduced swallowing capacity of the turbine impeller. This reduction has an impact
on the power delivered to the compressor, the boost pressure, and, consequently, the engine
backpressure. The results suggest that methods generally adopted that consider the by-pass
valve and the turbine as two nozzles working in parallel under the same thermodynamic
condition could be insufficient to accurately assess the turbocharger behavior.

Keywords: turbocharger; turbine; waste-gate; internal combustion engine; performance;
experimental; 1D modeling

1. Introduction
The automotive industry is faced with a major challenge in reducing emissions. The

European Union (EU) aims to achieve net-zero greenhouse gas emissions by 2050 through
the Green Deal program. Notably, the legislation sets even stricter targets for the transport
sector, mandating that all new cars and light commercial vehicles must achieve zero
CO2 tailpipe emissions by 2035 [1]. Interim targets require a 55% reduction in emissions
from cars and a 50% reduction from heavy vehicles by 2030, relative to 1990 levels [2–4].
Currently, the focus is on implementing the Euro 7 standard, which imposes even stricter
limits than previous regulations [5]. To ensure compliance with this standard, extensive
research is being conducted on engine geometries and materials, new technologies for
measuring and controlling pollutant concentrations, and the development of innovative
fuels [6–10].
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To meet these stringent targets, the engine performance has to be optimized over a
wide operating range. To achieve these results a correct matching between the internal
combustion engine and the turbocharging system is crucial since it involves parameters
such as low-end torque, pumping losses, and fuel consumption [11]. The correct selection
of the boosting system must consider several factors, and it is often a matter of compromise.
The size of the turbine and compressor is closely related to the operating conditions of the
engine where performance and fuel consumption are to be optimized [12,13]. Additionally,
it has a significant impact on the engine’s transient performance and, consequently, on the
vehicle’s drivability [14–16].

Furthermore, it is important to consider both the operational simplicity and the cost as-
sociated with the turbine regulating system. An improvement in the management strategy
of the turbocharger regulating device can significantly refine the engine performance and
help to reduce emissions and fuel consumption [17,18]. This refinement process requires a
control strategy to prevent over-boost and over-speed conditions, as well as to manage the
engine torque at acceptable values [19].

The waste-gate valve is the simplest method for controlling boost pressure level,
and many authors studied in detail its impact on turbocharger performance. In [20], an
experimental investigation was developed by Capobianco and Marelli to measure the
swallowing capacity of the turbine impeller and by-pass port, highlighting an interaction
between each flow component. In [21], an experimental methodology was developed by
Serrano et al. to characterize the discharge coefficient of a waste-gate valve to be fitted
into 1D gas dynamic codes. To achieve these results, the turbocharger was tested at the
gas stand under steady flow conditions at different valve positions and high turbine inlet
temperatures. Another experimental study was presented by Capobianco and Marelli
in [22] to analyze the effects of pulsating flow on a turbocharger turbine with a waste-gate
valve in open position. In particular, the instantaneous mass flow rate factor and the total-
to-static efficiency define hysteresis loops surrounding the steady-state curve, the size of
which increases when the waste-gate valve is open. The opening of the waste-gate increased
flow unsteadiness, and the filling and emptying effects in the circuit. Instead, a modeling
approach was used by Deng et al. [23] to study the impact of pulsating flow on a wastegated
turbine. The turbine was modeled using a dual-orifice approach, a lumped capacitance heat
transfer model, and a novel pneumatic actuator mechanism model, all validated against
experimental data. The study revealed that at frequencies above 100 Hz, the mass flow
parameter showed significant dynamic behavior, making the quasi-steady assumption
invalid. The waste-gate actuator system exhibited quasi-steady behavior below 10 Hz,
while the turbine’s mechanical inertia dampened shaft speed fluctuations between 0.1 and
10 Hz. Additionally, the turbocharger housing’s thermal inertia suppressed temperature
variations at frequencies above 0.01 Hz.

Other authors instead considered the impact of different waste-gate openings on
engine performance and emissions. For example, the impact of the waste-gate openings
on the soot emission of a diesel engine was experimentally evaluated by Ghazikhani
et al. [24]. They found that by reducing the by-pass port opening, the intake manifold
pressure increases, which improves soot emissions by enhancing soot burnout during
late combustion. However, at very high-pressure levels, soot emissions rise due to lower
in-cylinder gas temperatures at the end of combustion. The impact of the waste-gate on
the performance and NOx emissions of a CNG SI engine was experimentally analyzed
by Kharazmi et al. [25]. The study highlights that at lower engine speeds, low boost
pressure is due to inefficient compressor and turbine performance, which wastegated
turbochargers help to mitigate. At mid-range speeds, waste-gate openings stabilize boost
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pressure by lowering exhaust manifold pressure, reducing residual gases, and increasing
volumetric efficiency.

In recent years, the need for accurate simulation models has consistently increased.
Within this context, the availability of simulation models capable of precisely evaluating
the performance of a turbocharger turbine is a crucial aspect for determining its power
output, which directly impacts both engine intake pressure and backpressure [26]. Usually
in 0D/1D models for turbocharged engines, the turbine and the compressor are modeled
only with reference to the characteristic curves provided by the manufacturer. In the
case of turbines with a waste-gate valve, the data available are referred to the position
of the by-pass port fully closed [27]. Moreover, commercial software often estimates the
waste-gate valve mass flow rate using an expansion through an orifice, with an equivalent
diameter based on the turbine pressure ratio. This approach assumes that the by-pass port
and the rotor work as parallel nozzles, sharing the same pressure ratio [28]. However,
this assumption leads to inaccuracies when the waste-gate valve is open, resulting in
unreliable predictions of the engine pumping losses, which affects the engine performance
estimation [29,30].

In this paper, a 1D model of a wastegated turbine that considers the interaction be-
tween the waste-gate flow and the impeller flow is described. In particular, an experimental
characterization of a turbocharger turbine characterized by a waste-gate valve fully in-
tegrated into the volute is presented in the first Section. The experimental tests were
conducted at the University of Genoa’s test rig under steady-state conditions, with various
waste-gate valve opening positions. In addition, the mass flow rate of the waste-gate valve
was assessed by closing the rotor circuit. This approach revealed a significant difference
in swallowing capacity in parallel-flow operation, where both the impeller and by-pass
circuit operate simultaneously, and in single-flow operation calculated by summing the
individually measured flows in each channel. Then, the experimental layout was mod-
eled in the GT-Power Environment. Each section of the turbine was specifically modeled,
taking into account its precise geometrical dimensions. Additionally, the 1D model incor-
porates the performance maps of the turbine, which were experimentally assessed. The
waste-gate valve is modeled as an orifice whose equivalent diameter varies with the valve
opening based on the experimental results. After modeling and validating the turbine
and waste-gate behavior in single-flow operation, parallel-flow operation is studied, and
the 1D model results are compared to the experimental ones both in terms of mass flow
rates and efficiencies. Finally, the flow distribution between the rotor and the waste-gate
channel is analyzed to assess the deviation from a standard approach. In particular, it is
found that at high waste-gate openings, the interaction between the two flows leads to
a significant reduction in the impeller channel swallowing capacity that must be taken
into account to make the calculation more accurate. The work presented in this article is
partially based on a previous study [31] performed by the authors on the same turbocharger.
The present work provides a comprehensive analysis, examining a wider operating range
and, most importantly, modeling in detail both the mechanical losses of the turbocharger
and the isentropic efficiency of the turbine. Additionally, it focuses more in detail on the
accurate modeling of the internal geometries of the turbine volute to properly simulate the
loss contributions (friction and mixing losses) responsible for the reduction in the turbine
performance with the by-pass port open.

2. Experimental Activity
2.1. Test Bench Setup and Measuring Equipment

The experimental activity presented in this article was conducted on a wastegated
turbocharger turbine for spark ignition engines at the test facility for components of
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propulsion systems of the University of Genoa (observable in Figure 1 and fully described
in [32]). Given its importance for this research, the waste-gate valve channel has been
schematized as a circuit operating in parallel with the turbine. It is important to note that
this component is, in reality, highly integrated into the turbine volute. Consequently, the
assessment of the flow rate should consider the overall mass flow rate of the turbocharger
turbine, accounting for the contributions of both the rotor and the waste-gate valve channels.
The test rig is equipped with two separate lines for compressor and turbine characterized
by a maximum air mass flow rate of 0.8 kg/s, and an electric heater station enables turbine
inlet temperatures to reach up to 600 ◦C depending on the tested turbine size. Furthermore,
a thermostatic system ensures accurate control of temperatures, pressures, and flow rates
of lubricating oil and cooling water.
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Figure 1. Layout of the test rig for components of propulsion systems of the University of Genoa.

Fluid temperatures are measured using platinum resistance thermometers or K-type
thermocouples. Pressure measurements are performed with piezoresistive probes. The
mass flow rate in the compressor circuit is measured by a thermal mass flow meter, while
in the turbine line a laminar flow meter, calibrated against the thermal mass flow meter, is
used. The rotational speed of the turbocharger is detected by an eddy current probe. The
waste-gate valve position is monitored by a sealed rotary position sensor. The uncertainties
of the adopted sensors are reported in Table 1.
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Table 1. Uncertainties of the sensors.

Measured Quantities Sensors Uncertainty

Pressure Piezoresistive transducers ±0.10% FS

Temperature Platinum resistance
thermometers ±0.15 ◦C and ±0.2% MV

Temperature K-Type Thermocouples ±0.5 ◦C
Mass flow rate Thermal mass flow meter ±0.9% MV and ±0.05% FS

Turbocharger rotational
speed Eddy current probe ±0.009% FS

Waste-gate valve position Rotary position sensor ±0.5◦

2.2. Experimental Results

For confidentiality reasons, all operating parameters reported in the article have been
rescaled to their maximum measured value and indicated by the superscript (*). Similarly,
the waste-gate valve openings and the turbocharger rotational speeds are expressed as
percentage values of the maximum value considered.

The performance of the waste-gate valve and the turbine are assessed by referring to
the following parameters:

• Turbine rotational speed factor [rpm/
√

K].

Nt =
nTC√

TT3
(1)

• Total-to-static expansion ratio [-]

εTS =
pT3

pS4
(2)

• Turbine mass flow rate factor [(kg·
√

K)/(s·bar)]

Φt =
Mt ·

√
TT3

pT3
(3)

• Waste-gate mass flow rate factor [(kg·
√

K)/(s·bar)]

Φwg =
Mwg ·

√
TT3

pT3
(4)

• Turbine isentropic efficiency [-]

ηtTS =
Pt

Pt is
=

Mtcpt(TT3 − TS4)

MtcptTT3

[
1 −

(
pS4
pT3

) k−1
k

] (5)

• Turbocharger mechanical efficiency [-]

ηm =
Pc

Pt
=

Pt − Ppm
Pt

(6)

• Turbine thermomechanical efficiency [-]

ηt
′ = ηtTS · ηm =

Pc

Pt is
=

Pt − Ppm

Pt is
(7)

The experimental activity is divided into three main parts.
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In the first part of the experimental activity, the waste-gate valve behavior was ana-
lyzed for 12 opening positions (Table 2), with the rotor circuit closed in order to measure its
swallowing capacity.

Table 2. Test program for the waste-gate valve analysis in single-flow operation.

Waste-Gate Valve Opening Positions:

5% 21% 39% 66%
11% 24% 47% 79%
16% 26% 53% 100% (fully open)

At least 14 different measuring points for each waste-gate opening position

During the test campaign, the position of the waste-gate valve was kept fixed to
measure the mass flow rate ranging from a minimum pressure ratio up to the typical
asymptotic condition at a high-pressure ratio, as reported in Figure 2. It can be noticed that
the mass flow rate of the waste-gate valve is sensitive already in the minimum opening
position, while for large openings the change in the mass flow rate is almost negligible,
thus avoiding the feasibility of fine adjustment.
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(single-flow conditions) [31].

Moreover, this experimental activity allows the assessment of the effective area of the
waste-gate valve (i.e., the flow discharge coefficient CD in Equation (8)) as a function of the
valve position, as shown in Figure 3. This information is then implemented in the 1D code,
later described.

M = Ae f f ·ρis·uis = CD·Are f ·ρis·uis (8)

Subsequently, the turbine performance was assessed for different rotational speed
levels, keeping the waste-gate valve fully closed, as shown in Table 3.

In Figures 6 and 7 the turbine performance maps are reported, both in terms of swal-
lowing capacity and thermomechanical efficiency for different waste-gate valve openings.
Since the waste-gate valve is integrated within the turbine volute, it was not possible to
experimentally evaluate the flow distribution between the rotor circuit and the by-pass port,
as reported in [20]. The increase in flow shown in Figure 6 is precisely related to this aspect:
as the waste-gate opens, the measured flow through the turbine circuit increases since it
refers to the common channel. It can be observed that in the maximum opening condition
(yellow lines), the mass flow parameter rises by 65% compared to the waste-gate valve in
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closed conditions (red lines). The same effect can be highlighted on the thermomechanical
efficiency values (Figure 7), which decrease when the waste-gate valve opens, since the
turbine mass flow term is in the denominator of the formula reported in Equation (7).
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Table 3. Test program for the turbine characterization in single-flow operation.

Turbine Rotational Speed Factor *:

Nt = 26% Nt = 47% Nt = 72% Nt = 90%
Nt = 29% Nt = 57% Nt = 78% Nt = 95%
Nt = 38% Nt = 66% Nt = 83% Nt = 100%

At least 10 different measuring points for each iso speed

This last information is generally provided by the turbocharger manufacturer, and
it is the base for the development of any modeling activity on turbocharging systems. In
Figures 4 and 5, the characteristic curves of the turbine, both in terms of swallowing capacity
and thermomechanical efficiency are shown. Regarding thermomechanical efficiency,
despite the necessity to represent non-dimensional values for confidentiality reasons, it
can be stated that at lower expansion ratios (i.e., lower turbocharger rotational speeds)
heat transfer effects became significant [33,34]. Equation (7) highlights the dependence of
thermomechanical efficiency on the compressor power, which acts as a dynamometer in the
case of turbine testing. The compressor power is affected by the heat transfer phenomena
from the turbine side to the compressor, leading to an overestimation of the measured
values of the compressor outlet temperature.

In the third phase of the study, the turbine performance was evaluated in parallel-flow
conditions, considering 4 waste-gate valve opening positions and the same 12 turbine
rotational speed levels, as detailed in Table 4.

In order to highlight the interaction between the turbine impeller and the waste-gate
valve when this last is integrated into the turbine volute, a comparison between mass flow
curves defined following different approaches is shown in Figure 8. The sum of the mass
flow rates through the waste-gate valve and the rotor channel in the single-flow condition
is shown with dashed lines in Figure 8, considering the turbine swallowing capacity as an
equivalent nozzle of the same effective area. Experimental data measured in parallel-flow
conditions are represented by solid lines in Figure 8, for the same waste-gate valve opening
conditions reported in Table 3. A significant deviation ranging from a minimum of 3.4%
to a maximum of 8% can be observed, with the largest deviation for the waste-gate valve
fully open.
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Table 4. Test program under parallel-flow conditions.

Turbine Rotational Speed Factor *:

Nt = 26% Nt = 47% Nt = 72% Nt = 90%
Nt = 29% Nt = 57% Nt = 78% Nt = 95%
Nt = 38% Nt = 66% Nt = 83% Nt = 100%

Waste-gate opening positions *:

11% 24% 47% 100%

This result can be attributed to a different pressure ratio across the channels, with
a lower pressure ratio through the waste-gate valve and the turbine impeller when the
by-pass valve is open. This reduction becomes more important at higher waste-gate valve
openings. The variation in the pressure ratio is caused by pressure losses between the
upstream measuring section and the actual inlet of the waste-gate valve and the turbine
impeller. As the valve opens, the mass flow rate (i.e., the flow velocity) increases, leading
to higher pressure losses and a corresponding reduction in the inlet pressure. Moreover,
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the mixing losses at the turbine outlet between the waste-gate valve and the impeller flows
cannot be neglected [27,35]. Since the waste-gate valve disc is placed on the rotor side,
its opening defines important interactions between the bypassed flow and the main flow
from the rotor. The interaction between the two flows is significantly affected by the valve
opening degree, with its influence becoming more pronounced at higher openings due to
the higher energy content of the waste-gate flow. As a matter of fact, as the valve opens,
mixing losses intensify, leading to a greater reduction in the overall mass flow rate.
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3. One-Dimensional Model
Based on the experimental campaign previously described, the 1D model of the

experimental layout was then developed in the GT-Power Environment. The main aim
of the model is the prediction of the turbine performance both in terms of swallowing
capacity and efficiency when the waste-gate valve is open, along with the assessment of
the interaction between flows of the turbine rotor channel and the waste-gate valve.

The model is presented in Figure 9, highlighting three main areas of interest: the
turbine (in green), the waste-gate valve (in blue), and the mixing zone (in orange), along
with the measurement stations used for experimental characterization.
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The modeled waste-gate circuit is composed of an orifice (“Waste-gate”), a straight pipe
element (“in_Waste-gate”), and two flow-splits, called “In_Turbine-WG” and “Out_Turbine-



Machines 2025, 13, 54 11 of 20

WG”, which connect the waste-gate valve with the turbine circuit. The characteristic of
the variable diameter orifice and its discharge coefficient was defined on the basis of the
experimental campaign and, in particular, on the data reported in Figure 3. This method
enables the definition of various equivalent diameter orifices based on the opening position
of the waste-gate valve.

The proposed turbine sub-model reported in Figure 9, is composed of four elements:
the “cone”, the “volute”, the “wheel pipe”, and the “out_Turbine”. The “cone” is a con-
verging pipe that reproduces the region between the turbine inlet flange and the housing
tongue. The “volute” represents the circumferential section of the volute structure based on
the geometrical dimensions. Then, the turbine performance maps have been implemented
in the “Turbine” object. To consider wave propagation phenomena within the impeller, it is
introduced a virtual pipe (“Wheel_Pipe” in Figure 9) in the model. This pipe represents the
equivalent length and volume of the rotating blade-to-blade ducts. Then, a straight pipe
element (“out_Turbine” in Figure 9) is modeled downstream of the turbine to reproduce
the region between the impeller outlet and the waste-gate valve outlet. Finally, the mixing
zone, consisting of a flow-split object and a straight pipe (respectively “out_Turbine-WG”
and “Mixing” in Figure 9), represents the volume at the turbine outlet. These elements are
particularly significant in reproducing the interaction between the waste-gate valve and
the impeller. Specifically, the flow downstream of the waste-gate valve defines a noticeable
interaction with the flow that arrives from the impeller. The difference in swallowing capac-
ity between single-flow and parallel-flow operation, as highlighted in Figure 8, is mainly
due to two phenomena: mixing losses and the distribution of pressure losses between
the waste-gate valve and the turbine rotor channel. Modeling these phenomena required
particular attention to the dimensions of the element at the turbine outlet (“out_Turbine”)
and the geometry of the two flow splits, considering both the relative position of the chan-
nels and their characteristic diameters. Furthermore, accurately distributing the pressure
losses as the flow rate increases with the opening of the waste-gate valve requires precise
modeling of the pipe element connecting the turbocharger turbine inlet to the waste-gate
valve (“in_Waste-gate”) and the “Volute”.

A preliminary activity related to the pre-processing of the turbine thermomechanical
efficiency curves was developed to assess the isentropic values. Due to experimental issues
for an accurate measurement of the turbine outlet temperature, direct evaluation of the
isentropic efficiency is not feasible [36,37]. For this reason, the turbine isentropic efficiency
was evaluated by combining Equations (6) and (7): starting from the thermomechanical
efficiency thanks to the assessment of mechanical efficiency. This last one was evaluated by
estimating the heat flux of the lubricating oil in quasi-adiabatic conditions [38]. Therefore,
the turbine isentropic values were inserted in the “Turbine” object of the 1D model (Fig-
ure 9) and the mechanical losses in the bearings were inserted in the “Turbocharger_Shaft”
element as a function of the turbocharger rotational speed. In Figure 10, the thermomechan-
ical efficiency curves (continues red lines), turbine isentropic efficiency curves (dotted green
lines), and mechanical efficiency curves (dashed blue lines) are reported with reference to
the normalized values that have been experimentally evaluated and included the 1D model.
This approach is crucial to accurately evaluate how the turbine rotor delivers power to the
turbocharger shaft, thereby ensuring that the assessment of the mass flow rate through the
turbine rotor is correct.
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Figure 10. Normalized turbine efficiencies (thermomechanical, mechanical, and isentropic).

The validation procedure was developed following the same steps as the experimental
campaign. The first phase is related to the validation of the waste-gate valve swallowing
capacity for four waste-gate opening conditions (11%, 24%, 47%, and 100%, highlighted by
the red vertical cursors in Figure 3). The validation is carried out by imposing a quasi-steady
variation of the pressure in the upstream environment and the same thermal condition of
the experimental activity. Moreover, in order to provide a more realistic model, the pressure
ratio is numerically evaluated within the measuring stations, as reported in Figure 9.
Figure 11 shows a comparison between numerical (solid blue lines) and experimental
(dotted red lines) waste-gate mass flow rate values in single-flow operation. The waste-gate
valve model shows a good agreement with the experimental data for all the considered
cases with a maximum deviation condition of less than 2.78% at the maximum opening.

Machines 2025, 13, x FOR PEER REVIEW 12 of 20 
 

 

 

Figure 10. Normalized turbine efficiencies (thermomechanical, mechanical, and isentropic). 

The validation procedure was developed following the same steps as the experi-

mental campaign. The first phase is related to the validation of the waste-gate valve swal-

lowing capacity for four waste-gate opening conditions (11%, 24%, 47%, and 100%, high-

lighted by the red vertical cursors in Figure 3). The validation is carried out by imposing 

a quasi-steady variation of the pressure in the upstream environment and the same ther-

mal condition of the experimental activity. Moreover, in order to provide a more realistic 

model, the pressure ratio is numerically evaluated within the measuring stations, as re-

ported in Figure 9. Figure 11 shows a comparison between numerical (solid blue lines) 

and experimental (dotted red lines) waste-gate mass flow rate values in single-flow oper-

ation. The waste-gate valve model shows a good agreement with the experimental data 

for all the considered cases with a maximum deviation condition of less than 2.78% at the 

maximum opening. 

 

Figure 11. Experimental and numerical swallowing capacities of the waste-gate valve in single-flow 

conditions. 

The turbine model in single-flow operation was then analyzed. In particular, for the 

turbine mass flow rate parameter, the same procedure used for the waste-gate valve was 

adopted; a good agreement between experimental data (in solid blue lines) and the nu-

merical data (in dotted red lines) can be observed in Figure 12 with a maximum deviation 

of 4.35% with respect to experimental results. 

Figure 11. Experimental and numerical swallowing capacities of the waste-gate valve in single-
flow conditions.

The turbine model in single-flow operation was then analyzed. In particular, for
the turbine mass flow rate parameter, the same procedure used for the waste-gate valve
was adopted; a good agreement between experimental data (in solid blue lines) and the
numerical data (in dotted red lines) can be observed in Figure 12 with a maximum deviation
of 4.35% with respect to experimental results.
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Figure 12. Experimental and numerical turbine swallowing capacities in single-flow conditions.

In Figure 13, a comparison between numerical data (dotted lines) and experimental
data (solid lines) can be observed with reference to isentropic and thermomechanical
turbine efficiencies. As stated before, the isentropic experimental efficiency values were
assessed by combining Equations (6) and (7). Numerical thermomechanical efficiency
values were evaluated as the difference between the power produced by the turbine and
the power lost because of friction in the bearings, with respect to the turbine isentropic
power as reported in Equation (7).
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Figure 13. Experimental and numerical turbine thermomechanical and isentropic efficiencies in
single-flow conditions.

At lower pressure ratios (light-blue circled region in Figure 13), due to heat transfer
effects predominant in this region [33,34], simulations were not performed due to the
unrealistic experimental data. However, these phenomena are not the focus of this article.
For these reasons, results related to efficiencies do not consider the lowest rotational speed
condition (i.e., lowest values of expansion ratio) in order to avoid unreliable results when
the 1D model extrapolates the turbine maps [28].

As a further validation of the approach used for the evaluation of turbine efficiency
and power levels, Figure 14 shows the trend of the turbine actual power (shown in blue)
experimentally evaluated as the ratio between the power absorbed by the compressor and
the mechanical efficiency, compared to the turbine power calculated through the 1D Model
(shown in red in Figure 14). This last information is calculated at the rotor level in the
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turbine tool of GT-Power considering expansion ratio and temperature levels to guarantee
coherence between the model and the experimental setup.
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Figure 14. Experimental and numerical turbine power in single-flow conditions.

Once the single-flow operation of both the waste-gate valve and the turbine is val-
idated, the modeling activity continued with the evaluation of the turbine behavior in
parallel-flow conditions, where both the impeller and the wastegate circuits are open at
the same time. The model results are presented in Figure 15 for waste-gate valve open-
ing positions experienced during the experimental campaign (11%, 24%, 47%, and 100%).
These results were obtained by imposing the effective orifice diameter corresponding to
the analyzed waste-gate valve positions and turbine rotational speed levels considered.
It must be remarked that the system was treated as its behavior in single-flow conditions
with no additional adjustments or tuning applied to the model referred to as the parallel-
flow operation. A good agreement between experimental data (blue lines) and numerical
results (red lines) is reported in Figure 15. The average difference between the model and
experimental results is around 2%, which is considered acceptable with reference to the
accuracy of the sensors adopted. Hence, the model appears to effectively estimate the
increase in the turbine mass flow rate in parallel-flow conditions as the waste-gate valve
openings increase.
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Figure 15. Experimental and numerical turbine swallowing capacity map in parallel-flow conditions
for different waste-gate valve openings.

In Figure 16, the same analysis is reported with reference to thermomechanical ef-
ficiency values. The maximum deviation between experimental and numerical data is
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around 2%, which represents a satisfactory result. Then, a more detailed analysis of the
flow split between the turbine rotor and the waste-gate port in parallel-flow conditions was
conducted. Since the overall mass flow rate has been previously validated and the mass
flow rate through the impeller is crucial to assess the turbine thermomechanical efficiency,
it is possible to analyze how the mass flow rates are divided between the two channels
in a parallel-flow configuration. This last information is crucial for the evaluation of the
distribution of mass flow rates between the two channels. The thermomechanical efficiency
depends not only on the overall turbine mass flow rate (validated in Figure 15) but also on
the actual mass flow rate through the rotor, which is responsible for power delivered to the
turbocharger shaft. Thanks to this information, the split of the mass flow rate through the
by-pass port and the turbine rotor in parallel-flow conditions can be analyzed.
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Figure 16. Experimental and numerical thermomechanical efficiency curves in parallel-flow condi-
tions for different waste-gate valve openings.

Figure 17 presents a comparison between mass flow rates measured in single-flow
conditions and these assessed by the 1D model in parallel-flow conditions in order to
highlight the behavior of the system with respect to an approach that treats the by-pass
port and the impeller circuit as two nozzles working in parallel under the same pressure
ratio. In Figure 17, the mass flow distribution between the by-pass channel and the rotor is
shown with the waste-gate valve partially (Figure 17a) and fully (Figure 17b) open.

As expected, at lower waste-gate openings, the interaction between the two flows is
negligible. For higher waste-gate valve openings, the interaction between the two flow
components becomes more significant, leading to a noticeable decrease in the mass flow
rate of both the waste-gate valve and the impeller with respect to the curves measured in
single-flow conditions. The deviation highlighted in Figure 17 suggests that an interaction
between the waste-gate valve and the impeller must be taken into account with the higher
deviation at high waste-gate valve opening conditions. If the only information provided
by the turbocharger manufacturer refers to the turbine swallowing capacity map with the
waste-gate valve closed, inaccuracy in the calculation can be introduced in the 1D model,
which generally considers the waste-gate valve and the impeller as two nozzles working
in parallel conditions. Thanks to the experimental campaign aimed at the definition
of the waste-gate valve behavior in single-flow conditions, it was possible to optimize
the 1D model setup in order to define the magnitude of the interaction between the
two flow components, as shown in Figure 17. If this optimization is not implemented
in 1D models, turbine performance can be inaccurately calculated causing errors in the
engine-turbocharger matching calculation that reflect differences in turbine power and,
consequently, in the engine backpressure required to achieve the boost pressure target.
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This difference affects the engine Brake Specific Fuel Consumption (BSFC) and the engine
torque and power output, along with an increase in the time required for engine calibration
due to the difference between the estimated position of the waste-gate valve and the actual
required position to achieve the target in engine torque demand.
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parallel-flow conditions.

4. Conclusions
This article presents an experimental and numerical investigation on the steady-state

performance of a turbocharger turbine fitted with a waste-gate valve fully integrated into
the volute.

The performances of the turbine and the waste-gate valve are first analyzed separately
through an extensive experimental activity and the development of a 1D model. The
study then analyzes the turbine behavior considering different positions of the waste-
gate valve. The analysis highlights that the interaction between the flows through the
impeller and by-pass port reduces the overall mass flow rate if compared to the sum
of the swallowing capacities during single-flow operation. The experimental results are
used to develop a 1D model, considering both the turbine and waste-gate valve channels.
The first step of the validation procedure considers both the waste-gate valve and the
turbine rotor operating in single-flow conditions. At this stage, based on an extensive
experimental campaign, the mechanical losses of the turbocharger shaft and the turbine
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isentropic efficiency were included in the model to accurately define the power delivered
by the turbine. This aspect is crucial to perform reliable simulations with the complete
model operating under parallel-flow conditions. Thanks to the accurate development and
validation of the components of the model, the predicted overall turbine mass flow rate and
thermomechanical efficiency curves in parallel-flow conditions show good agreement with
the experimental data. Thanks to the correct evaluation of the turbine performance, both
in terms of overall swallowing capacity and thermomechanical efficiency (i.e., the power
delivered to the turbocharger shaft by the turbine rotor), it was possible to analyze how
the flow rates are distributed between the rotor and the waste-gate valve. In particular, the
1D model results highlight a decrease in the mass flow rate through the bypass port and
the turbine rotor, as well as how the mass flow rates are split between these two channels
working in parallel, confirming the sensitivity of turbine behavior to the interaction of the
two flows. In particular, results indicate an important reduction in the turbine swallowing
capacity, with reductions of up to 5% for high waste-gate valve openings. This outlines a
significant dependency of the rotor channel behavior on the position of the waste-gate valve,
which standard models do not capture. This effect impacts the turbine power delivered to
the compressor, with non-negligible consequences on the performance estimation of the
turbocharged engine.

In summary, a comprehensive experimental characterization of a wastegated tur-
bocharger turbine in both single and parallel-flow configurations can help to improve the
turbocharger engine modeling calculation allowing the development of a more accurate
1D model that predicts turbine performance, and provides information on the phenomena
occurring within the turbine when the waste-gate valve is open.
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Nomenclature

Acronyms
1D One-dimensional
BSFC Brake-Specific Fuel Consumption
CNG Compressed Natural Gas
CO2 Carbon Dioxide
FS Full Scale
MV Measured Value
NOx Nitrogen Oxides
Notations
A Area, [m2]
CD Discharge coefficient, [-]
cp Specific heat at constant pressure, [J/(kg·K)]
k Heat capacity ratio
M Mass Flow Rate, [kg/s]
N Rotational speed factor, [rpm/

√
K]

n Rotational speed, [rpm]
P Power, [W]
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p Pressure, [bar]
T Temperature, [K]
u Velocity, [m/s]
WG Waste-gate
ε Expansion ratio, [-]
η Efficiency, [-]
Φ Mass flow rate factor, [(kg·K)/(s·bar)]
ρ Density, [kg/m3]

Subscripts and Superscripts

3 Turbine inlet
4 Turbine outlet
c Compressor
eff Effective
is Isentropic
m Mechanical
pm Mechanical losses
ref Reference
S Static condition
T Total condition
t Turbine
TC Turbocharger
wg Waste-gate valve
‘ Thermomechanical
* Normalized value
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