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Abstract: Industry 4.0 has introduced a data-driven model of production and management
of goods and services. This manufacturing paradigm leverages the potential of the Internet
of Things (IoT), but finding the information necessary to drive manufacturing processes
can be challenging. In this context, the authors propose an innovative approach based on
axiomatic design to design RDF knowledge graphs from which to extract the information
needed by decision makers. This approach derives from the possibility of providing RDF
knowledge graphs with an equivalent matrix representation based on axiomatic design. It
allows the selection of the most reliable data sources, thereby optimizing the knowledge
graph construction process using matrix algebra, minimizing redundancy and improving
the efficiency of query response. The goal of the presented methodology is to address
the five critical aspects of Big Data (volume, velocity, variety, value, and veracity) by
preordering the knowledge graph according to the information needs of business decision
makers, thereby optimizing the use of the immense wealth of information made available
by the Web in design.

Keywords: axiomatic design; information management; Industry 4.0; information reliability
in knowledge management

1. Introduction
For at least a decade, we have been witnessing a new industrial revolution, which

scholars have termed Industry 4.0 [1]. This revolution is radically transforming the ways
in which goods and services are produced and managed, increasingly driven by decision-
making processes based on artificial intelligence systems, machine learning techniques,
and Big Data [1,2]. In particular, Big Data has proven highly valuable during the design
stages, enabling the extrapolation of consumer preferences with such precision that it
allows for the production of increasingly personalized goods and services. Big Data enables
companies, on the one hand, to better meet users’ needs—which, for the same product, can
be highly diverse—and, on the other hand, to calibrate production capacities according
to the volatility of market demand [3,4]. The Web provides an enormous amount of
information in both structured and unstructured forms [5]. However, leveraging these
data is often complex due to several critical issues, primarily related to volume, velocity,
variety, value, and veracity (the 5 Vs) [6,7]. The sheer amount of data available makes it
difficult to identify useful information. Additionally, these data are often volatile, as users’
preferences and behaviors frequently change over time. Moreover, the information can
appear in a wide range of formats, including text, audio, video, and photos shared on
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social networks. Finally, it is essential to assess its veracity and assign it appropriate value,
as in the case of online reviews. For these reasons, the role of data analysts has become
increasingly important for companies. This discipline encompasses techniques, processes,
and methodologies aimed at analyzing massive amounts of data to derive predictions,
identify trends, and make accurate decisions [8]. Such outcomes are made possible by
certain features of knowledge graphs, which semantically represent relationships between
entities on the Web [9]. An analytic query is well-defined and produces consistent results
if the objects it refers to form a directed acyclic graph (DAG) within the corresponding
knowledge graph [10]. Similarly, in the axiomatic approach, the representative forms of
consistent designs can always be topologically traced back to DAGs, thereby ensuring the
axiom of independence [11]. This conceptual correspondence enables the introduction of
a matrix representation model for knowledge graphs that is compatible with axiomatic
design principles. This particular representation is derived from the ability to represent
the constituent elements of such graphs in an equivalent form—as mappings between
domains—based on design matrices. This aspect allows the application of the axioms
of independence, information, and other properties of the axiomatic approach to this
field. In this paper, the framework of knowledge graphs is restructured based on the key
elements of axiomatic design, which are reformulated to demonstrate their applicability
in this context. The result is an extended model for representing knowledge graphs as
mappings between domains. This model enables decision makers’ information requests to
be translated into queries applied to a specific data analytics schema, directly linking back
to the information sources.

This paper is organized as follows: Section 2 presents the background and related
work. Section 3 introduces the essentials of data analytics. This subsection is enriched
with a case study, for which the equivalent representations in terms of RDF knowledge
graph and adjacency matrix are proposed. Section 4 describes how axiomatic design can be
used to construct an RDF knowledge graph. The axioms and main properties of axiomatic
design are reformulated with the intention of highlighting the logical correspondences and
the possibility of combination between these two methodologies. Section 5 summarizes
the theoretical advantages and limitations of applying axiomatic design in this discipline.
Finally, Section 6 concludes this paper and discusses issues for future research.

2. Background and Related Work
2.1. Background

Axiomatic design is a design methodology introduced in the late 1970s in the industrial
field and has since found broad application in various fields. It was developed by its
originator, N.P. Suh [12], who observed that successful designs have certain common
characteristics that can be traced to two axioms and several corollaries. The axiom of
independence states that successful projects are those for which functional requirements
are logically independent [13,14]. In contrast, the information axiom allows the selection
of the design solution with the least functional complexity, which corresponds to the
one with the least information content [14]. This methodology has also been applied
in the field of software engineering. In particular, axiomatic design has found use as
a powerful optimization tool in object-oriented design on waterfall-type development
processes [15]. In particular, the combination of these methodologies led to the introduction
of a V-model software development process [16], called Axiomatic Design of object-oriented
Software Systems (ADo-oSS) [15]. It has been found particularly suited for remarkably
complex designs with strong constraints on system security and reliability [17]. Specifically,
axiomatic design is found to perform very well, especially, in the analysis, definition, and
tracking phase of functional requirements, and in conjunction with traditional Unified
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Modelling Language (UML) modeling techniques [11,18]. However, this methodology has
limitations in including nonfunctional requirements in the design process [19]. For this
reason, some authors [19–21] have proposed some extensions to the standard approach,
consisting of reinterpreting the information axiom based on multi-criteria decision-making
(MCDM) methods. Studies that are more recent have examined the compatibility of
axiomatic design with the emerging Agile methodology [22] and the Diamond Model [23],
which is an important data-driven development methodology.

Instead, data analytics as a discipline began to establish itself in the early 2000s, when
the new Internet of Things (IoT) paradigm was introduced [24], while it is about a decade
later, with Industry 4.0, that it takes on a particularly crucial role in industry, with the
consolidation of data-driven methodologies for producing goods and services [25,26]. The
Internet of Things was born out of Berners-Lee’s idea [27] to extend the functionality of
the Web, to move from a “Web of documents” to a “Web of data”. This extension consti-
tutes the so-called Web semantics, which enables the interoperability, sharing, and reuse
of information on the Web. However, to make this possible, it was necessary to define
a formalism for representing the meaning and relationships among Web entities. This
led to the development of the so-called Web ontology, which has been realized through a
specific language called Web Ontology Language (OWL) [6,26]. This language is based on
a standard introduced by the World Wide Web Consortium (W3C) and called the Resource
Definition Framework (RDF) [28]. It provides for the classification of Web entities into
subject “s”, predicate (property) “p”, and object “o”. Each triplet <s, p, o> constitutes the
relation of a subject “s” that through a predicate “p” rule defines an object “o” [29]. Based on
this classification, RDF allows the construction of knowledge graphs, on which analytical
queries can also be directly performed [30]. For this purpose, a specific query language,
called SPARQL (Simple Protocol and RDF Query Language), has been introduced, which al-
lows us to produce analytical queries and delete or add data on RDF knowledge graphs [31].
These queries are implemented in most cases according to two main approaches [32]. The
first approach is to translate Web semantics into relational forms, whereby, through a set of
index lists, it is possible to encode relationships between triplets by resorting to logical con-
structs such as joins [32,33]. The second approach is to perform analytic queries directly on
knowledge graphs [30,34]. Alongside these two different data analytics approaches, some
authors have proposed the use of a graph representation as an adjacency matrix [32–36].
Matrix algebra makes it possible to decouple the execution of SPARQL queries from the
reference processing architecture by resorting to robust algorithms that are independent
of the structure of the processors. These algorithms are implemented by systems such as
Matlab, GraphBLAS, and Python, which have well-established libraries of programs that
deal with complex graphs in sparse matrices [35,36]. This approach is based on the premise
that an RDF knowledge graph can be represented as a sparse adjacency matrix, whose
nodes are indifferently the subjects and objects of the triplets of the graph.

2.2. Linked Open Data

Advances made in data analytics have made it possible to initiate a number of projects
aimed at building large knowledge graphs in order to make an enormous amount of
information freely available [24]. In this way, so-called Linked Open Data (LOD) have
been published. Among the best known, we can mention DBpedia (Wikipedia) [37], Wiki-
data [38], Europeana [39], aand Map4RDF [40]. Many government institutions have also
made their information assets available in Linked Open Data mode. For instance, Figure 1
shows a stylized representation of the Municipality of Florence [41], which makes histor-
ical and cultural information available in this mode. Linked Open Data can be accessed
directly by human operators through SPARQL statements. However, their strength lies in
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the fact that interoperability between different datasets can take place as communication
between machines [24]. This makes it possible to extend and share knowledge based
on a common ontology language. Figure 1 also shows other types of datasets, to which
Web semantics can be applied. In particular, we should point out that not all data are
made freely available. Social media do not provide user data in RDF format. Usually, for
privacy reasons, publishable information is filtered by APIs (Application Programming
Interfaces) that are a kind of proxy to the outside world [42]. In these cases, programmers
can download XML (Extensible Markup Language) or JSON (JavaScript Object Notation)
files, which can be transformed into RDF format to feed a knowledge graph [42,43]. The
other type of dataset shown in Figure 1 involves enterprise data, which are, by their nature,
confidential and protected. These data can also be exported to a knowledge graph. In fact,
RDF even allows us to build an enterprise knowledge graph (Figure 1) that brings together
information from heterogeneous systems, but which can allow us to correlate seemingly
distant phenomena and events, providing useful information for designing and managing
a data-driven system [24]. Specifically, this type of RDF knowledge graph is also known by
the term “Semantic Data Lake”.
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2.3. Scope

In this context, the scholarly literature related to axiomatic design is mostly focused
on the opportunities offered by data analytics techniques to provide the necessary in-
formation to support the company’s decision-making processes [3,23,44–47]. However,
the formal representation offered by Web semantics has also attracted various interests.
Very interesting is a study by Foley and Cochran [48], who proposed the application of
Web ontology to describe a quality assessment system for a project obtained by axiomatic
design. In addition, in the same article, the authors defined axiomatic design as an ontology
language. Indeed, within the context of axiomatic methodology, the existing mapping
between functional requirements (FRs) and design parameters (DPs) can have its own
semantic representation in RDF format. In this paper, however, we focus on the conceptual
correspondences existing between these two methodological approaches to propose the
application of axiomatic design as a tool for constructing RDF knowledge graphs. This
approach introduces a new form of RDF triplet representation in terms of design matrix.
This is equivalent to embedding the axioms of independence and information in Web
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semantics, extending the Web ontology language with axiomatic design rules. In addition,
the matrix structure of this new representation retains the inherent advantages of adjacency
matrices in terms, above all, of processing power in generating analytic queries [32].

3. Elements of Data Analytics
3.1. Resource Definition Framework

As mentioned in Section 2, RDF data are organized into triplets consisting of a subject
“s”, a predicate (property) “p”, and an object “o”, i.e., <s, p, o> [30]. They can constitute
extremely complex networks, the growth of which continues exponentially. Such an
organization of data in a quasi-natural language such as ontology has the advantage of
simplifying the relationships between the constituent elements of triplets. At the same
time, it turns out to be directly interpretable by processors [24]. However, this is not the
only advantage of this standard. A Uniform Resource Identifier (URI) [29] identifies each
resource in the RDF knowledge graph. This identifier can be a URL (Uniform Resource
Locator) address, but it can also be a literal or an empty node. In fact, a URL is a specific type
of URI that provides an indication of where to find a resource on the Internet and usually
includes the transfer protocol (such as HTTP, HTTPS, FTP, etc.), the domain name, and
the path to the resource. For example, the URI http://www.example.org/page, accessed
on 20 November 2024, is also a URL because it specifies the transfer protocol (HTTP) and
domain name (www.example.org), indicating the path to the resource (“page”). However,
a URI can also be a Uniform Resource Name (URN), which identifies a unique name for
a resource without specifying where to find it. This allows us to extend our graph, using
resources belonging to heterogeneous datasets, as in Figure 1.

3.2. Case Study

As an example, we report a simple case study consisting of the construction of a
knowledge graph that collects reviews posted by users of restaurants and museums,
comparing them with the work activities practiced by the bloggers themselves. As we saw
in Section 2, this information can be provided through APIs by social media, if it turns out
not to be bound by confidentiality or privacy. Then, the graph draws on information freely
provided in RDF mode by public institutions, such as the Italian cultural heritage system
accessible as Link Open Data [49] or by local institutions, as in the case of the municipality of
Florence [41]. This whole network of relationships between different resources constitutes
a semantic data lake and is summarized by the triplets in Table 1.

Table 1. Triplets constituting the RDF knowledge graph of the case study.

Triples Subject Preach Object

<n1, e1, n2> Blogger eatsAt Restaurant
<n1, e2, n3> Blogger Visits Museum
<n1, e3, n6> Blogger Posts Review
<n1, e4, n4> Blogger Has Job
<n1, e5, n5> Blogger livesIn City
<n2, e6, n5> Restaurant isLocatedIn City
<n2, e8, n6> Restaurant Receives Review
<n3, e7, n5> Museum isLocatedIn City
<n3, e9, n6> Museum Receives Review

In equivalent form, the triplets in Table 1 can be represented on the basis of a synthetic
graph, called an analytic schema. It is a simplified representation of the entities, relation-
ships, and properties of the graph [29]. This representation can be used to guide data

http://www.example.org/page
www.example.org
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analysis and better understand hidden relationships and patterns within the knowledge
graph. Figure 2 represents the analytic schema for the example given in Table 1.
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In addition, the analytic schema associated with the RDF knowledge graph provides
the necessary information (in terms of entities and relationships) to write an analytic query.
It is a query that aims to obtain analytical information, statistics, or aggregations based
on the data contained in the RDF graph [10,30]. These queries aim to provide a deep and
meaningful understanding of the data, enabling users to draw sophisticated conclusions
and make data-driven decisions. As an example, we present in SPARQL language a query
on the analytic schema in Figure 2. This query extracts all bloggers who have written
at least one review, job occupation, and posted reviews for museums and restaurants.

PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>
PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>
PREFIX : <http://example.org/>

SELECT ?blogger ?job ?review
WHERE {
?blogger rdf:type :Blogger ;
:posts ?review .
?blogger :has ?job .
?job rdf:type :Job .
?review rdf:type :Review .
}

The operation of this query is very simple. It uses the :posts predicate to select the
reviews published by the bloggers and the :has predicate to select the job occupation of
the bloggers. Operating in this way, the query describes a path within the RDF knowl-
edge graph. This path is represented by a subgraph with respect to the starting analytic
schema (Figure 3). From a topological point of view, subgraphs that can be associated with
consistent analytic queries (Analytic Context) are directed acyclic graphs [10]. This means
that in the execution of an analytic query, a node (ni) should not be traversed more than
once. This prevents the creation of logic loops, which would result in the generation of
inconsistent results.
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3.3. Formulation of an RDF Knowledge Graph as an Adjacency Matrix

As we anticipated in Section 2, a number of studies have been published in recent years
that propose reformulating the analytical schema of a knowledge graph as an adjacency
matrix [32–36]. The goal of these studies is to optimize the process of selecting and writing
analytical queries, making use of matrix algebra. The strength of this approach comes from
the availability of established program libraries that perform operations on sparse matrices,
regardless of the processing architecture on which they are based [35]. In our case, the
analytical scheme in Figure 2 can be reformulated in terms of the adjacency matrix that
follows (Figure 4).
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The query introduced in Section 3.2 refers to the data and relationships of a subgraph
of the analytic schema in Figure 2. We can associate a corresponding adjacency matrix with
this subgraph (Figure 5). This new matrix representing the query can be obtained from
the adjacency matrix of the analytic schema (Figure 4), through a series of operations on
matrices. For simplicity of exposition, we do not go into the specifics of this process, for
which we refer to the authors who proposed the approach [32].
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4. Axiomatic Design and Data Analytics
4.1. Construction of an RDF Knowledge Graph Based on Axiomatic Design

As discussed in Section 1, Foley and Cochran [48] defined axiomatic design as an
ontological language. In Section 3, we saw how an analytic schema of a graph can be
represented in terms of an adjacency matrix. Now, let us take this a step further. We
demonstrate how axiomatic design can provide a representation of a knowledge graph
that is more efficient than a simple adjacency matrix. The goal is to construct a design
matrix based on the triplets of the RDF standard, representing a mapping between entities
in the graph. The issue is relevant, since a graph is understandable to a reader if it
describes connections between a limited number of elements, as in the case of Figure 2.
But, in real cases, the number of triplets to be represented may be very large. Then the
problem arises of finding a more efficient representation and processing methodology.
Matrices make it possible to go beyond the visual understanding of an RDF graph, thanks
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to an established set of program libraries that are independent of the architecture of the
computing system [35]. In the existing scholarly literature [32], scholars make use of
adjacency matrices, as in Figure 4. While this type of matrix allows us to represent the
relationships between adjacent nodes, but it does not provide any additional information
with respect to the properties of the equivalent RDF graph. In contrast, if we resort to
axiomatic design, we can make use of a more powerful matrix form, which allows us to
optimize the process of constructing knowledge graphs. To do this, we pose the RDF triplet
<s, p, o> as the result of a mapping process between two domains. To better clarify this
concept, we introduce the following definitions.

Definition 1. We define the Object Domain (O) as the set of objects related to RDF triplets. This
domain is equivalent to the Functional Domain of axiomatic design. Therefore, the objects of the
triplets can be considered as the functional requirements (FRs) of the graph to be constructed. They
answer the question “what to do” [12].

Definition 2. We define the Subject Domain (S) as the set of subjects related to RDF triplets.
This set corresponds to the Physical Domain. The subjects of the triplets are the axiomatic design
parameters (DPs). They constitute the data that allow objects to be defined, analogous to the
Axiomatic Design of object-oriented Software Systems (Ado-oSS) methodology [15].

Based on these two definitions, the generic RDF triplet <s, p, o> can be expressed
according to the following Formula (1):

o = p ⊗ s (1)

This means that the subject “s” applied to the predicate “p” produces the object
“o” [11,18]. This mapping exhibits characteristics of uniqueness. The mapping between
these two domains is established by the predicate rules of the triplets considered. This
assertion is equivalent to introducing a condition of functional independence between
the triplets constituting an RDF graph. In an RDF graph, a subject “si” can be the object
“oi−1” of another subject “si−1” through a predicate relation “pi−1”. This means that each
element “si” can be considered, at the same time, the subject of a triplet <si, pi, ori> and
the object “oi−1” of an earlier triplet <si−1, pi−1, ori−1>. For example, if we consider the
graph in Figure 2, the node “n2” is the subject of the triplet <n2, e6, n5>, but at the same
time it is the object of the triplet <n1, e1, n2>. In an RDF graph, nodes represent subject and
object, while the predicate of a triplet is the oriented arc leading from the subject to the
object (Figure 2). Assigning an order to the triplets constituting the RDF graph leads to the
introduction of a sequential path leading from a root node to one or more terminal nodes,
through a series of oriented arcs. In an RDF graph, there may be multiple root nodes, i.e.,
multiple subjects “si” that are not objects of previous triplets. Based on these considerations,
it is possible to translate an RDF graph into representative forms of axiomatic design.
Axiomatic design supports interdomain mapping in several representative forms, which
can be either graphs or matrices [15,16]. In this paper, we propose the use of the design
matrix, as a representative form of the relations between subjects, predicates, and object
triplets <s, p, o>. Since, indistinctly, the nodes of a graph can be subjects or objects, they are
reported both along the row axis and along the columns, as in the case of the adjacency
matrix. This ensures that the design matrix is also a square matrix. The matrix cells contain
interdomain mappings, which are the predicates of triplets (ei) and identity relations (1),
when the object and subject are identical. The other cells of the design matrix contain no
values. Figure 6 shows the design matrix associated with the RDF knowledge graph of our
case study (Figure 2).
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In addition, with axiomatic design, we have two other advantages. The first stems
from the fact that to a large RDF graph we cannot only give a horizontal type representation
that is representative of the relationships between the various triplets. However, we can put
together groups of triplets that have common features into clusters, which in turn can be
connected until they form a higher-level graph. Similarly, individual entities can be decom-
posed into classes and subclasses. As we have already seen in Section 2.1, axiomatic design
supports object-oriented programming with all its properties (polymorphism, inheritance,
and encapsulation). In particular, the concept of inheritance in axiomatic design results in
the possibility of decomposing the representation of a class of objects down to very basic
levels of detail [15]. This aspect allows us to provide a vertical, multi-level abstraction
representation of an RDF knowledge graph. In fact, axiomatic design is a top-down design
methodology, which allows us, from a high abstraction level, to build representations of
detail [16]. The second advantage, on the other hand, comes from the zigzagging process,
which allows an object of high abstraction level to be decomposed simultaneously across
multiple domains [50,51]. This axiomatic design feature ensures that mapping between
elements belonging to multiple domains is maintained. However, to make this property of
axiomatic design more understandable, we need to introduce two more definitions. They
allow us to provide a broader picture of the potential offered by axiomatic design in the
field of data analytics.

Definition 3. We define as the Domain of Customer Attributes (CA) the set of information which
decision makers need in order to guide their choices [12]. These queries can be formalized as analytic
queries, as keyword searches, or via natural language in systems adopting artificial intelligence and
machine learning models on RDF graphs [30].

Definition 4. We define the Domain of Identifiers (I) as the set of URI addresses, which allow us to
locate on the Web or on enterprise datasets the resources in our RDF knowledge graph [29]. This
domain is analogous to the Process Domain of axiomatic design. In its standard formulation, the
elements of this domain represent the tools through which design parameters are implemented. For
example, in the software design domain, these elements are program routines or parts of code [15].
Instead, in this new application, they are the identifiers of the resources represented in the graph.

These four domains make it possible to formalize the needs of decision makers in
terms of queries on data sources organized according to a precise ontological language
and accessed through unique addresses. Figure 7 describes, in graphic form, the proposed
approach to constructing an RDF knowledge graph through axiomatic design.
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4.2. Axiom of Independence

The independence axiom allows for the construction of directed, acyclic graph
schemes [11]. As anticipated in Section 1, this topological feature facilitates the writ-
ing of consistent analytic queries. This can be achieved on the basis of what was introduced
in Section 4.1. In this case, the analytic schema of a knowledge graph can be translated in
terms of a design matrix. Nevertheless, a logically connected graph may have redundant
relationships. A good designer could spot them immediately. However, in large graphs,
they might not be detected. Instead, axiomatic design provides appropriate metrics to
evaluate among design matrices of equal size, i.e., equivalent to graphs representing the
same entities, the matrix that is closest to an orthonormal basis [11]. This means selecting
the matrix that has the least number of redundant relationships. This can be done by
resorting to the metrics of Reangularity I and Semiangularity (S) [12,46], which provide an
indication of the degree of functional independence of a design matrix of dimension nxn.
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where aij are the elements of design matrix A, for I = 1. . .n and j = 1. . .n.
If R = S = 1, we have that the design matrix A is uncoupled. It corresponds to a

diagonal matrix (Figure 8). This means that each entity is independent, so there are no
relationships connecting the various entities. Therefore, this situation is not representative
of an RDF knowledge graph.
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If R = S ̸= 1 and > 0, then the design matrix tends to be decoupled. It corresponds
visually to a triangular matrix (Figure 9). This condition ensures compliance with the axiom
of independence. Hence, there are well-defined paths by which the entities in the graph
can be connected. The decoupled condition describes within the design matrix a sequence
of paths leading from a starting node to a final node [13].
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For values of R and S other than the previous two cases, the design matrix is cou-
pled [46]. This means that there are directed loops within the graph that make some
relationships mutually dependent (Figure 10).
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Therefore, reangularity and semangularity can be used as metrics to measure the level
of decoupling of a design matrix [11]. In our case, RDF graphs may consist of millions of
triplets, Iich is incomprehensible to human senses [16]. In this respect, Formulas (2) and (3)
allow an evaluation of the axiom of independence, even in the case of large matrices, for
which it would be impossible to visually detect the violation of this axiom.

4.3. Axiom of Information

As we saw in Section 2.1, the information axiom is to select from a finite set of equally
admissible design solutions the least complex RDF knowledge graph, corresponding to
the solution with the least information content [52]. In its standard version, axiomatic
design relates the information content of a design to its ability to achieve the functional
requirements on which it was defined. Therefore, if we consider the functional requirement
FRi, the information content (Ii) associated with it is given by the following Formula (4).

Ii = log2

(
1
pi

)
(4)

where Pi is the probability that the FR requirement will be satisfied by the proposed design
solution [12]. Unfortunately, this formula is not applicable to the case of an RDF knowledge
graph. However, as we have always seen in Section 2.1, several methodological approaches
have been proposed in recent years to adapt this axiom to new contexts [21]. In this case,
Formula (4) could be replaced with the use of multi-criteria decision-making (MCDM)
methods [19–21], which have the advantage of including non-functional requirements
(NFRs) in the process of selecting the most appropriate graph. This choice may be particu-
larly suitable for the data analytics environment, as the selection of a specific graph could be
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affected by nonfunctional factors, such as privacy constraints, on the data to be processed,
security risks, the level of veracity on the information collected, and the cost of having
access to paid datasets. In this case, the adoption of an MCDM method corresponds to the
introduction of a weighting measure to each subject–object relationship [14]. This means
that each path along the RDF knowledge graph has a specific weight. This weight can be
determined based on the nonfunctional requirements we want to consider. For example,
if we consider only the level of truthfulness of the information contained in the data sets
as an evaluation parameter, we will have a useful tool for selecting the most reliable infor-
mation sources. In this way, the design matrix resulting from the application of this single
evaluation criterion will consist of the mapping between the most reliable information
sources. However, the strength of MCDM methods lies in estimating weighting weights in
the presence of multiple evaluation criteria, which may well be mutually conflicting. For
example, the criterion of maximum veracity of a source’s information may conflict with
the need to minimize the cost of accessing paid datasets. Indeed, a free data source may
be untrustworthy, while a certified dataset may be fee-based. However, different MCDM
methods offer specific strategies to deal with these situations [21].

4.4. Methodological Summary

In Sections 4.1, 4.2, and 4.3, the axioms and main properties of axiomatic design
were reformulated in order to define a way of methodological combination with Web
semantics. Instead, in this Section, we present a use pattern of axiomatic design that
describes the interactions between decision makers and data analysts. This schema is
shown in Figure 11 and is very general in its nature, as the main focus of this paper is to
demonstrate that axiomatic design not only provides an equivalent representation of an
RDF knowledge graph, but is a powerful optimizing tool for writing analytic queries. This
substantially means that this approach can be used in business intelligence applications to
identify patterns of relationships between objects belonging to heterogeneous sources in
order to present decision makers with trends and correlations that are difficult to detect
otherwise. In Figure 11, the interactions between data analysts who process data and
decision makers who, on the other hand, define the objectives to be pursued, follow a
model derived from the case stories methodology that is based on the formalization of semi-
structured interviews with customers [53]. These interviews allow data analysts to define
the customer attributes to be pursued. Once all user requirements have been gathered, we
proceed to build the RDF knowledge graph and apply axiomatic design in order to define a
data analytic schema in terms of a design matrix. This matrix allows to write optimized
queries to be applied on the RDF knowledge graph. Finally, the results obtained are made
available to decision makers in the most appropriate visualization modes [30]. This process
is achieved through a top-down approach, where, from general abstract concepts, it is
possible to build a coherent system of mappings between objects down to the smallest
levels of detail. In this case, Web semantics provides the ontological language, while
axiomatic design incardinates the mappings between objects into a design matrix, which
minimizes information redundancy and facilitates the correct formulation of queries on
the data lake. In this paper, we introduced, in Section 3, a case study related to the design
of a semantic data lake. This data lake captures the reviews that tourist bloggers post to
cultural institutions such as museums and to receptive activities such as restaurants. Then,
the same system correlates the content of these posts with the bloggers’ city of residence
and job occupation. Such a system fits very well within the framework of so-called “Smart
Cities” [54]. It can be useful to detect the level of customer satisfaction and formulate an
appropriate tourism offer from a data-driven perspective. In Italy, the economy related
to tourism activities produces about 18 percent of the annual GDP [55]. Thus, this is an
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extremely relevant economic sector. However, the area of application of this approach is
much broader. In particular, in those sectors for which the interpretation of data may be
subject to controversy or ambiguity, such as may be the health sector or environmental
impact detection systems, the use of axiomatic design can be very useful. This depends on
the fact that axiomatic design encodes the mappings between the constituent elements of a
data lake based on mathematical axioms. This aspect introduces a high level of transparency
and rigor on how data are processed and extracted.
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5. Discussion
5.1. Strengths of Proposed Methodology

The huge number of networked devices and systems has made an impressive amount
of data available on the Web, which, if properly processed, is an opportunity for citizens
and business operators [56,57]. For this reason, the World Wide Web Consortium (W3C)
has introduced a number of standards, such as RDF and OWL, to facilitate data analytics
activities aimed at finding statistical and predictive information needed to support business
decision-making processes. However, as discussed in Section 1, extracting meaningful
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information remains a severe challenge, which is summarized in the problem of the 5 Vs
(volume, velocity, variety, value, and veracity of Information). In this complex environment,
the adoption of axiomatic design allows the Web semantics to be enriched with a whole
set of additional properties. This effectively corresponds to the introduction of conceptual
order in the construction of RDF knowledge graphs, the benefits of which are all the more
evident the more the complexity of the graph grows. The great strength of axiomatic design
is to select, among logically admissible design solutions, the least functionally complex
one [14]. This is achieved by pursuing both axioms. In particular, the axiom of indepen-
dence leads to the realization that the graphs to be preferred are those that exhibit acyclicity
characteristics [11]. This topological peculiarity facilitates the process of defining consistent
analytic queries. In fact, the effectiveness of an analytic query amounts to saying that the
results obtained must be consistent with respect to its syntactic formulation. Therefore, the
knowledge graph entities retrieved by the query must be logically connected and must not
exhibit loops, i.e., the corresponding analytic context must be a direct acyclic subgraph [10].
In this sense, the concept of effectiveness means that an analytic query has been correctly
formulated with respect to the analytic schema of the referenced RDF knowledge graph.
This goal seems trivial for a system consisting of a few entities, but for a complex system, it
becomes a significant problem. In contrast, the concept of efficiency of an analytic query is
related to its inherent ability to obtain results with optimal computational performance [58].
This means selecting, among a finite set of analytic queries which, on the same graph,
produce the same result, the one that is most efficient in terms of fewer system accesses.
This goal is all the more important the more branched the entities that make up the graph
and the more numerous the stored data. Ultimately, the construction of an RDF knowledge
graph optimized by axiomatic design lays the foundation for the generation of analytic
queries that exhibit characteristics of effectiveness in terms of expected results and efficiency
as time and resources expended. These results help mitigate the impact of the 5 V problem
on a data lake composed of heterogeneous data sources. This goal can be directly achieved
using axiomatic design by selecting reliable data sources (veracity) and extracting data
that are truly relevant to the decision makers (value). Additionally, building an organized
analytical framework facilitates the integration of data lakes represented as RDF knowledge
graphs with more efficient technologies for managing large volumes of data. For this reason,
in recent years, hybrid solutions combining RDF data lakes with data warehouses have
been proposed [59–61]. Data lakes are highly efficient in ensuring interoperability between
data sources of different natures, including unstructured information such as videos or
images [62]. Conversely, data warehouses are repositories of historical and structured
data [63]. They can also reference unstructured data; however, such data must first undergo
processing to be homogenized into a unified format. This processing is referred to by the
acronym ETL (Extract–Transform–Load) [63,64]. The processed data are transformed into a
unified format and then loaded into the data warehouse to make them available for data
querying systems. Specifically, in data warehouses, queries are executed by applications
known as OLAP (On-line Analytical Processing) [65]. The data model used for OLAP
applications is the data cube, which can be considered an n-dimensional extension of the
SQL GROUP BY instruction [65]. Therefore, a two-tier data analytics architecture that com-
bines a data lake with a data warehouse enables interoperability between heterogeneous
data sources (variety) while, simultaneously, providing the most suitable analytical tools
for handling large datasets (volume) with different update frequencies (velocity), such
as the data cube operator. In this context, axiomatic design can be used as the interface
tool between these two different technologies, as it allows for the optimized analytical
representation of the data lake and the queries defined on it. This, in turn, activates the
ETL process for feeding the data warehouse (Figure 12).
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5.2. Theoretical Limitations of the Proposed Methodology

The proposed approach has some theoretical limitations. They stem from some specific
characteristics of axiomatic design, which turns out to be an extremely rigorous but rigid
methodology. It is focused on identifying robust design solutions, based on a top-down
approach [12]. This approach is particularly suitable in static situations, in which the
functional requirements of the design artifact are essentially stable or at least remain so
for a relevant time interval. In contrast, the entities in a data lake can be subject to very
frequent changes, either due to the exponential growth of available data sources, but also
due to other exogenous, unpredictable factors such as, for example, changing consumer
preferences. In this sense, axiomatic design is poorly suited to be applied to highly dynamic
environments. Moreover, this methodology is still difficult to automate because it involves
a major role of the designer in defining user requirements and corresponding design
parameters. The adjustment time for mapping between domains is not negligible. In
contrast, as we saw in Section 5.1, a data lake has high levels of flexibility, scalability,
and interoperability among heterogeneous data sources. Therefore, we are faced with
mostly unstructured and highly inhomogeneous data collectors. But, in complex domains
with marked multidisciplinarity [66], putting together classes of heterogeneous objects can
lead to interpretation problems, especially if analysts with little domain knowledge are
performing the data extractions [67]. For this reason, several authors [67–69] proposed the
introduction of a conceptual level of representation of data lake objects and relationships,
based on the rules of Web semantics. This signified the transition from traditional data lakes
to semantic data lakes. In this new context, however, the contribution of axiomatic design
turns out to have greater significance, as it provides a very powerful tool for defining
ontological relationships among data lake entities and lays the basis for the formulation
of robust queries. Therefore, we can conclude that the appropriateness of using this
methodology depends essentially on the scope of application. For complex domains
for which the results produced must be extremely rigorous, the approach proposed and
schematized in Figure 11 is valid. In contrast, for fields of application in which the mapping
rules between entities to be coded are not complicated and the data sources are continuously
growing, an Agile approach may be preferable. In this case, the speed of response to volatile
boundary conditions may lead to the acceptance of results that are not robust in terms
of axiomatic design. Therefore, as anticipated in Section 4.4, this method may find wide
application in medical research and environmental impact detection systems, complex
fields with strong multidisciplinary and mediatic relevance, for which the expected results
must be rigorous. However, at the same time, scientific research is attempting to overcome
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these limitations of the axiomatic approach to broaden its spectrum of applicability. This
can be done by trying to integrate axiomatic design with other methodologies [19–23].
Another direction of research concerns automating the application of axiomatic design
by formalizing the steps of applying the method in ontological terms [48,70]. However,
regardless of these limitations, axiomatic design remains a powerful tool to support human
creativity [71].

6. Conclusions
In recent years, generative artificial intelligence has seen significant development due

to its ability to accelerate routine operations and research. This is made possible by the
availability of large amounts of structured and unstructured data on the Web. However,
the usability of this vast and chaotic amount of data requires a formalization process that
creates a language comprehensible to both humans and machines. Among the various
possibilities, the OWL language, standardized by the W3C and known as RDF, provides
an ontology of subject–predicate–object triplets, where the object is defined by a predicate
operated by a subject. In other words, an object is the result of an action by a subject.
This triplet-structured language enables both matrix and directed graph formalizations.
However, suboptimal modeling of logical structures can lead to matrices and graphs with
internal loops, rendering graph operations inefficient.

The authors, after a thorough literature review, identified a lack of methodologies
for assessing the quality of RDFs, which is necessary to avoid subsequent difficulties in
extracting and using the required information. Given the matrix nature in which the
problem can be framed, the authors were able to employ axiomatic design methodology
and its two axioms of independence and information to theorize a possible approach for
evaluating graphs. As elaborated in Section 4.1, the zigzag process allows for correlating
elements from different domains, thus the formalization of these informational needs in
terms of analytical queries goes hand-in-hand with the construction of the knowledge
graph on which they will be implemented down to elementary levels of detail. In this
context, the independence axiom minimizes redundant relationships between entities and
increases query response efficiency, avoiding inconsistent or overly costly queries in terms
of committed processing resources. The information axiom from Section 4.3 allows the
selection of the most reliable information sources for data extraction. Indeed, the adoption
of MCDM methodologies enables the extension of the evaluation of these information
sources by leveraging nonfunctional comparative elements, such as privacy constraints,
security risks, and the level of information trustworthiness. Additionally, these methods
can be used in combination with artificial intelligence and machine learning tools. This
second aspect allows for optimizing the process of building RDF knowledge graphs to
identify the most reliable information sources.

In conclusion, the adoption of axiomatic design corresponds to introducing more
stringent rules for knowledge graph construction in Web semantics and, importantly, a
methodology for selecting the most efficient graph alternatives. By using the reangularity
and semangularity indices, it is possible to evaluate the coupling of the matrix according to
AD logic, then employ multi-criteria decision-making methods to choose the best among
the alternatives with lower indices. This process will thus allow for selecting the most
efficient RDF, simplifying AI query processing.

The next step of the proposed study could be the possibility to extend the method-
ology for longer statements and apply the information axiom to the AI’s stochastically
generated statements.
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