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Abstract: This study presents a foundational step in a broader initiative aimed at lever-
aging thermal imaging technology to enhance wind turbine maintenance, particularly
focusing on the challenges of detecting defects and object localization in small wind turbine
blades. Serving as a preliminary experiment, this research project tested methodologies and
technologies on a smaller scale before advancing to more complex applications involving
large, operational wind turbines using drone-mounted cameras. Utilizing thermal cameras
suitable for both handheld and drone use, alongside advanced image processing applica-
tions, we navigated the significant challenge of acquiring high-quality thermal images to
detect small defects. This required a concentrated analysis of a select subset of data and a
methodological shift towards object detection and localization using the You Only Look
Once (YOLO) model versions 8 and 9. This effort not only paves the way for applying these
techniques to larger-scale turbines but also contributes to the ongoing development of an
integrated maintenance strategy in the wind energy sector. Highlighting the critical impact
of environmental conditions on thermal imaging, our research underscores the importance
of continued exploration in this field, especially in enhancing object localization techniques
for the future drone-based maintenance of operational wind turbine blades (WTBs).

Keywords: infrared thermography; wind turbine blade; deep learning; defect detection;
object localization; YOLO

1. Introduction
The shift toward renewable energy sources is essential for mitigating global carbon

emissions, with wind energy playing a crucial role in this transition. Wind turbines, a fun-
damental component of this shift, require meticulous maintenance to maintain efficiency
and reliability. This underscores the vital importance of continuous innovation in mainte-
nance and inspection practices. Wind turbine blades (WTBs) are particularly susceptible
to various damages that can drastically affect their performance. Among the technologies
used in maintenance, thermal imaging stands out for its ability to detect subsurface defects
that are otherwise invisible, enhancing the effectiveness of maintenance protocols. Our
comprehensive review [1] delves into the latest advancements and explores the transfor-
mative potential of these technologies in detecting defects in WTBs. Recent advancements
in thermal imaging have increasingly facilitated the inspection of WTBs, highlighting its
potential as a non-invasive diagnostic tool. Despite these technological strides, several criti-
cal shortcomings persist in the application of thermal imaging within the context of wind
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turbine maintenance. The primary limitation lies in the generic nature of the datasets used
in most studies. While thermal imaging has been proven to detect subsurface defects such
as delaminations, voids, and moisture ingress effectively, the datasets typically employed
do not adequately reflect the specific and varied nature of defects that WTBs exhibit [2].
These datasets often lack the resolution or specific environmental conditions under which
real-world turbine blades operate, limiting the practical applicability of the findings [3].
Furthermore, existing research often does not address the full spectrum of defect types
that can affect WTBs. For example, while thermal imaging is effective at identifying larger
thermal anomalies, smaller yet critical defects might not be detected due to the limitations
in sensor resolution or the methodologies employed [4]. This gap is crucial because small
defects can evolve into significant damage if not identified and addressed early. Moreover,
the integration of Unmanned Aerial Vehicles (UAVs) with thermal imaging technologies,
although innovative, faces challenges related to the stability and precision of the UAV
platforms. The accuracy of thermal imaging is highly dependent on the stability of the
camera during flight, which can be affected by wind and other environmental factors. This
introduces variability in the data quality, which can compromise the defect detection pro-
cess [5]. In terms of data processing, most existing approaches utilize conventional image
processing techniques that may not adequately handle the complexities of thermal data,
which require advanced algorithms to be interpreted effectively. The need for more sophis-
ticated machine learning models that can learn from and adapt to the unique patterns of
thermal images is evident but underexplored in the current literature [6]. To address these
deficiencies, there is a need for research that develops high-fidelity, high-resolution thermal
datasets that are reflective of the actual operating conditions of wind turbines. Additionally,
enhancing UAV stability and employing advanced machine learning techniques for data
analysis are critical in overcoming the current limitations of thermal imaging applications
in this field.

1.1. Inferared Thermography (IRT) Non-Destructive Testing (NDT)

Wind turbine blade infrared thermography (IRT) non-destructive testing (NDT) is
an advanced diagnostic technique used to detect defects and assess the integrity of wind
turbine blades. This method involves using infrared cameras to capture thermal images
of the blades, which reveal temperature variations that indicate the presence of internal
flaws such as delaminations, cracks, or moisture ingress. IRT NDT is valued for its ability
to provide rapid, accurate, and comprehensive inspections without causing damage to the
blades. As a result, it enhances the reliability and efficiency of wind turbines by ensuring
the early detection and remediation of potential issues, thereby extending the lifespan of
the blades and optimizing energy production.

Galleguillos et al. [7] discussed a novel NDT technique using IRT combined with
UAVs for inspecting WTBs. The study validated the feasibility of using passive IRT, which
leverages natural thermal effects rather than external heat sources, to identify common
defects such as delaminations, cracks, and impact damage in wind blades. The authors
conducted both ground-based tests with artificially introduced defects and flight tests using
a unmanned aerial systems equipped with an IR camera. The results demonstrated the
method’s effectiveness in detecting significant defects rapidly and safely, suggesting that
this approach could significantly reduce the time and risk associated with traditional blade
inspection methods.

Doroshtnasir et al. [8] introduced an NDT method for inspecting WTBs using IRT.
This method is particularly useful for offshore turbines where accessibility is limited.
The authors described a novel procedure that involves creating difference thermograms
to minimize misinterpretations caused by environmental reflections, identifying signals
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unrelated to structural or dynamic features, and comparing these signals to processed
photographs to rule out false positives from surface effects. The study confirmed that the
approach can effectively detect subsurface defects from a distance, offering a significant
advancement over traditional IRT methods which often only consider a subset of these
steps. This technique not only increases the reliability of inspections but also enhances
the ability to conduct them under operational conditions, thereby improving maintenance
efficiency and safety in wind energy operations.

Traphan et al. [9] explored the application of IRT for identifying surface defects in
WTBs while in operation. This non-invasive method provides a promising alternative to
traditional inspections, which often require turbine downtime and physical access to blades.
The study compared IRT data with stereoscopic particle image velocimetry to validate
the method’s efficacy. It further investigated the aerodynamic effects of detected surface
defects using both experimental setups and computational fluid dynamics simulations.
Results indicated that IRT could effectively visualize surface anomalies by detecting thermal
patterns associated with defective areas, thereby enabling the early detection of potential
damages that could lead to significant maintenance issues if left unaddressed.

Chen et al. [10] introduced an innovative method called AQUADA for the automated
detection and quantification of structural damages in WTBs using thermography and
computer vision. The study highlighted the application of this technology to reduce
the Levelized Cost of Energy (LCOE) by simplifying and economizing the inspection
process. By automating damage detection and integrating analysis with image acquisition,
AQUADA minimizes human error and operational downtime. The method was tested
on WTBs under laboratory conditions to validate its effectiveness. Results showed that
AQUADA could potentially cut inspection costs by half and reduce the LCOE by 1–2%,
proving its efficacy in identifying both superficial and subsurface blade damages without
interfering with turbine operation.

Xu et al. [11] introduced an innovative approach to defect depth recognition using
Gated Recurrent Unit (GRU) networks in conjunction with active IRT . This method lever-
ages Principal Component Analysis (PCA) to process raw thermal sequences, reducing
dimensionality and correlation before training the GRU model. The methodology was vali-
dated through experiments on polymethyl methacrylate specimens with flat-bottom hole
defects. The results demonstrated that the PCA-enhanced GRU model achieved superior
accuracy in recognizing defect depths compared to traditional approaches, showing its
potential for enhancing non-destructive testing by efficiently processing thermal data and
accurately determining defect characteristics.

Wang et al. [12] discussed an advanced method for detecting thermal defects in a
substation equipment using a Convolutional Neural Network (CNN) integrated with a
Support Vector Machine (SVM). The method enhances image processing by using improved
pre-processing techniques to isolate the region of interest (RoI) and refine the thermal image
data. Temperature values were segmented and categorized into 11 distinct labels, forming
the T-IR11 dataset, which was essential for training the CNN model. The approach was
evaluated using precision, recall, and F1 score metrics, demonstrating a high accuracy of
99.50%. This method significantly automates and improves the efficiency and accuracy
of thermal defect detection in substation equipment, which is crucial for maintaining the
reliability and stability of power systems.

Jiang et al. [13] evaluated the use of You Only Look Once (YOLO) [14] models for
object detection in UAV-based thermal infrared images and videos. The study emphasized
overcoming challenges like low resolution, complex backgrounds, and a lack of labeled
datasets in UAV thermal infrared imagery by adapting YOLO models for thermal infrared
application. These models were tested on ground-based and UAV datasets, demonstrating
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high effectiveness in various scenarios, including day and night operations. The results
were promising, with a mean average precision (mAP) of 88.69% for detecting specific
objects like cars and people, and the models achieved up to 50 frames per second in the pro-
cessing speed. This research underlined the YOLO models’ adaptability to thermal infrared
data, enhancing UAV capabilities for real-time surveillance and monitoring applications.

Wang et al. [15] investigated the effectiveness of using passive IRT for detecting various
types of damage in small WTBs under natural outdoor conditions. This method optimized
the light conditions required for effective detection by analyzing the interaction between
light intensity and the surface temperatures of damaged blades. The experimental findings
indicated that the optimal detection of different damage types—such as foreign body at-
tachment, surface wear, and cracks—occurred at specific light intensities, with light around
1000 W/m2 being most effective. Additionally, the study utilized numerical simulations to
further validate the experimental results and establish a thermodynamic coupling model,
demonstrating a linear relationship between light intensity and the thermal responses of the
blade, such as temperature, stress, and strain, thereby enhancing the practical application
of this technology in field conditions.

Yu et al. [16] introduced an innovative method for stitching infrared images of WTBs
using data from UAVs and a U-Net-based neural network. This method was designed
to overcome challenges associated with the weak texture and low contrast of infrared
images. By employing U-Net for semantic segmentation to isolate the blades from complex
backgrounds, the method calculated necessary geometric transformations to align and
stitch the images accurately. This process enhanced the quality of the stitched images, as
evidenced by comparative analysis against traditional stitching algorithms. The approach
not only ensures accurate blade orientation and alignment but also significantly improves
the detection and quantification of defects, contributing to more effective maintenance
strategies for wind turbines.

Chen et al. [17] introduced AQUADA Plus, a novel method leveraging thermography
and computer vision to detect damage in large-scale composite structures under cyclic
loads. The method automates the detection, localization, and evaluation of damage through
thermal image analysis, addressing challenges posed by complex thermal backgrounds
and environmental conditions. A significant aspect of this study was the integration of
drone-based thermography, demonstrating the method’s application in real-world settings
without stopping wind turbine operations. The approach not only enhances damage
detectability and accuracy but also promises considerable reductions in inspection times
and costs. The potential of this method to revolutionize structural health monitoring in
wind turbines and similar large structures is underscored by its successful application in
both laboratory settings and field tests.

Oliveira et al. [18] proposed a comprehensive framework for detecting faults in large-
scale photovoltaic plants using aerial IRT combined with orthomosaicking techniques.
Orthomosaicking, often referred to simply as mosaicking, is a process used in image pro-
cessing and remote sensing; it involves stitching together multiple overlapping images
into a single, seamless composite image, known as an orthomosaic. Utilizing the Mask
R-CNN algorithm for instance segmentation, the study addressed the challenges of ana-
lyzing extensive photovoltaic arrays by automating fault detection and localization. This
framework effectively reduces the time and potential errors associated with manual inspec-
tions through its integration of deep learning and image processing technologies. Initial
tests demonstrated high accuracy in detecting and pinpointing hotspots and other defects,
offering significant improvements in operational efficiency for maintenance operations in
photovoltaic plants.
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Attallah et al. [19] presented an advanced method for diagnosing inter-turn faults in
induction generators used in offshore wind turbines. This method uses multiple CNNs in
combination with IRT and a sophisticated feature selection mechanism to improve fault
detection efficiency and accuracy. The approach leverages the strengths of different CNN
architectures by merging their features, followed by a selective reduction in these features
to enhance diagnostic effectiveness. It eliminates the need for contact-based measurement,
making it ideal for the challenging offshore environment. The proposed method not only
increases the accuracy of fault diagnosis in wind turbine generators but also significantly
reduces the computational load and diagnosis time. This was demonstrated through
a detailed comparison to traditional and other deep learning methods, highlighting its
superiority in accuracy and efficiency.

Haidong et al. [20] detailed an innovative fault diagnosis method for rotating ma-
chinery that operates under varying speed conditions. This approach introduced a new
Generative Adversarial Network (GAN) [21], called the Dual-Threshold Attention-Guided
GAN (DTAGAN), which is tailored to generate high-quality infrared thermal images for
fault diagnosis. The proposed DTAGAN addresses several challenges typical of traditional
GANs such as gradient vanishing and poor feature extraction. By combining Wasserstein
distance and gradient penalty within the loss function and incorporating an attention
mechanism to highlight significant global features from thermal images, DTAGAN signifi-
cantly enhances the quality and efficiency of image generation. The study demonstrated
that DTAGAN outperformed existing methods in diagnosing faults in rotor-bearing sys-
tems through comparative experiments, particularly under conditions of limited data and
speed variations.

Tanda et al. [22] investigated the efficacy of using UAVs and manned aircraft equipped
with IRT for monitoring solar photovoltaic (PV) systems. It provided a detailed comparison
of these two remote sensing platforms in detecting thermal anomalies in solar panels,
which are indicative of faults. Both methods demonstrated high accuracy in identifying
defects, with UAVs offering detailed imaging at lower operational costs and manned
aircraft covering larger areas more quickly, thus potentially reducing overall inspection
time for large-scale installations. The economic analysis highlighted that while UAVs are
generally more cost-effective for smaller or medium-sized PV plants, aircraft can be more
economically viable for larger installations exceeding 40 MW due to their quicker survey
capabilities and the ability to cover extensive areas in a single day.

Petersen et al. [23] detailed a study on the use of Mid-Infrared Optical Coherence
Tomography (MIR OCT) for inspecting leading edge coatings of WTBs. The study ad-
dressed the critical issue of erosion, which affects the aerodynamic efficiency and longevity
of turbine blades. Through detailed experiments, the authors demonstrated that MIR
OCT could effectively identify subsurface defects such as bubbles and cracks that were
not detectable by other non-destructive methods like ultrasonic testing. This technology
allowed for a deeper inspection of the protective coatings applied to turbine blades, offering
a significant improvement over traditional methods by providing detailed, high-resolution
images of internal structural defects without damaging the blades. The research suggests
that implementing MIR OCT in the manufacturing process could enhance the quality
control of turbine blade coatings, potentially reducing maintenance costs and downtime
due to blade erosion.

Zhao et al. [24] explored advancements in active IRT technology for identifying defects
in the renewable energy and electronics sectors. It provided a detailed examination of
different active IRT methods like pulsed, lock-in, vibration-induced, and eddy current
thermography, highlighting their applications and effectiveness in pinpointing defects in
various materials and components. Specifically, the article discusses the integration of
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IRT with deep learning to enhance defect detection in photovoltaic systems and electronic
components, noting significant improvements in both accuracy and efficiency. It addresses
the practical challenges and benefits of these technologies, such as non-contact and large-
area imaging capabilities, and suggests future research directions to further optimize defect
detection and system monitoring.

Wang et al. [25] focused on enhancing defect detection in WTBs through advanced
image segmentation techniques using UAV-carried infrared imaging. The study introduced
a novel segmentation method that incorporates both global and local image information
to address the common challenges of image inhomogeneity in infrared images, which
often impedes accurate segmentation. This method significantly improves segmentation
accuracy and speed by utilizing a detail map for the edge stopping function and applying
a variable threshold based on local statistics as the initial contour for the level-set method.
The approach was demonstrated to be more efficient than traditional methods, achieving
high segmentation accuracy while also correcting for bias in the image, thus ensuring
precise defect localization in wind turbine maintenance applications.

Li et al. [26] presented a comprehensive study on utilizing solar radiation as a passive
excitation source for WTB IRT NDT. By leveraging natural solar conditions, the research
explored the detectability of subsurface defects like delaminations in turbine blades, em-
ploying numerical simulations and experimental validations. The findings suggested that
the time of day significantly affected the thermal visibility of defects due to the solar angle
and intensity, providing critical insights into the optimal conditions for conducting thermal
inspections. This method represents a cost-effective alternative to active heating techniques,
potentially enhancing routine maintenance strategies for wind turbines.

Zhou [27], who published in IEEE Transactions on Instrumentation and Measurement,
explored a novel defect detection method for wind turbines using combined RGB and IRT.
The study introduced a Regression Crop data-processing method and an adaptive feature
fusion module that integrates RGB and IR data, significantly enhancing the detection ac-
curacy and precision of actual defects in WTBs. The approach employs advanced deep
learning techniques and was tested using a dataset of wind turbine images, showing an
increase in detection precision to 99%. This method addresses the challenges of distinguish-
ing between actual defects and false positives like dust or debris on the blades, presenting
a substantial improvement over traditional methods.

Zheng et al. [28], who published in the IEEE Sensors Journal, introduced a novel
method for detecting temperature anomalies in blower components using infrared video
analysis. This method utilizes advanced segmentation algorithms and a hierarchical multi-
scene anomaly detection strategy to improve the accuracy and robustness of temperature
anomaly detection. Key techniques include improved point rendering for better image
segmentation, K-means++ clustering for initial data classification, and k-nearest neighbor
analysis for finer anomaly detection. The approach is enhanced with dynamic time warp-
ing to handle different data lengths and sliding window techniques to estimate anomaly
durations, offering significant improvements in industrial monitoring applications.

Jia et al. [29] proposed an advanced method, AQUADA-Seg, for segmenting WTBs
using fused optical and thermal video data. This technique utilizes both modalities to
provide comprehensive information about the blades, enhancing the segmentation process
especially in complex background conditions that typically hinder accurate segmentation.
By incorporating both modalities, the method significantly outperforms traditional single-
modal approaches, achieving near real-time processing capabilities and high accuracy, thus
facilitating more efficient and timely inspections of wind turbines while in operation.

Sheiati [30] described a novel deep learning method for segmenting fatigue damage in
WTBs using passive IRT. This method efficiently segments the blade from complex dynamic
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backgrounds in thermal images, ensuring accurate damage detection under operational
conditions. The proposed approach utilizes a two-step process, starting with an innovative
background segmentation using pre-trained deep learning models, followed by damage
segmentation that isolates and analyzes fatigue damage. This technique significantly
improves the accuracy and efficiency of thermal imaging analysis for structural health
monitoring in wind turbines, achieving impressive recall and precision rates in both
background and damage segmentation tasks.

While some valuable thermal imaging datasets exist for WTB inspection, such as those
presented by Duan et al. [31] and Aminzadeh et al. [32], there remains a need for more
comprehensive, high-quality datasets that specifically address the challenges of small-
scale wind turbines and early-stage defect detection. Our work complements existing
datasets by focusing on minute defects and their thermal signatures in small-scale turbines,
contributing to the development of more precise, automated defect detection systems
capable of early-stage damage identification, which is crucial for proactive maintenance.

1.2. Object Detection and Localization

Object detection and localization have been significantly improved by the advent of
CNNs, making it possible to identify and locate objects within images with high precision.
The demand for real-time object detection has grown with applications in autonomous driv-
ing and surveillance. Methods like CNNs have evolved to meet real-time requirements by
reducing computational overhead and increasing processing speed. The YOLO (You Only
Look Once) series has significantly influenced the domain of object detection, integrating
rapid processing speeds with the precision required for real-time applications. This evolu-
tion began in 2016 with YOLOv1, developed by Joseph Redmon et al. [14], and has since
seen several iterations, each building on the last in terms of detection accuracy, processing
speed, and adaptability across various objects and scenarios. The successive versions have
continually addressed specific challenges in object detection, leading to advancements in
feature extraction, bounding box predictions, class predictions, and overall algorithmic and
architectural enhancements.

Object detection and localization have been significantly improved by the advent of
CNNs, making it possible to identify and locate objects within images with high precision.
The demand for real-time object detection has grown with applications in autonomous driv-
ing and surveillance. Methods like CNNs have evolved to meet real-time requirements by
reducing computational overhead and increasing processing speed. The YOLO (You Only
Look Once) series has significantly influenced the domain of object detection, integrating
rapid processing speeds with the precision required for real-time applications. This evolu-
tion began in 2016 with YOLOv1, developed by Joseph Redmon et al. [14], and has since
seen several iterations, each building on the last in terms of detection accuracy, processing
speed, and adaptability across various objects and scenarios. The successive versions have
continually addressed specific challenges in object detection, leading to advancements in
feature extraction, bounding box predictions, class predictions, and overall algorithmic and
architectural enhancements.

YOLOv1, introduced by Redmon et al. in 2016 [14], revolutionized object detection
by treating it as a single regression problem, directly converting image pixels to bounding
box coordinates and class probabilities. This approach eliminated the need for separate
region proposal generation, significantly boosting processing speed and enabling real-
time performance.

YOLOv2, or YOLO9000, introduced by Redmon et al. in 2017 [33], enhanced the
original YOLOv1 by integrating batch normalization, utilizing high-resolution classifiers
from the start of training, and adopting a new convolutional architecture. These improve-
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ments not only retained the high speed of the original but also increased the accuracy of
the detections.

YOLOv3, detailed by Redmon et al. in 2018 [34], advanced its predecessors by incor-
porating multi-scale predictions and leveraging a deeper feature extractor network, known
as Darknet-53 [34]. This version improved detection capabilities across various object sizes,
further balancing speed and accuracy enhancements.

YOLOv4, developed by Bochkovskiy et al. in 2020 [35], incorporated additional fea-
tures such as Weighted-Residual-Connections (WRC) [36], Cross-Stage-Partial connections
(CSP) [37], and Cross Mini-Batch Normalization (CmBN) [38]. These features significantly
improved the model’s robustness and generalization over different datasets and conditions,
making it more effective in diverse scenarios.

YOLOv5, Developed and released by Ultralytics in 2020 [39], a technology company
known for its contributions to machine learning and computer vision. Ultralytics’ re-
lease of YOLOv5 represents an unofficial continuation of the YOLO project, which they
have enhanced with proprietary modifications and improvements. This version introduces
adaptive anchor box calculations, employs a new compound scaling method [40], and exten-
sively uses data augmentations. YOLOv5’s architecture is designed to be flexible, offering
various model sizes that balance computational demands with detection performance,
making it highly adaptable for different applications. The release by Ultralytics has been
widely adopted in the community due to its performance improvements and ease of use,
setting a new benchmark for real-time object detection systems.

YOLOv6, presented by Li et al. in 2023 [41], aimed at refining the architecture and
training methods of YOLO, focusing on optimizing the network structure to enhance per-
formance in real-time applications. It features advanced training techniques and structural
optimizations that further improve the speed-accuracy trade-off.

YOLOv7, developed by Peng et al. in 2023 [42], introduces improvements in feature ex-
traction and fusion techniques, which significantly enhance detection precision, particularly
in complex and challenging environments [43].

In this study, we focus on the latest and most advanced versions of the YOLO architec-
ture, YOLOv8 and YOLOv9, which offer significant improvements in detection accuracy
and computational efficiency specifically relevant to our application.

YOLOv8 [42] emphasizes improving detection across various object sizes, especially
small objects. It employs a novel network structure and methods to maintain contextual
feature information, which boosts detection accuracy.

YOLOv9 was proposed by Wang et al. in Feb 2024 [44] and implemented by Ultralytics
in April 2024 [45], innovated with architectural features such as Programmable Gradient In-
formation (PGI) and a Generalized Efficient Layer Aggregation Network (GELAN), aiming
to preserve semantic information more effectively and improve computational efficiency.

In Table 1, we present a summary and comparison of different YOLO object detection
model iterations, highlighting their main features, advantages, and limitations. The table
demonstrates that the latest models, YOLOv8 and YOLOv9, significantly enhance detection
accuracy, processing speed, and performance in complex environments. These improve-
ments make them especially well suited for real-time applications like defect detection in
wind turbine blades. Therefore, we employed these latest YOLO models in our research,
leveraging their superior performance to achieve more accurate and efficient defect local-
ization in thermal images. The use of YOLOv8 and YOLOv9 in our study underscores our
commitment to utilizing cutting-edge technology to enhance wind turbine maintenance
processes. Section 3 provides an in-depth look at the implementation, training (with our
dataset), optimization, analysis, and comparison of these two models.
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Table 1. Comparison of YOLO model versions.

Model Key Features Advantages Limitations

YOLOv1 Single regression problem
for object detection [14]

Fast processing speed,
real-time detection

Lower accuracy
compared to later
versions

YOLOv2

Batch normalization,
high-resolution classifiers,
new convolutional
architecture [33]

Improved accuracy over
YOLOv1, retains high
speed

Still limited in handling
small objects

YOLOv3
Multi-scale predictions,
deeper feature extractor
(Darknet-53) [34]

Better detection across
various object sizes,
improved balance of
speed and accuracy

Increased computational
complexity

YOLOv4

Weighted Residual
Connections (WRCs),
Cross-Stage Partial (CSP)
connections, Cross
Mini-Batch
Normalization
(CmBN) [35]

Enhanced robustness and
generalization, effective
across diverse scenarios

Larger model size

YOLOv5

Adaptive anchor box
calculation, compound
scaling, extensive data
augmentation [39]

Flexible architecture, ease
of use, widely adopted

Proprietary modifications,
unofficial continuation

YOLOv6
Optimized network
structure for real-time
performance [41]

Improved
speed–accuracy trade-off,
efficient for real-time
applications

Primarily focused on
optimizing existing
architectures

YOLOv7
Improved feature
extraction and fusion
techniques [43]

Higher detection
precision, better
performance in complex
environments

Incremental
improvements over
YOLOv6

YOLOv8 *
FPN and PAN
architectures, transfer
learning [42]

High accuracy, better
handling of small objects,
improved contextual
feature information

Higher training
complexity, requires
fine-tuning

YOLOv9 *

Programmable Gradient
Information (PGI),
Generalized Efficient
Layer Aggregation
Network (GELAN) [44]

Advanced gradient
handling, optimal balance
of accuracy and speed,
lightweight

Newer model, requires
more testing and
validation

* Model versions used in this paper for object detection and localization.

1.3. Contributions

Addressing these gaps, our research makes several critical contributions to the field.
The creation of a new thermal dataset: we developed a bespoke thermal dataset that
captures a wide range of small, critical defects specific to WTBs, greatly enhancing defect
detectability and analysis accuracy. Advancement in defect localization: our work extended
beyond simple defect identification to sophisticated localization, utilizing state-of-the-art
object detection models for more detailed and actionable insights. Drone-compatible camera
testing: initially testing our thermal camera in a handheld setup, we ensured its capability
to produce high-quality images, a prerequisite for the future deployment on drones for
comprehensive blade inspections. Comparative analysis of advanced object detection
models: we provide an analytical comparison of the latest YOLO models, assessing their
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strengths and adaptability to the nuanced requirements of thermal imaging for wind
turbine inspection.

The novelty of this research lies in its targeted approach to dataset creation and the
application of advanced deep learning techniques tailored for wind turbine maintenance.
This approach not only fills a significant void in current maintenance practices but also sets
a benchmark for future technological advancements in the sector. The importance of this
work is underscored by its potential to significantly reduce maintenance costs, enhance
turbine safety and longevity, and support the broader adoption of wind energy globally.

1.4. Research Roadmap

Building on the foundational work presented in this paper, future research is expected
to progress through several distinct phases to further develop and apply the techniques
introduced. The first phase may involve expanding the dataset to include thermal images
from large, operational wind turbines under various environmental conditions, allowing
for more comprehensive training and testing of object detection models. The second phase
could focus on integrating these models with drone-mounted thermal cameras, enabling
automated, real-time defect detection in operational environments. Finally, the third
phase should involve rigorous field testing to validate the effectiveness and reliability
of the proposed system in real-world applications. These phases are anticipated to lead
to the development of an advanced, scalable maintenance strategy applicable across the
renewable energy sector.

2. Methodology
This study outlines our methodical approach, which used advanced thermal imag-

ing cameras and analytical models to inspect wind turbines. We detail the deployment
of the FLIR FLIR (Forward Looking InfraRed) Vue TZ20 camera, capable of capturing
high-resolution images to detect defects in turbine blades. Our methodology aimed to
bridge theoretical research and practical application, providing a framework for robust
and adaptable inspections. This introduction sets the stage for a deeper discussion of the
specific equipment and procedures used in our research.

2.1. The Studied Wind Turbine Specification

For our experiments, we used the Primus Air Max, a small-scale wind turbine fre-
quently employed in maritime settings. This turbine is capable of generating approximately
30 kWh per month under average wind speeds of 5.5 m/s. It features a swept area of
1.07 m2, a rotor diameter of 1.17 m, and a weight of 5.9 kg. The construction of the tur-
bine includes a cast aluminum body with corrosion-resistant paint and three carbon fiber
blades. In addition, it is equipped with a microprocessor-based control system, a brushless
alternator, and electronic torque control, designed to withstand wind speeds of up to
40.2 m/s.

To simulate typical operational damage, intentional defects, such as cracks, holes,
and erosions, were artificially created on the blades. These defects mimicked the real-world
damage observed in wind turbine blades (WTBs), enhancing the relevance of our study for
practical applications.

Figure 1 shows the Primus Air Max turbine, highlighting the overall configuration
and the positioning of its three carbon fiber blades, including visible defects.
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(a) A front view of the small-scale wind turbine. (b) A back view of the small-scale wind turbine.

Figure 1. The small-scale wind turbine with intentionally created blade defects. The turbine has three
carbon fiber blades (labeled as 1, 2, and 3 clockwise from the top) with the following dimensions:
rotor diameter = 1.17 m; blade length = 0.585 m; and swept area = 1.07 m2 .

Figure 2a–c display different perspectives of the front blades. These images are partic-
ularly valuable for examining the blade profiles and their surface condition, highlighting
the artificially created defects for detailed assessment. Similarly, Figure 2d–f show the back
sides of the blades. These images help in assessing the wear and the specific artificially
induced damage that could affect the performance of the turbine over time.

These detailed views of each blade are crucial for assessing the structural integrity and
surface conditions of the blades, with particular focus on the artificially induced damages
to simulate real-world scenarios.

2.2. Camera Deployment and Imaging Setup

This research utilized the FLIR Vue TZ20 camera, shown in Figure 3 specifically
engineered for drone operations. The camera features a spectral range of 7.5–13.5 µ m and
thermal sensitivity (NETD) < 50 mK at f/1.0. It features a dual thermal camera system
with a 20× digital thermal zoom, allowing for both wide and focused field-of-view options.
This versatility is crucial for capturing detailed thermal data across various inspection
scenarios, from public safety to industrial inspection. The camera operated in conjunction
with FLIR Boson GUI 3.0 on a Windows platform, designed to enhance the development
and deployment of thermal imaging solutions. The suite offers a user-friendly interface for
the efficient management and processing of thermal images. The camera was connected
to the drone using the gimbal depicted in Figure 3b, which ensured stable mounting and
precise control during flight. The interface and connection setup are illustrated in Figure 3c.
For further technical details, the FLIR website provides extensive information on the Vue
TZ20-R’s specifications and integration capabilities with DJI Matrice M200 v2- and M300-
series drones via the Skyport V2.0 gimbal. The deployment of this camera in our project
focused on capturing high-quality thermal images that revealed minute defects in the
WTBs, a task compounded by the complexities of outdoor environmental conditions.
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(a) Front view of Blade 1. (b) Front view of Blade 2. (c) Front view of Blade 3.

(d) Back view of Blade 1. (e) Back view of Blade 2. (f) Back view of Blade 3.

Figure 2. Complete views of all three blades showing both front and back perspectives. Each blade is
shown from both angles to provide comprehensive visualization of defect locations.

Limitations and Biases: Despite the advanced capabilities of the FLIR Vue TZ20
camera, several limitations and potential biases were identified during its deployment.
The precision of defect detection was highly dependent on environmental conditions, such
as temperature fluctuations and varying sunlight levels, which could introduce biases
in the thermal data captured. Furthermore, the current setup’s dependence on manual
camera operation may have impacted the repeatability and consistency of the results. This
underscores the necessity for drone integration in future phases to enhance data capture
accuracy and reliability.

(a) FLIR Vue TZ20 camera.

Figure 3. Cont.
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(b) Camera connector gimbal.

(c) FLIR Boson GUI 3.0.

Figure 3. (a) FLIR Vue TZ20 camera, (b) camera connector gimbal, and (c) camera connected to FLIR
Boson GUI 3.0 application.

Practical Implementation of Drone Deployment: Future practical approaches to
drone deployment are expected to involve addressing several technical challenges such as
ensuring the stability of the drone platform during flight, particularly in adverse weather
conditions. Additionally, the integration of a thermal camera with the drone’s navigation
and control systems will require careful calibration to maintain image quality while in
motion. Future drone deployments should focus on automating the inspection process,
minimizing manual intervention, and allowing for real-time analysis of wind turbine
blade conditions.

Temperature and Sunlight Effects: Temperature and direct sunlight significantly
affect the quality of defect detection in thermal imaging. Our study, conducted during
midday at noon in Utah, benefited from intense sunlight, which significantly improved
the clarity of the thermal images. The high ambient temperature and direct sunlight
increased the visibility of defects. The increased thermal contrast between defective and
non-defective areas made defects more visible and detection more accurate. These findings
indicate that conducting inspections under similar environmental conditions can enhance
thermal camera performance. However, the effectiveness of this approach may vary
under different weather conditions, requiring careful consideration in scheduling and
executing inspections.
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2.3. Dataset Creation Setup

Creating the dataset for WTB inspection presented numerous challenges, particularly
in capturing thermal images that accurately reflected small defects. The imaging setup
involved connecting the FLIR Vue TZ20 camera to a laptop, a necessary configuration that,
while restrictive, was vital for initial data capture phases. Our experiments spanned both
laboratory and field settings to emulate the operational environment of wind turbines
as closely as possible. However, drone deployment in the future could potentially mit-
igate some of the current limitations by offering more flexible and comprehensive data
capture capabilities.

Dataset Construction and Differentiation: The specialized dataset constructed in this
study differs from existing datasets by focusing specifically on small-scale wind turbines
and capturing high-resolution thermal images that emphasize minute defects. Unlike other
datasets, which may use generic or low-resolution images, our dataset was tailored to
reflect the specific conditions and defect types encountered in wind turbine blades. This
focus on high fidelity and relevance to real-world conditions enhances the applicability of
our models to operational wind turbines.

Operational Feasibility: The method developed in this study can be implemented
with operational wind turbines without the need for the turbines to be stopped. This
capability makes it suitable for online monitoring, where the inspection can be conducted
periodically without interrupting the turbine’s operation. However, the effectiveness of the
inspection during operation may be influenced by the turbine’s rotational speed and the
resulting motion blur, which must be accounted for in future model training and calibration.

2.4. Dataset Structure

The dataset was structured into directories based on the component condition and
the imaging technique used. It included an Indoor Directory with 1200 thermal images,
equally divided between faulty and healthy conditions, and an Outdoor Directory that
mirrored the Indoor Directory with another 1200 images, also equally divided between
faulty and healthy conditions. Additionally, the dataset featured 6 high-resolution RGB
images, offering extra visual context for the inspections, with an equal number of faulty
and healthy images.

The comparative analysis between laboratory and field images underscored the su-
perior accuracy of data captured under outdoor conditions, closely aligning with our
operational objectives. This led to a strategic focus on enhancing the dataset with images
that accurately represent the diverse and challenging conditions faced by wind turbines.

The annotated thermal images depicted below serve as a visual representation of
the defects encountered. These images underscore the model’s ability to recognize and
demarcate defects across diverse conditions and blade positions.

Figure 4 demonstrates the defects, including cracks, holes, and erosion, annotated
in the thermal images of the WTBs. These annotations are essential for training machine
learning models to detect and classify types of damage in similar real-world scenarios.
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(a) Thermal image of Blade 1; front side. (b) Thermal image of Blade 1; back side.

(c) Thermal image of Blade 2; front side. (d) Thermal image of Blade 2; back side.

(e) Thermal image of Blade 3; front side. (f) Thermal image of Blade 3; back side.

Figure 4. Thermal images of the small-scale wind turbine blades, showing the front and back
views of each blade. The images were processed in FLIR Thermal Studio using Digital Detail
Enhancement, enabling clearer visualization of the defects and making them more discernible for
human interpretation.

2.5. Models

In this section, we delve into the latest advancements within the YOLO series:
YOLOv8 [42] and YOLOv9 [44]. These versions represent the zenith of the series’s de-
velopment, introducing novel features and optimizations that redefine benchmarks for
performance and efficiency in the realm of real-time object detection.

The decision to include both YOLOv8 and YOLOv9 in our analysis served multiple im-
portant purposes. First, while YOLOv9 is the newer version, YOLOv8 has been extensively
validated in various industrial applications and serves as a robust baseline for performance
comparison. Second, the inclusion of both models allowed us to quantitatively assess the
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specific improvements that YOLOv9’s architectural innovations (such as PGI and GELAN)
bring to defect detection in thermal images. Third, from a practical implementation perspec-
tive, YOLOv8’s established stability and broader hardware compatibility make it a valuable
alternative in scenarios where the additional computational requirements of YOLOv9 may
not be justified by the marginal performance gains. This comparative approach provides
valuable insights for practitioners in choosing the most appropriate model for their specific
wind turbine maintenance needs.

YOLOv8 marks a significant leap forward in real-time object detection. The architec-
ture of YOLOv8, shown in Figure 5, introduces several enhancements that bolster detection
accuracy and operational efficiency. Notably, YOLOv8 excels in processing environments
with complex object spatial configurations and varied aspect ratios. It achieves this through
a sophisticated architecture that amalgamates the Feature Pyramid Network (FPN) and the
Path Aggregation Network (PAN), facilitating the extraction of comprehensive, multi-scale
feature representations.

A pivotal innovation in YOLOv8 is its strategic employment of transfer learning,
which substantially augments its detection capabilities in specific real-world settings. This
model initially undergoes training on a wide-ranging dataset and is then finely tuned on
datasets that closely reflect targeted application environments. This approach ensures
an exemplary balance between processing velocity and detection precision, essential for
scenarios necessitating swift decision-making.

Figure 5. Architectural overview of YOLOv8, illustrating its key components and operational
flow [42].

The YOLOv8 loss function, L(θ), is a combination of several components, the box loss
Lbox, the classification loss Lcls, and the distribution focal loss Ldfl, each normalized by the
number of positive examples, Npos. And, it includes a regularization term with the weight
decay ϕ:

L(θ) =
λbox
Npos

Lbox(θ) +
λcls
Npos

Lcls(θ) +
λdfl
Npos

Ldfl(θ) + ϕ∥θ∥2
2 (1)

Specifically, the box loss component is defined as

Lbox = ∑
x,y

1c∗x,y

[
(1 − qx,y) +

∥bx,y − b̂x,y∥2

ρ2 + αx,yνx,y

]
(2)

where we have the following:

• bx,y and b̂x,y represent the predicted and ground truth bounding box coordinates at
the position (x, y), respectively.

• qx,y is the intersection over union (IoU) between the predicted and ground truth boxes.
• αx,y is a dynamic weighting factor that adjusts the contribution of each spatial location.
• νx,y is a modulation factor that helps balance the learning of different sized objects.
• ρ is a normalization parameter for the coordinate differences.
• 1c∗x,y is an indicator function that equals 1 when a defect is present at the position (x, y).

YOLOv9 introduces a paradigmatic shift with its Programmable Gradient Informa-
tion (PGI), shown in Figure 6, and the Generalized Efficient Layer Aggregation Network
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(GELAN), shown in Figure 7, targeting the pervasive challenge of information loss in deep
neural networks. The PGI mechanism employs an auxiliary branch that preserves gradient
information during backpropagation, ensuring that important features for defect detection
are not lost during training. This is particularly crucial for thermal images where subtle
temperature variations can indicate defects. The GELAN architecture optimizes the network’s
computational efficiency while maintaining detection accuracy, making it suitable for real-time
defect detection applications.

Figure 6. Depiction of PGI integration within YOLOv9, showcasing its innovative approach to
gradient information programming [44].

Figure 7. The GELAN architecture in YOLOv9, highlighting its adaptability to support various
computational blocks [44].

For YOLOv9, which employs the Programmable Gradient Information (PGI) approach,
the exact mathematical formulation of the loss function is conceptually represented as

LPGI = Function(Lmain, Laux, Gradients from PGI)

Here, Lmain and Laux represent losses from the main and auxiliary branches of the
network, respectively. The loss dynamically integrates gradients managed by the PGI
system to optimize the learning process, ensuring a minimal loss of information and
maximizing the reliability of the gradient updates.

3. Results and Analysis
Following the detailed exposition of the methodology, which outlined the technical

setup, camera deployment, and specifics of the wind turbine used in this study, we now
transition into the Results and Analysis Section. This portion of the paper evaluates the
effectiveness of the deployed technologies and methods in detecting and analyzing defects
in WTBs.
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3.1. Parameter Tuning and Optimization

While we utilized the established YOLO architecture as our foundation, our imple-
mentation involved significant customization and optimization for the specific challenges
of wind turbine blade defect detection. Our approach included the following:

1. Custom Dataset Preparation and Annotation: We developed a specialized dataset
comprising thermal images of wind turbine blade defects, meticulously annotated to
capture various defect types and severities. This dataset ensured that the model was
trained on relevant and high-quality data specific to the application domain.

2. Extensive Hyperparameter Optimization: Leveraging Bayesian optimization tech-
niques, we systematically explored the hyperparameter space to identify the optimal
configurations that enhanced model performance for our specific application. This
included tuning parameters such as learning rates, batch sizes, and momentum coeffi-
cients.

3. Modified Loss Function Weights: The loss functions were adjusted to prioritize
accurate localization of defects, ensuring that the model emphasized critical areas
during training. By assigning higher weights to certain loss components, the model
became more sensitive to the nuances of defect detection.

4. Specialized Data Augmentation Strategies: We implemented data augmentation
methods tailored to the characteristics of thermal images, such as thermal noise
addition, brightness variations, and geometric transformations. These strategies
improved the model’s robustness and ability to generalize across different thermal
imaging conditions.

5. Fine-Tuned Confidence Thresholds: Confidence thresholds were meticulously cali-
brated to balance precision and recall, optimizing the model’s defect detection accu-
racy in real-world scenarios. This calibration helped in reducing false positives and
enhancing the reliability of detections.

These customizations transformed the base YOLO architecture into a specialized tool
for wind turbine maintenance, moving beyond default configurations to address the unique
challenges of thermal defect detection. By tailoring the models to our specific needs, we
enhanced their potential effectiveness and reliability for real-world applications.

Both YOLOv8 and YOLOv9 feature significant architectural enhancements that de-
manded comprehensive parameter tuning for optimal performance. Both models use a
batch size of 64 and are trained for 100 epochs. The initial learning rate is set to 0.001 and is
applied with the Adam optimizer, which is typically configured with a momentum of 0.9.
Regularization techniques include a dropout rate of 0.5 and a weight decay of 0.0005 to pre-
vent overfitting. Both models utilize transfer learning, as they are pretrained on the COCO
(Common Objects in Context) dataset [46]. Bayesian optimization is employed, starting
from these default values, to determine the optimal model configurations. For YOLOv8,
specific parameter tuning and optimization include configuring the loss function. YOLOv8
utilizes standard cross-entropy for classification and smooth L1 for bounding box pre-
diction, effectively training the detection model. YOLOv9, on the other hand, focuses
on optimizing gradient information programming to ensure maximum information flow
through the gradient. The default settings mirror those of YOLOv8. Additionally, YOLOv9
incorporates CSP-ELAN blocks with a default depth of three layers and filter sizes starting
from 256, balancing efficiency and performance. Customized loss functions are developed
to leverage the unique features of PGI and GELAN within YOLOv9. The parameter tuning
and optimization for both YOLOv8 and YOLOv9 are critical, iterative processes that are
heavily data-driven. These processes involve extensive experimentation and validation
on benchmark datasets, ensuring that the models not only meet but exceed current stan-



Machines 2025, 13, 108 19 of 34

dards in object detection while being practical for real-world high-speed and accurate
detection tasks.

3.2. YOLOv8 Results

This section presents the experimental results obtained by applying YOLOv8 to defect
detection in thermal images of WTBs, where the model was tasked with identifying three
classes of defects: holes, erosion, and cracks.

The confusion matrix for normalized data, as seen in Figure 8, indicates the model’s
performance in terms of relative predictions per class. The matrix shows moderate to high
diagonal values, suggesting an acceptable level of accuracy in predictions, with the highest
normalized value for erosion detection (0.85). However, some confusion is noticeable
between the classes, particularly between holes and background, where a normalized value
of 0.39 is observed.

Figure 8. Confusion matrix normalized for YOLOv8.

The model’s performance across different defect types revealed a particularly strong
capability in detecting erosion, achieving an impressive detection rate of 85%. This high
accuracy was likely due to the distinct thermal signature of erosion defects, which allowed
them to be more easily identified. In contrast, the model faced greater challenges when
distinguishing holes from the background, with a lower detection rate of 57% for holes and
a notable confusion rate of 39% with the background. This difficulty may have stemmed
from the similarity in thermal profiles between the holes and certain background elements,
leading to misclassification. Cracks, although detected with a 58% accuracy, also exhibited
some confusion with the background, indicated by a 20% misclassification rate. These
findings suggest that while the model excels in identifying defects with clear thermal
distinctions, it requires further refinement to enhance its accuracy in detecting defects with
subtler thermal characteristics.

To evaluate the statistical significance of these results, we conducted a detailed analysis
of the confidence intervals for each class’s detection rate. The high accuracy observed in
erosion detection, accompanied by a confidence interval indicating minimal variance,
demonstrates that the model’s performance in this category is statistically robust. However,
the broader confidence intervals found for holes and cracks suggest that the reliability of
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the results in these categories may be lower, potentially due to the limited dataset size or
the inherent complexity of detecting these types of defects. These insights underscore the
necessity for additional model training and dataset expansion to bolster the reliability and
statistical significance of the detection rates across all defect types.

The Precision-Recall curve, illustrated in Figure 9, were employed to evaluate the
model’s precision and recall against various confidence thresholds. Erosion defects were
detected with a high precision of 0.866, while the model achieved a precision of 0.592 for
cracks and 0.608 for holes. The average precision across all classes at an intersection over
union (IoU) of 0.5 was 0.689, indicating a balanced detection capability across all defect
types.

Figure 9. Precision–recall curve for YOLOv8. Curves are displayed with improved spacing and
non-overlapping labels for better readability.

The F1–confidence curve, shown in Figure 10, plots the harmonic mean of precision
and recall for all the three classes against different confidence levels. The curve peaks at an
F1 score of 0.69 at a confidence threshold of 0.416, suggesting an optimal balance between
precision and recall at this threshold for all classes.

The loss and performance metrics, as visualized in Figure 11, indicate a steady decline
in both training and validation loss over time, suggesting that the model learned effectively
without overfitting. The precision and recall metrics gradually increase, with the model’s
mean average precision (mAP) for the box predictions reaching a peak, demonstrating the
efficacy of YOLOv8 in localizing the defects.

Figures 12 and 13 provide comprehensive insights into the distribution of dataset
labels and the quality of bounding box annotations. These visual aids are instrumental
in analyzing the spatial distribution of defect types, their frequency, and the precision of
bounding box placements, which are crucial for the YOLOv8 model’s training effectiveness
and its ability to generalize across varied defect presentations in WTBs.
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Figure 10. F1–confidence curve for YOLOv8.

Figure 11. Loss and performance metrics for YOLOv8.

Figure 12 provides insights into the relationships between different bounding box
attributes used in the YOLOv8 model. The x- and y-axes represent the coordinates (x, y) and
dimensions (width, height) of the bounding boxes used to annotate defects in the dataset.
Each cell in the matrix shows the relationship between the corresponding bounding box
attributes. The color intensity indicates the density of occurrences, with darker colors
representing higher densities. This visualization helps in understanding the distribution
and correlation of bounding box attributes, which is important for improving the model’s
detection and localization capabilities.

Figure 13 provides insights into the distribution of defect labels and the dimensions of
the bounding boxes used to annotate defects in the dataset for the YOLOv8 model.

The top left bar chart shows the frequency of different defect types (cracks, erosion,
holes) on the x-axis, with the number of instances of each defect type on the y-axis. This
chart indicates that cracks were the most common defect type, followed by holes and ero-
sion.
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The bottom left scatter plot illustrates the spatial distribution of defects on the wind
turbine blade (WTB) surface, with x- and y-coordinates representing the position on the
WTB surface. This plot shows where defects were commonly located on the WTB.

The bottom right scatter plot displays the relationship between bounding box width
and height, with width on the x-axis and height on the y-axis. This plot illustrates the range
of defect sizes and highlights the variability in defect dimensions that the model needed
to handle.

The top right part of the figure depicts the anchor boxes used by the YOLOv8 model.
These anchor boxes are preset dimensions applied during model training to efficiently
identify objects of varying shapes and sizes. This visualization emphasizes the model’s
capacity to adjust to diverse defect dimensions, which is critical for accurate localization
and classification in practical applications.

Figure 12. This figure illustrates the relationships between different bounding box attributes (x, y,
width, height) used in the YOLOv8 model. The x- and y-axes represent these attributes. The color
intensity indicates the density of occurrences, with darker colors representing higher densities. This
visualization helps in understanding the distribution and correlation of bounding box attributes,
which is important for improving the model’s detection and localization capabilities.

Additionally, Figure 14 presents examples of defect detection results using YOLOv8.
The figure shows the model’s ability to localize and classify defects accurately in the images
of WTBs, highlighting specific instances of holes, erosion, and cracks.

YOLOv9’s normalized confusion matrix is depicted in Figure 15, showing each class’s
predictive accuracy. A high degree of precision can be observed in the matrix, particu-
larly for the erosion class, similarly to the YOLOv8 model. However, the distribution of
misclassifications will be a point of comparison to assess YOLOv9’s improvement over
its predecessor.
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Figure 13. This figure showcases the label distribution and bounding box dimensions for YOLOv8.
The (top left) bar chart shows the frequency of different defect types (cracks, erosion, holes) on the
x-axis and their instances on the y-axis. The (bottom left) scatter plot shows the spatial distribution
of defects with x- and y-coordinates representing the position on the WTB surface. The (bottom right)
scatter plot shows the relationship between bounding box width and height with the width on the
x-axis and height on the y-axis. The (top right) visualization depicts the anchor boxes, which are
preset dimensions used during model training to identify objects of varying shapes and sizes. This
visualization emphasizes the model’s capacity to adjust to diverse defect dimensions, which is critical
for accurate localization and classification in practical applications.

In conclusion, YOLOv8 was proven to be effective for defect detection in thermal
images of WTBs, exhibiting promising results across various performance metrics. The anal-
ysis underscores the need for continued refinement in model training, especially to reduce
confusion between classes and improve the detection of cracks and background instances.
The results advocate the potential of YOLOv8 in the domain of wind turbine maintenance
and the larger context of renewable energy sustainability.
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Figure 14. Examples of defect detection using YOLOv8 on thermal images of wind turbine blades
(WTBs). The first row corresponds to Blade 1, the second row to Blade 2, and the third row to
Blade 3. Detected defects include holes, erosion, and cracks, demonstrating accurate localization
and classification.

3.3. YOLOv9 Results

Continuing the advancements in defect detection, YOLOv9 was evaluated under the
same experimental conditions as YOLOv8. The model was tasked with identifying three
classes of defects—holes, erosion, and cracks—in thermal images of WTBs.
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Figure 15. Normalized confusion matrix for YOLOv9.

The YOLOv9 model exhibited significant improvements in detecting cracks, with a
detection accuracy of 75%, compared to YOLOv8’s 58%. This enhancement suggests
that YOLOv9 was more adept at distinguishing crack defects, likely due to advanced
feature extraction techniques. Erosion detection remained consistently high, with an
accuracy of 85%, similar to that of YOLOv8, indicating that both models were equally
proficient in identifying this defect type. However, while the detection of holes improved
to 65%, there remained considerable confusion with the background, as evidenced by a 48%
misclassification rate. This ongoing challenge emphasizes the necessity for further model
refinement to better distinguish between holes and background elements. Additionally,
the background class continued to show confusion with both crack and hole detections,
suggesting that additional data or targeted training enhancements could significantly
benefit model performance.

The statistical significance of the YOLOv9 results is supported by narrower confidence
intervals for crack and erosion detection, indicating that these results are more reliable
and consistent compared to those obtained with YOLOv8. The marked improvement
in crack detection accuracy is particularly notable, as it reflects the model’s enhanced
capability in identifying defects that previously presented challenges. However, the wider
confidence interval observed for hole detection, despite the accuracy improvement, points
to variability that may require further training data or model adjustments to achieve more
stable performance. These findings highlight the ongoing need for refinement in detecting
defects that share similar thermal characteristics with background noise.

Precision and recall are essential metrics for evaluating model performance. Figure 16
illustrates YOLOv9’s precision and recall across different confidence thresholds. These
metrics will be compared with YOLOv8’s performance, highlighting areas of improvement
or potential regression.
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Figure 16. Precision–recall curve for YOLOv9. Visualization is enhanced with clear, non-overlapping
labels to ensure optimal readability.

The F1–confidence curve for YOLOv9 is illustrated in Figure 17, demonstrating the
harmonic mean of precision and recall at various confidence levels. This curve will be
compared to YOLOv8’s to evaluate if the newer model achieved a better balance between
precision and recall.

Figure 17. F1–confidence curve for YOLOv9.

YOLOv9’s training and validation loss over time, along with precision and recall
metrics, are depicted in Figure 18. These metrics indicate the model’s learning efficiency
and can be used to compare the convergence and reliability of defect localization against
the previous model iteration.
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Figure 18. Loss and performance metrics for YOLOv9.

Understanding the learning process of YOLOv9 involves analyzing the distribution of
dataset labels and the quality of bounding box annotations, as depicted in Figures 19 and 20.
These visualizations provide insights into any enhancements that YOLOv9 may offer in terms
of defect detection and localization, particularly in comparison to its predecessor, YOLOv8.

Figure 19. The label correlogram for YOLOv9, illustrating correlations and interactions between
different defect categories. This aids in identifying complex patterns in defect occurrences, crucial for
enhancing detection algorithms and training methodologies.

Figure 19 presents a correlogram that explores the inter-relationships between dif-
ferent types of defects identified in the dataset. This visualization helps to understand
co-occurrence and potential dependencies among various defect categories, crucial for refin-
ing the model’s training strategies and achieving robust defect detection. The x- and y-axes
represent the bounding box attributes (x, y, width, height). The color intensity indicates the
density of occurrences, with darker colors representing higher densities. This visualization
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aids in identifying complex patterns in defect occurrences, crucial for enhancing detection
algorithms and training methodologies.

Figure 20. This figure highlights the label distribution and bounding box dimensions for YOLOv9,
emphasizing the model’s advancements in capturing defect sizes and accurately localizing them on
turbine blades, thereby showcasing the improvements over YOLOv8 in handling defect dimensions
and distribution.

Figure 20 displays the distribution of labels within the dataset and the dimensions of
the bounding boxes used. This figure is key to assessing the precision with which the model
identified and classified defects, showcasing improvements in how the model handled
various defect sizes and their placements on the WTBs. The top left bar chart shows the
frequency of different defect types (cracks, erosion, holes) on the x-axis, with the number of
instances on the y-axis, indicating that cracks were the most common defect type, followed
by holes and erosion. The bottom left scatter plot shows the spatial distribution of defects
with x- and y-coordinates representing the position on the WTB surface. The bottom
right scatter plot displays the relationship between the bounding box width and height,
with width on the x-axis and height on the y-axis, illustrating the range of defect sizes.
The top right part of the figure depicts the anchor boxes used by the YOLOv9 model, which
are preset dimensions optimized to match the common sizes and aspect ratios of defects.
This visualization emphasizes the model’s advancements in capturing defect sizes and
accurately localizing them on turbine blades, thereby showcasing the improvements over
YOLOv8 in handling defect dimensions and distribution.

Furthermore, Figure 21 presents examples of defect detection using YOLOv9. This
figure showcases the model’s capability to accurately localize and classify defects in thermal
images of WTBs, with a focus on identifying holes, erosion, and cracks.
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Figure 21. Examples of defect detection using YOLOv9 in thermal images of wind turbine blades
(WTBs). The first row corresponds to Blade 1, the second row to Blade 2, and the third row to
Blade 3. Detected defects include holes, erosion, and cracks, demonstrating accurate localization
and classification.

These visual aids serve as a basis for a detailed discussion in the Results Section, where
the two versions of the YOLO model will be critically analyzed, and conclusions will be
drawn about their respective performances in defect detection tasks.

3.4. Comparative Analysis of YOLOv8 and YOLOv9 Performance

A comprehensive analysis was conducted to compare the performances of YOLOv8
and YOLOv9 in the context of detecting defects in the created thermal images of WTBs.
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Both models were evaluated based on their ability to classify and localize three types of
defects: cracks, erosion, and holes.

The normalized confusion matrices for both models provide a clear insight into their
classification accuracy. As observed in Figures 8 and 15, YOLOv9 demonstrated a slight
improvement in accurately classifying the crack and erosion defects, with a notable re-
duction in false positives for the background class, which is a significant challenge in
object detection.

The precision–recall curves (Figures 9 and 16) show that YOLOv9 improved the
precision across all classes, especially at higher recall levels. This indicates a robustness in
YOLOv9’s ability to maintain high precision without sacrificing recall, thereby providing a
more balanced detection capability.

The F1 score, which combined both precision and recall into a single metric, peaked at
a higher confidence threshold for YOLOv9 (Figure 17) compared to YOLOv8 (Figure 10).
This suggests that YOLOv9 was more effective in balancing the trade-off between precision
and recall, thus providing a better overall performance.

An analysis of the loss and performance metrics revealed that YOLOv9 converged
more quickly and with a lower loss compared to YOLOv8 (Figures 11 and 18). This
rapid convergence is indicative of YOLOv9’s improved learning efficiency, which can be
attributed to the architectural enhancements and optimized training protocols.

When examining the dataset distribution and bounding box annotations
(Figures 12 and 19), YOLOv9 shows better generalization across varying sizes and shapes
of defects. This indicates an improved capability in learning from the dataset and suggests
potential for better performance in diverse real-world scenarios.

In conclusion, YOLOv9 outperformed YOLOv8 in every key performance metric,
indicating that the improvements in architecture and training methods have translated into
a more robust and accurate object detection model. YOLOv9’s advancements underscore
its suitability for real-time applications where precision and reliability are paramount.

4. Conclusions and Future Work
This research contributes to the evolving field of wind turbine maintenance, harnessing

advanced image processing and machine learning techniques to enhance the accuracy and
efficiency of inspections. By integrating cutting-edge thermal imaging technologies with
the latest real-time object detection models YOLOv8 and YOLOv9, we established a robust
framework for detecting and localizing defects in wind turbine blades. This approach
not only improves the precision of defect assessments but also optimizes maintenance
strategies, leading to increased turbine reliability and longevity. The deployment of the FLIR
Vue TZ20 camera, chosen for its drone compatibility, underscores our forward-thinking
approach. Although drone integration was not completed in the current phase of research,
this setup paves the way for future applications involving aerial inspections. Utilizing
drones promises to revolutionize wind turbine inspections by providing comprehensive
aerial data acquisition, enabling access to difficult-to-reach areas and significantly reducing
inspection times and costs. Furthermore, the creation of a specialized thermal image dataset
tailored for wind turbine blades represents a pivotal step toward refining the training and
effectiveness of machine learning models in real-world scenarios. This dataset enhances our
understanding of defect characteristics under various operational conditions, facilitating
more accurate predictions and insights.

Specific Recommendations and Broader Implications. Our future research will fo-
cus on three key objectives: (1) fully integrating drone technology into our inspection
framework, including the development of advanced control systems for stable and precise
thermal imaging during flight; (2) expanding and diversifying our thermal image dataset
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by incorporating data from larger, operational wind turbines under varied environmental
conditions to enhance model robustness; and (3) continuously improving the YOLO models
to increase their accuracy and reliability in real-world applications. These steps will address
the challenges and limitations identified in the current phase, particularly in detecting
defects that have similar thermal characteristics to background noise. The successful imple-
mentation of these recommendations will advance wind turbine maintenance practices and
contribute significantly to the broader renewable energy sector by improving the reliability
and efficiency of wind energy systems, thus supporting the global transition towards more
sustainable energy sources.

Challenges and Limitations of Drone Integration. While integrating drones into our
inspection protocol shows great promise, it also presents several technical and operational
challenges that must be addressed in future work. These include ensuring the stability of
the drone during flight, particularly in high-wind conditions typical of wind turbine sites,
and optimizing the coordination between the drone’s movement and the thermal camera’s
data capture to avoid motion blur and other imaging distortions. Additionally, developing
autonomous navigation and obstacle avoidance systems will be critical to enable safe
and efficient drone operations near wind turbines. Overcoming these challenges will be
essential to fully realize the potential of drone-based inspections and achieve the goal of
autonomous, real-time wind turbine maintenance.

Through this project, we not only built upon existing knowledge but also laid the
groundwork for future innovations in renewable energy maintenance. Our continued
efforts will focus on enhancing model accuracy, expanding dataset dimensions, and in-
tegrating drone technology to fully realize the autonomous operational management of
wind turbines.
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Abbreviations

Abbreviation Definition
AI Artificial Intelligence
CNN Convolutional Neural Network
COCO Common Objects in Context
DTAGAN Dual-Threshold Attention-Guided GAN
FLIR Forward-Looking InfraRed
GAN Generative Adversarial Network
GELAN Generalized Efficient Layer Aggregation Network
GRU Gated Recurrent Unit
IR Infrared
IRT Infrared thermography
LCOE Levelized Cost of Energy

MIR Mid-infrared
NDT Non-destructive testing
OCT Optical Coherence Tomography
PCA Principal Component Analysis
PGI Programmable Gradient Information
PV Photovoltaic
RoI Region of interest
SVM Support Vector Machine
UAV Unmanned Aerial Vehicle
WTB Wind turbine blade
YOLO You Only Look Once
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