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Abstract: Manufacturing supply chains are becoming increasingly complex due to geopo-
litical issues, globalization, and market demand uncertainties. These challenges lead to
logistics disruptions, inventory shortages, and interruptions in raw materials and spare
parts production, resulting in delayed delivery, reduced market share, and lower customer
satisfaction. Effective supply chain management is critical for improving operational effi-
ciency and competitiveness. This paper proposes a supply chain digital twin methodology
to enhance operational efficiency through real-time monitoring, analysis, and response to
disruptions. This methodology defines a supply chain digital twin system architecture
and outlines the operational process of digital twin applications. It introduces two key
modules: a digital twin module for prediction and monitoring and an optimization module
for determining the optimal movement of products. These modules are integrated to align
digital simulations with real-world supply chain operations. The proposed approach is
validated through a case study of an automobile body production company’s supply chain,
demonstrating its effectiveness in reducing inventory and logistics costs while providing
countermeasures for abnormal situations.

Keywords: supply chain management; digital twin; optimization; metaheuristic; simulation

1. Introduction

Technologies such as digital twin (DT) and optimization, which have been devel-
oped with the introduction of Industry 4.0, not only enable the automation of production
lines but also create a manufacturing environment in which problems can be solved with
minimal intervention by analyzing specific problems. These technologies considerably in-
fluence the entire supply chain (SC), including retailers, operational companies, and service
providers [1]. In manufacturing, risks such as SC interruptions and disruptions in logistics
and recovery schedules increase owing to interruptions in the production of raw materials
and spare parts [2]. Combined with the growing complexity of SCs, globalization, exter-
nal environmental changes, and market uncertainty, these disruptions result in demand
fluctuations, inventory shortages, and delivery delays, leading to recurrent interruptions.

SC disruptions directly affect the overall performance of companies and have serious
consequences, such as loss of market share, delays in delivery, decline in service level,
and lower customer satisfaction [3]. The operational efficiency and competitiveness of
companies and partners in SC must be improved to provide products that customers
require in a timely and profitable manner [4]. Previous studies have attempted to minimize
costs and maximize profit and customer service to increase the operational efficiency and
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competitiveness of SC by using operation research and optimization methodologies [5,6].
However, it is extremely complex to formally express these technologies because there are
multiple objects within the SC, and interactions between them occur. Moreover, it is difficult
to simultaneously consider multiple concepts such as uncertainty, risk, and time issues
owing to production delays at intermediate manufacturers or accidents on the road [7-9].
Thus, these SC issues need to be considered simultaneously to support decision-makers.

Conversely, a simulation methodology can analyze various scenarios and select appropri-
ate solutions by considering the complexity and dynamics to support decision-makers [8-10].
However, there are limitations in that the integrated analysis and unified management
of the participants in the entire SC are difficult because of challenging requirements such
as real-time management and dynamics [11]. Accordingly, there is an increasing need to
implement DT technology for two key reasons: (1) to account for real-time changes by
applying a metaheuristic algorithm capable of finding a feasible optimal solution within
a reasonable timeframe [12] and (2) to monitor/analyze/predict real-time status by inte-
grating the demand forecast data, delivery information, order plans, production plans, and
logistics plans across SC members [13].

Therefore, this study proposes a DT-based prediction and optimization methodology
to improve the operational efficiency of SC. To this end, this study designed a digital
SC system architecture and built a simulation model for suppliers, manufacturers, and
logistics operators who are members of SC. Furthermore, a metaheuristic-based algorithm
for logistics optimization by hierarchy level was developed, and a process for operating the
supply chain digital twin (SCDT) system was defined. Finally, the efficiency and validity
of the proposed methodology were verified through a case study targeting the SC of an
automobile body manufacturing company.

The remainder of this paper is organized as follows. Section 1 describes the back-
ground, purpose, and necessity of this study. Section 2 reviews existing studies on SC and
supply chain management (SCM), which form the theoretical background, and introduces
the definition of SCDT. Section 3 presents the architecture of the SCDT system and explains
the modules that constitute the DT. In Section 4, the effectiveness of the proposed DT appli-
cation is verified through a case study. Section 5 explains the significance and contributions
of this study. Section 6 presents the conclusions and suggests future research directions.

2. Research Background
2.1. Supply Chain Management

SCM integrates various business processes such as demand planning and forecasting,
procurement, manufacturing, assembly, distribution, resource management, and customer-
centric process management [14]. SCM can be defined in various ways. Christopher
defined SC as a network of organizations involved in various processes and activities that
create value through products and services delivered to end consumers via upstream and
downstream connections [15]. APICS defines an SC as a process that begins with raw
materials and extends to the final consumption of finished products, linking suppliers
and users, or as a value chain function that spans from product production to delivery
to customers [16]. Chow et al. define an SC as a group of manufacturers, suppliers,
distributors, retailers, transportation providers, information providers, and other logistics
management service providers involved in providing goods to consumers [17].

In summary, an SC comprises supply, distribution, and final consumers. The main
objective of SCM is not only to integrate the purchase, supply, and control of materials
from a holistic system perspective across multiple functions and multiple Tiers of suppliers
but also to harmonize conflicting goals, such as high customer service, low inventory
management, and low unit cost to synchronize customer requirements with supplier
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material flows [18,19]. Several manufacturing companies have built distributed global SC,
not only domestically but also overseas, to take advantage of economic labor and materials
over several decades.

2.2. Operation Research for Supply Chain Management

The methodology for improving the operational efficiency and competitiveness of
existing SC is primarily operational research. In other words, an optimization methodology
was used to optimize the SC production plan and inventory to minimize costs and maximize
profits. Graves et al. proposed a methodology that minimizes the total SC cost using the
minimum spanning tree method when there are various constraints, such as the selection of
suppliers, parts, and transportation methods along the SC [20]. Perea-Lopez et al. presented
a predictive control methodology to determine the optimal decision variables to maximize
the profits of SC for multiple products, factories producing multiple types of products, and
multi-tiered distribution networks [21].

Jamshidi et al. employed a mixed genetic algorithm (memetic algorithm) based
on the Taguchi method to minimize annual costs, considering not only SC cost factors
such as transportation, holding, and order costs but also environmental impact factors,
including volatile organic compounds generated by SC facilities and transportation [22].
Kaasgari et al. used a genetic algorithm and particle swarm optimization to manage the
inventory of products with a defined lifetime by calculating and minimizing the overall
costs, including fixed ordering, inventory holding, and product obsolescence costs and
determined the retailer’s replenishment cycle, order size, and production time [23]. Braido
et al. reduced logistics costs by selecting a distribution center that reflected raw material,
transportation, factory, and facility fixed costs through SC optimization based on the tabu
search algorithm [24].

Existing studies have primarily used mathematical methods to analyze and opti-
mize SC. However, it is difficult to analyze the SC process considering various aspects
such as production delays, uncertainty, risk, and time issues due to road accidents [7-9].
Additionally, there is a risk of generating unrealistic results owing to the simplification
and assumptions made across various factors when simulating real-world scenarios [25].
In other words, there are still limitations in deriving solutions for the future with many
uncertainties, although there have been many efforts to efficiently analyze SC using exist-
ing methodologies.

2.3. Simulation for Supply Chain Management

Therefore, simulation-based methodologies have been proposed to overcome these
limitations. Physical experiments are difficult to perform owing to technical and cost-
related limitations. Simulation methodologies reflect the basic properties of an object and a
real situation and construct and synchronize a model that simulates their characteristics
and behavior. They also perform situation prediction, identification, result analysis, and
decision support through what-if analysis [26,27]. Simulation-based methodologies have
emerged as core technologies that support state-of-the-art manufacturing [28]. Simulation
methodologies in terms of SCM can quantitatively evaluate the benefits and problems
through a what-if analysis in a virtual environment [29].

Additionally, the constructed SC simulation model must be preceded by the construc-
tion of a manufacturing and logistics system model that includes business processes and
information flow in addition to material flow [30]. The commonly used SC simulation
methodologies include process-oriented simulation, object-oriented simulation, system
dynamics-based simulation, Petri net-based simulation, High-Level Architecture (HLA)-
based simulation, and discrete event simulation. Among these, discrete event simulation is
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the most widely used methodology for SCM [31]. Bhaskaran focused on stamping pipelines
in an automobile SC and presented a methodology for analyzing the SC instability and
inventory using simulations [32]. Bottani et al. presented a methodology for the quantita-
tive evaluation of the influence of various SC components, such as reordering, inventory
management policies, and demand information sharing, on total SC costs and the bullwhip
effect through a discrete event simulation [33]. Carvalho et al. [34] presented a methodology
for improving SC resilience to change using a simulation of the Portuguese automobile
SC and evaluated how response strategies affect member performance. Rouzafzoon et al.
presented a methodology to reduce inventory quantity by optimizing vehicle scheduling
and delivery vehicle quantity through an agent-based simulation [35].

Thus, simulation methodologies can improve the operational efficiency of SC by
presenting optimized alternatives by implementing and analyzing various SC scenarios.
However, there are limitations to managing the SC from an integrated perspective, such as
logistics of various products and multiple SC objects by hierarchy, considering real-time,
and it is also difficult to analyze how the actions of SC objects are related to the entire SC
through integrated analysis among SC participants [33,34]. Therefore, to increase the oper-
ating efficiency of SC and become competitive, it is necessary to introduce DT technology to
monitor, analyze, and predict the real-time status by integrating and analyzing hierarchical
demand and delivery information, orders, production, and logistics plans.

2.4. Digital Twin

DT, first introduced in 2002, is an evolving concept that is increasingly emphasized
in academia and industry [36,37]. It represents an advanced version of virtual simulation
models that integrate real and cyber environments to simulate real-world components,
reflecting information models and functional elements [37-39]. Soderberg et al. defined
a DT as a model capable of real-time control and optimization through data, algorithms,
and simulations [40], whereas Wang et al. highlighted its support for technologies such as
machine learning and cloud services [41]. Compared with traditional simulation models,
DT offers significant advantages, including real-time data integration, bidirectional com-
munication between physical and digital systems, and adaptive behavior through machine
learning algorithms. Unlike traditional models, which typically function in isolated and
static environments, DT continuously updates in real-time based on live data, enabling
dynamic diagnostics, predictive capabilities, and improved decision-making [42,43].

Owing to these additional advantages, DT is increasingly applied in areas other than
manufacturing [44]. In SCM, DT provides an integrated view, enabling stakeholders to
collaborate across stages through simulation, optimization, and data analysis [11,45]. Busse
et al. described it as a long-term, interactive digital model of logistics systems [46], whereas
Kalaboukas et al. emphasized its predictive flexibility in dynamic environments [47]. By
applying DT to SCM, companies gain enhanced inventory visibility, demand detection,
flexibility, and reduced risk and cost [48].

Several frameworks have been proposed for the SCDT. Ivanov introduced a risk
analysis framework that lacked empirical validation [49]. Lee developed a system for
production-logistics integration but focused on single-layer supplier-manufacturer rela-
tionships [50]. Blomkvist et al. demonstrated improved logistics visibility using a DT,
confirming its value in asset analysis, diagnosis, and prediction [51]. Lee et al. proposed a
framework for real-time logistics risk simulation, though its scope was limited to logistics
and did not address broader SC flows [13]. Ivanov offered guidelines for managing dis-
ruptions through DT, but the lack of empirical case studies hindered confirmation of their
effectiveness [52].
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Research on SCDT remains in its early stages and is in progress in terms of concept
definition and the application of frameworks and cases to specific situations. Recent studies
highlight the potential of DT technologies to enhance SC resilience, efficiency, and flexibility.
For example, DT has been applied to predictive logistics, disruption-mitigation strategies,
and risk assessment, enabling SC to respond proactively to uncertainty and real-time
challenges [53]. Moreover, bibliometric analyses have pinpointed key research areas, such
as DT integration, design, and its role in optimizing SC performance, emphasizing its
growing significance in contemporary SC systems [54].

However, despite these advancements, much of the existing literature continues to fo-
cus on isolated elements of the SC, such as single-layer supplier-manufacturer relationships
or static simulation models, which overlook the dynamic, multi-tiered, and interconnected
nature of modern SCs [55]. Additionally, lean SCM has emerged as a key area where DT
can play a pivotal role. However, its application faces challenges in achieving real-time
integration and scalability when combined with optimization methodologies [56]. Existing
optimization techniques, such as heuristic and metaheuristic methods, often face challenges
in balancing computational efficiency with solution quality in large, complex, and dynamic
SC networks.

This study addresses these limitations by proposing a unified SCDT system that
integrates suppliers, manufacturers, and logistics providers into a single, real-time digital
framework. Unlike previous studies, the proposed approach combines a DT-based real-time
simulation with a tabu search optimization algorithm to enable dynamic decision-making
across the entire SC. By integrating real-time data, hierarchical optimization, and unified
modeling, the proposed system addresses current challenges related to scalability, real-time
performance, and the complexity of multi-tiered SCs.

3. Supply Chain Digital Twin

This section introduces a digital-twin-based prediction and optimization system for
dynamic SCM. The architecture of the SCDT system is defined to implement the proposed
system, and the information flow of the system is described based on the defined architec-
ture. In addition, the function of each module comprising the system is explained, and the
information required for each module and application sequence is introduced in detail.

3.1. Architecture of Supply Chain Digital Twin System

This subsection proposes the architecture of an SCDT system to improve operational
efficiency. The existing SCM has three major limitations: (1) inability to consider real-time,
(2) difficulty in integrated analysis among SC participants, and (3) inability to respond to
volatility. This study aims to improve the operational efficiency of an SC to mitigate the
abovementioned limitations by integrating and optimizing supplier, manufacturer, and
logistics information through an SCDT system and monitoring and analyzing the entire
process in real-time.

The proposed information flow between SC components is shown in Figure 1. A
typical information process (AS-IS) in a traditional SC follows this sequence: the manufac-
turer plans orders, the supplier plans production, the transporter plans outbound logistics,
and finally, production occurs. However, it is difficult to reflect demand fluctuations and
logistics disruptions in real time, which limits the ability of SC to respond to abnormal
situations. Therefore, the proposed SCDT system (TO-BE) integrates this information to
collect and analyze information from SC members. This involves integrating and analyzing
the information required from all aspects of the SC, not delivering it sequentially.
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Figure 1. Information flow of supply chain.

The architecture of the proposed SCDT system is shown in Figure 2. First, the sim-
ulation model requires data from suppliers, secondary and primary manufacturers, and
customers collected from an actual SC. These data are stored as a simulation modeling
database for building simulation models and as a manufacturing planning database for
running a DT. The simulation modeling database contains modeling information for build-
ing production and logistics simulations, whereas the manufacturing planning database
contains production and logistics planning information.

The data from these SC members is transmitted through an interface to the SCDT
application, while information from the simulation modeling database is integrated into
the simulation logic to construct supplier, manufacturer, and logistics models. The man-
ufacturing planning database contains the manufacturer’s order plan, production plan,
logistics plan, and time data, which are used as input for executing the DT. The SCDT
application is driven based on this information.

The SCDT application consists of DT and optimization modules. The DT module
consists of a production simulation model and a logistics simulation model and performs
real-time synchronization, forecasting, operation management, abnormal situation man-
agement, delivery verification, and visualization. The DT module supports the decision-
making of SC stakeholders by analyzing and visualizing production simulation results,
logistics simulation results, and optimization algorithm results. The production simulation
model was controlled using a discrete-event simulation, and the logistics simulation model
was controlled using a dynamic simulation. The optimization module performs SC opti-
mization using the tabu search algorithm, which selects the next best factory location for
each product based on forecast inventory and cost information.

The SCDT system acts as a central integration engine, where data are collected, up-
dated, and synchronized in real-time from all SC participants, including suppliers, manu-
facturers, and logistics providers. The responsibility for feeding and updating the system is
distributed across the respective stakeholders facilitated through automated data collection
systems, such as IoT devices, ERP systems, and logistics tracking tools. The SCDT applica-
tion ensures real-time synchronization and updating by interfacing these data sources via a
standardized data interface. SC analysts typically manage the central monitoring and con-
trol of SCDT systems. SC analysts oversee data collection, interpretation, and performance



Machines 2025, 13, 109

7 of 23

monitoring by suppliers, manufacturers, and logistics providers. They ensured that the
real-time data feed was accurately integrated into the SCDT system. This means that each
company involved in the SC must have its own SC engineer, implying that collaboration

among various SC entities can be achieved.

Digital twin based supply chain optimization system

Digital twin module Optimization module

[ Due-date ] [ Real-time }

. . .. Simulation result update
verification synchronizing

Network optlmlzatlon

{ Visualization ] [ Forecasting ] algor1thm

[ . ] [ Abnormal situation ]
Operation control
control

Digital twin base model
Production Logistics
simulation model simulation model

3 3

’ Interface ‘

Supply chain component information

Simulation modeling database Manufacturing plan database

Simulation

1|

Optimized solution

Feasible solution ]

1

information information information information

‘ Production modeling ’ [ Logistics modeling J [ Production plan ‘ ‘ Transportation plan

| 1 1 1 | I 1

Figure 2. The architecture of the supply chain digital twin.

While developing simulation models for production and logistics, responsibility is
shared among multiple roles to ensure both accuracy and seamless integration. Domain
experts, such as SC engineers, production planners, and logistics managers, define the
operational parameters, constraints, and real-world requirements of DT models. They
ensure that the models accurately reflect the SC processes and dynamics. IT specialists,
including simulation engineers and data integration experts, are tasked with building
DT models and implementing the necessary data interfaces. They are responsible for
transforming operational requirements into functional simulation models and ensuring
seamless data flow between components. The integration of these models into the SCDT
system is overseen by a dedicated integration team or system architect, which ensures the
consistency, synchronization, and smooth operation of the entire system. This collaborative
approach allows the SCDT system to deliver reliable insights and real-time decision support
across all SC entities.

The sequence diagram of the proposed SCDT system is shown in Figure 3. When the
application starts, the DT module requests information about the ordering plan by-product
from the database (#1 process in Figure 3). The database delivers information regarding
the products produced, production volumes, and delivery dates through the data interface
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Legacy system

to the DT module (#2 process in Figure 3). A production simulation model is executed
for the supplier using the received information as the input, and the predicted production
quantity, inventory quantity, and production completion time information for each product
are derived (processes #3, #4, and #5 in Figure 3).

The predicted production quantity, inventory, and logistics cost information by factory
location were sent to the optimization module through an interface (#6 process in Figure 3).
The production location information by product is derived from the optimization module
and sent to the interface (processes #7 and #8 in Figure 3). Then, the logistics simulation
model between the supplier and intermediate manufacturer is executed based on the
product-specific movement location information obtained from the optimization module,
and the information on the estimated arrival time and travel distance for each product is
stored in the DT module (processes #9 and #10 in Figure 3).

Subsequently, the production simulation model of the selected intermediate man-
ufacturer was executed, and the forecast production quantity, inventory quantity, and
production completion time for each product were derived (#11, #3, #4, and #5 in Figure 3).
The predicted production quantity, inventory, and logistics cost information by factory
location were sent to the optimization module through the interface, and the production-
location information of the last manufacturer by-product was obtained by executing the
optimization module. The product-specific movement location information generated by
the optimization module is sent to the logistics simulation module, where the logistics
simulation model between the intermediate and last manufacturers is executed. Because
the production plan is validated through the SCDT application, this process is carried out
for the planned production period, and delivery compliance is assessed based on the final
arrival date.

Digital twin module Optimization module

1. Order plan by product

2. Production and delivery info.

A iterate until production period

3. Production and delivery info.

. Run production simulation

5. Predicted volume and time

-

6. Inventory and logistics cost

7. Run optimization

8. Post-production plant location

9. Target location by product

10. Run logistics simulation
11. Predicted arrival by product

)

12. Verification and visualization Legend
—— Request

------- * Return

Figure 3. Sequence diagram of supply chain digital twin.

3.2. Configuration Modules

This subsection presents the DT and optimization modules that form the SCDT system
based on a previously defined architecture. It details the information required by each
module, the information generated by each model, and the specific role of each module
within the system.
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3.2.1. Digital Twin Module

The DT module comprises a production simulation model and a logistics simulation
model. The production simulation model is developed based on data such as product-
specific facility process time, facility-specific setup time, facility-specific management
indicators, and Bill of Materials (BOM) information from actual manufacturers and suppli-
ers, as shown in Figure 4a. This model is implemented using libraries configured with the
simulation engine and development language embedded within the simulation tool. The
logistics simulation was implemented and modeled using the Open API with the location
coordinates of each factory, as shown in Figure 4b.

Modeling Info

— Process

|

@
—{ Process ID ‘ —{ Facility ID ‘
—{ Process Info ‘ —{ Facility Info ‘

—_
=
~

—{ Process ID ‘ —{ Product ID ‘
—{ Product Info ‘ —{ Product Info ‘

Product BOM

Longitude

Figure 4. Information model of digital twin module: (a) information model of production simulation;
(b) information model of logistics simulation.

For the production and logistics simulations, the order volume by product, current
production plant location, future production plant location, and product production com-
pletion time were input, as shown in Table 1. Additionally, the algorithm outputs the
predicted production volume, production completion time, product arrival time, and travel
distance for each product. The production simulation model calculates the predicted
production volume based on the input information and evaluates the production feasi-
bility, whereas the logistics simulation model calculates the travel distance and travel
time for each production location. This enables the pre-validation and calculation of the
prediction results.

When a DT application is executed, the DT module receives information from the
interface and synchronizes it with the simulation model in real-time. It then receives the
prediction result information from the simulation model and exports the information to
the optimization module through the data interface. Subsequently, the logistics simulation
model is executed by receiving the resulting information of the optimization module from
the data interface.

Furthermore, based on the demand forecast information, it executes and operates the
SCDT and visualizes and analyzes the resulting information, such as the order request
time, production completion time, product arrival time, order volume by product, and
movement location by product. Thus, it supports the decision-making of SC stakeholders
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by requesting production plan revisions when the demand forecast information changes
and verifying whether products can meet the delivery dates.

Table 1. Input and output of simulation module.

Category Input Data Output Data
Production . Predicted production volume
. Real-time order volume RO .
Operations Production finish datetime
Logistics Pre-/post- production plant location Product arrival datetime
Simulation Production finish datetime Travel distance

3.2.2. Operation Module

The SC optimization module performed SC optimization based on the production
and inventory forecast results of the simulation. The SC optimization algorithm is built
upon the tabu search algorithm, a metaheuristic approach designed to solve optimization
problems, irrespective of their specific form. It retains tabu information about the local
optimum to avoid converging to it, enabling the search for an optimal solution by steering
clear of local optima.

The selection of the tabu search algorithm in this study is driven by its proven effec-
tiveness in addressing combinatorial optimization problems, especially in dynamic and
high-dimensional environments such as SCs. A tabu search efficiently explores the solution
space by avoiding local optima through its adaptive memory mechanism. This makes it
suitable for real-time decision-making scenarios in which quick and near-optimal solutions
are required. It means that it is possible to derive efficient solutions with relatively low
computational effort, thereby enabling real-time decision-making that can overcome the
limitations of low responsiveness by leveraging adaptive memory [57].

Additionally, tabu search provides flexibility to incorporate constraints such as pro-
duction availability and product-specific limitations, which are critical factors in SC opti-
mization. Its ability to balance computational efficiency with solution quality makes it a
practical choice for addressing the complexities of multilayered SC networks. The opti-
mization module is applied in the part shown in Figure 5 when determining the optimal
product production location, and the optimal production location is determined based on
constraints and considerations as the product moves from the supplier to the second-tier
manufacturer and from the second-tier manufacturer to the first-tier manufacturer.

Supplier Tier2 manufacturer Tier] manufacturer Customer
(seS) (meM) (repP) (ieh

M; R b\ Py

L

Py

Optimization Algorithm Scope

Figure 5. Application scope of optimization module.
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The total cost of the SC, which is to be minimized through the optimization module,
comprises inventory and logistics costs, as shown in Equation (1). The indices, variables,
and parameters used in the objective function are listed in Table 2. The factors determined
by tabu search are variables determined after the algorithm is performed according to
the indices, and the parameters are the unit costs required to calculate the inventory and
logistics costs.

min(Zsqusmdsm+):m2pwmpemp+2p2i7’pifpi + LijsQs + Zukm Qm + ):ppop> 1)

Table 2. Notations for the objective function.

Indices
s Index for suppliers (s € S)
™m Index for Tier2-manufacturers (m € M)
p Index for Tierl-manufacturers (p € P)
i Index for customers (i € I)
Parameters
Jsm Unit transportation cost for the material from supplier s to Tier2-manufacturers m
Winp Unit transportation cost for the material from Tier2-manufacturers m to Tierl-manufacturers p
T pi Unit transportation cost for the material from Tierl-manufacturers p to customer i
Js Inventory maintenance cost per unit for supplier s
km Inventory maintenance cost per unit for Tier2 manufacturer m
lp Inventory maintenance cost per unit for Tierl manufacturer p
Variables
dsm Quantity of material shipped from supplier s to mid-plant m
emp Quantity of material shipped from Tier2-manufacturers m to Tierl-manufacturers p
fpi Quantity of product shipped from Tierl-manufacturer p to customer i
Q Quantity of inventory for supplier, Tier2/Tier]l manufacturer

The purpose of the optimization algorithm is to ensure that a product is moved to a
post-processing location that minimizes logistics and inventory costs. The algorithm must
also consider the availability of the product at each production location and the availability
of subproducts based on the BOM of the product. The conventional tabu search algorithm
involves the following steps: (1) generate a random initial feasible solution and calculate
its cost; (2) generate a trial solution from the feasible solution; (3) compare the costs of the
feasible solution and the trial solution; (4) update the feasible solution; (5) update the tabu
queue of the feasible solution information; (6) if the iteration limit has been reached; and
(7) select the best solution if it is met. If not, repeat steps (2) until the limit is met and select
the best solution.

A flowchart of the proposed TS-based optimization algorithm is shown in Figure 6.
As an SC consists of suppliers, Tier2 manufacturers, Tierl manufacturers, and customers, it
is difficult to consider them as the same layer. Thus, it is difficult to determine an optimal
solution by changing the conditions in the layer, as in a typical tabu search algorithm.
Therefore, all feasible solutions that allow the product to move from the supplier to the
Tier2 manufacturer and from the Tier2 manufacturer to the Tierl manufacturer are entered
into a tabu queue.

Here, a feasible solution is that the entities in the SC do not produce all products;
rather, each entity can produce only certain products, and if one entity does not produce a
product, the other entity does. A feasible solution and a trial solution were generated using
a tabu queue, and the costs of these two solutions were compared. After updating the
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solution to a feasible solution at a higher cost, all the feasible solutions in the tabu queue
are compared by changing the products that can be produced in the same layer, and the
best solution is selected.

Update constraint-based Update all possible logistics
Tabu-queue candidate paths based on BOM

| |

Generate feasible solution Generate feasible logistics paths
| !
Generate trial solution _ Generate trial logistics paths
based on feasible solution | based on feasible logistics paths
| |
Compare feasible and Compare feasible and
trial solutions trial logistics paths
! !
Update feasible solution Update feasible logistics paths
through cost calculation through cost calculation
Compare all Compare all

logistics paths

Tabu-queue?
queue?

Yes
( Select best solution ) (Select best logistics paths)
(a) General Tabu Search Algorithm (b) Supply Chain Tabu Search Algorithm

Figure 6. Flowchart of the tabu search algorithm.

4. Case Study

This section describes the implementation of a prototype of the proposed SCDT system
and case studies on real factories that target supplier S and OEM G in the Republic of
Korea. In the case studies, normal and abnormal situations were applied. Each case study
provided a concrete example of the role of the proposed SCDT system.

4.1. Implementation Scope

This study simulated the SC of an automobile body production plant and implemented
SCDT for a 2-3-3 company SC consisting of suppliers, Tier2 manufacturers, Tierl manu-
facturers, and an inter-manufacturer logistics chain, as shown in Figure 7a. SCDT has two
main applications. First, if the SC is stable, the DT is applied at the time of initial planning.
Next, if an abnormal situation occurs in the SC, such as plan changes during operation or
traffic jams, a DT is applied to response measures, such as a new production plan, or to find
a logistics route that minimizes delays. The scope of the analysis was from the time the
product was ordered by the Tierl manufacturer to the time the production was completed.
Order and production planning information, logistics costs, and inventory costs were used
to conduct the simulation analysis. The products that can be produced in each factory are
different. The products were those of Company S, an automobile body production factory,
and consisted of three products: A, B, and C. They were organized into two BOM levels, as
shown in Figure 7b.
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Figure 7. Network and product BOM of target supply chain.

The development environment for the prototype implementation of the SCDT system
is presented in Table 3. For the production simulation model of the DT module, the
simulation software Plant Simulation 15.2 from Siemens was used as the simulation engine.
The open API of the SK T-map of the Republic of Korea is used as the logistics simulation
model. For the optimization module, the SC optimization algorithm was implemented
using the Python 3.8 library. The interface function was implemented using C# Windows
Form and C# library.

Table 3. Development environment of prototype.

Digital Twin Module Development Environment

OS Windows 11
Intel(R) Core(TM) i7-70750H CPU @ 2.60 GHz

Processor (manufactured by Intel, based in Santa Clara, CA, USA)
IDE Visual Studio 2019
Programming Language C#, Javascript
Network Protocol TIP/IP
Simulation Engine Plant Simulation 15.2, SKT T-Map API
Optimization Module Development Environment
(O5) Windows 11
Processor Intel(R) Core(TM) i7-70750H CPU @ 2.60 GHz
IDE Spyder 4.1.5
Programming Language Python 3.8

Network Protocol TCP/IP
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4.2. Implementation Result

The SCDT application consists of (a) a DT application interface, (b) a production
simulation model, (c) an SC optimization module, and (d) a logistics simulation model,
as shown in Figure 8. First, the DT application interface plays the role of visualizing
the production simulation results, such as production completion time and production
quantity, logistics simulation results, such as product arrival time at the production plant,
and SC optimization results, such as post-processing location by-product in a dashboard.
Furthermore, it integrates the production completion time and logistics time at each factory
based on the results, visualizes them in a Gantt chart, and serves as a data interface for
information exchange. The production simulation model simulates the production plants
of suppliers, Tier2 manufacturers, and Tierl manufacturers to predict production volumes,
inventory levels, and production completion times. The SC optimization module minimizes
the inventory and logistics costs for each product’s next production plant location based on
the predicted production and inventory levels from the simulation model. The logistics
simulation model forecasts optimal routes and estimated arrival times between suppliers
and Tier2 manufacturers, as well as between Tier2 manufacturers and Tierl manufacturers,
using the results optimized by the SC optimization module.

: 5 MM
Demand Info. Tier2 Manufacturer_ d [San_] [EventController  Endsim Output  Order
Order Datetime Arrival Time(M1) ?

Demand for A Arrived Product(M1) Gantt
Demand for B Proc. Fin, Time(M1)
DemandforC |

Due Datetime

Arival Time(M2)
Arived Product(M2)
Proc Fin, Time(M2)

Supplier
ProcinTime(S) | pieal Time(M3)

[ —
e A —
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Figure 8. Supply chain digital twin application: (a) a digital twin application interface; (b) a pro-
duction simulation model; (c) a supply chain optimization module; (d) a logistics simulation model
(S: start location, E: end location).

4.3. Case Study Result
4.3.1. Scenario 1, Normal Situation

The effectiveness of the SCDT was evaluated using the conventional method and
production planning data according to a normal scenario. The uptime, average produc-
tion, and existing inventory for suppliers, Tier2 and Tierl manufacturers are presented in
Tables 4-6. Transportation was planned based on the time when production was completed,
and transportation time was based on the location of the next factory.
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Table 4. Performance of suppliers.
Supplier S1 S2 -
A-2, A-3 206 - -
Avg. Production B-2 B-3 218 R i
(ea) .
C-2,C-3 - 256 -
Avg. Operating Time (h) 12 12 12
Table 5. Performance of Tier2 manufacturers.
Tier2 Manufacturer M1 M2 M3
A-1 186 195 -
Avg. Production B-1 _ 192 215
(ea)
C-1 228 - 226
Avg. Operating Time (h) 12 12 12
Table 6. Performance of Tierl manufacturers.
Tierl Manufacturer P1 P2 P3
A 215 - 201
Avg. Production B 205 212 -
(ea)
C - 215 224
Avg. Operating Time (h) 12 12 12

Conventional SC operates based on fixed production plans, locations, and transporta-
tion routes, such as product A following S1-M2-P3, product B using S1-M3-P1, and product
C using S2-M1-P2. This rigid structure limits flexibility and risk management in abnormal

situations. To address this, optimizing production locations and routes with consideration

of inventory and logistics costs allows for adaptive responses. The application of SCDT un-

der normal conditions demonstrated significant improvements, reducing overall inventory
costs by 8.97%, logistics costs by 1.3%, and total costs by 8.82% as shown in Table 7. While
inventory cost reductions were primarily observed at Tier 2 manufacturers, SCDT also

optimized production networks and logistics routes, enhancing the efficiency of the SC.

Table 7. As-is/To-be comparison of supply chain digital twin application.

Cost As-Is (USD *) To-Be (USD) Comparison Result
Inventory Cost 5830.8 5307.7 —523.1 —8.97%
Supplier 3692.3 3692.3 0.0 0.00%
Tier2 1200.0 676.9 —523.1 —43.59%
Tierl 938.5 938.5 0.0 0.00%
Logistics Cost 121.4 119.8 -1.6 —1.30%
Supplier-Tier2 48.6 49.8 1.2 +2.42%
Tier2-Tierl 72.8 70.0 —-2.8 —3.78%
Total Cost 5952.2 5427.5 —524.7 —8.82%

* Currency: based on USD.
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4.3.2. Scenario 2, Due Date Abnormal Situation

Product delivery dates are likely to change as customer order volume changes. In other
words, it is necessary to make quick decisions if the order volume is decreased or increased.
Thus, situations in which the customer’s product order volume and delivery date change
should be predicted. The SCDT was executed based on the situation in which the delivery
schedule was changed from the existing delivery schedule of 2024-01-10T09:00:00 to 2024-
01-09T09:00:00 owing to the decreased customer order volume, as suggested above. By
executing the SCDT based on the existing schedule, the delivery date can be met, as shown
in Table 8 (a). However, when the SCDT was executed based on the changed delivery
schedule, as the order volume decreased, the estimated arrival schedule fell behind the
target arrival schedule, as shown in Table 8 (b). Consequently, a message stating that the
delivery date could not be met, and a request to revise the order plan were sent to the SC
manager. In other words, if a customer’s product order decreases or increases, the SCDT
provides an opportunity to view the expected delivery schedule and modify the ordering
plan accordingly. This indicates that it is possible to manage more efficiently by reducing
the risk of misleadingly assuming that a customer’s product order will arrive sooner than
it will when the customer’s order volume decreases. This suggests that product delivery
dates are predicted by the product SC when customer order volume increases.

Table 8. Response results of due-date abnormalities.

Existing Due-Date (a) Changed Due-Date (b)

Due-date

2024-01-10T09:00:00 2024-01-09T09:00:00

Analyzed result

Simulation result X Simulation result X

----------------- Enable to comply with due-date ------eeeeeeeanan ~meeeemmeeeeeaa-- Unable to comply with due-date ---eeeeeceaaaan
Do not need a re-order plan Need to re-order plan

Goal arrival time:1/10/2024 9:00:00 AM Goal arrival time:1/9/2024 9:00:00 AM

Estimated arrival time:1/10/2024 6:55:22 AM Estimated arrival time:1/10/2024 6:58:34 AM

4.3.3. Scenario 3, Production Abnormal Situation

The manufacturing SC comprises several members, as described above. They include
multiple suppliers and manufacturers, and there is a possibility that one or more may stop
production for reasons such as equipment failure or material shortages. Therefore, in this
scenario, SCDT is executed based on the abnormal situation of a manufacturer’s production
disruption. We assume that a Tier2 manufacturer, Factory M1, stops production because
of equipment failure. In this situation, the optimization algorithm searches for factories
other than M1 that can produce a product and derive an optimal solution. Under normal
circumstances, products A-2 and A-3 are transferred to factory M1, products B-2 and B-3
are moved to factory M2, and products C-2 and C-3 are moved to factory M3, as shown
in Figure 9a. However, when the optimization algorithm accounts for the discontinuation
of production at M1, products A-2 and A-3, along with products B-2 and B-3, moved to
M2, and products C-2 and C-3 moved to M3, as shown in Figure 9b. In other words, the
algorithm enables the determination of whether a deadline can be met in the event of
an abnormal situation, such as a production disruption. If the deadline cannot be met,
adjustments can be made by either altering the delivery deadline or extending the operating
hours of other manufacturers within the SC.
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Figure 9. Response results of production interruption abnormalities: (a) normal production allocation;
(b) reallocation under production disruption.

4.3.4. Scenario 4, Traffic Abnormal Situation

Product logistics is broadly divided into in-plant and out-of-plant logistics. Out-of-
plant logistics requires transportation from factory to factory, which requires local logistics
transportation equipment such as planes, trains, and vehicles. This indicates that some
routes or roads need to be followed and that when traveling on those routes, collisions
and deviations may occur, or traffic jams, such as those caused by construction, may occur.
Therefore, in this scenario, a vehicle traveling on an existing planned roadway encounters
a traffic jam. The average processing time for an accident on the road is approximately
40 min, indicating that traveling along an existing route requires approximately 40 min
more time [58]. Accordingly, when the alternate route search is performed through the
SCDT, the results of the alternate route search are displayed as the blue route instead of the
red route in Figure 10, reflecting road conditions where there is an accident or congestion.
Consequently, a trip using the existing transportation route would require 108 min, whereas
a trip using the discovered alternative route would require 87 min. This indicates a time
saving of 21 min and a 19.44% reduction in travel time when the alternate route is used. In
other words, the SCDT can reflect the current traffic situation in real-time to find the best
route and ensure optimal movement of outbound logistics between members of the SC.
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Logistics Time

As-is 108 min

To-be 87 min
Comparison —21 min

Result —19.44%

Figure 10. Response results of road congestion abnormalities.

5. Discussion

The case study demonstrates how SCDT can be used to construct and synchronize
models that simulate the characteristics and behavior of targets, reflect their basic charac-
teristics and real-world situations, and optimize products for each stakeholder.

First, the effects of reduced inventory and inventory costs can be verified in terms of
production. In response to the production disruption of an existing production plant, the
location of alternative production was searched through an abnormal situation response,
and simulations were conducted to confirm that the product could be produced at the
changed production location. In terms of logistics, an alternative route was explored for
the anomaly of changing road conditions; it was observed that it took less time than the
original route, confirming that transportation was possible through the alternative route
within a set time of 100 min. Finally, in the end, the manufacturer’s side, predicting the
situation and analyzing the results allowed them to analyze the delivery schedule, which
allowed them to deliver the product on time. This SCDT will reduce the overall lead time
and inventory, which will lead to positive results, such as improved inventory turnover,
increased shipments, and increased sales. Instead of deriving countermeasures based on
the expertise of the existing SC officials, workers, and drivers, a DT system can be used to
derive countermeasures for abnormal situations without human intervention.

However, the results of assigning members of production and logistics in SCDT can
be derived using algorithms other than the tabu search proposed above. Accordingly, 0-1
integer planning can be applied to discrete allocation problems. Although the application of
linear programming to large-scale problems is challenging, the case study in this paper has
a rather small scope, i.e., 2-3-3 networks. In other words, to verify the feasibility of the tabu
search proposed in this study, the allocation results of production and logistics members
and the inventory and logistics costs derived using the 0-1 integer planning method are
shown in Table 9. This result is the same as that produced by the tabu search method
proposed earlier. This indicates that the methods available in the optimization module of
the SCDT system proposed in this study are not limited to tabu search. In other words,
if the methodology is for combinatorial optimization, other methods can be applied, and
different algorithms may need to be applied in situations that differ from those presented
in the case study.

The 0-1 integer planning method applied earlier identifies the optimal discrete solution
given the constraints on the decision variables and the objective function, exploring all
possible combinations of solutions. However, this approach may not be efficient for large
problems. The tabu search proposed in this paper explores neighboring solutions of the
current solution, avoiding local optima and identifying the global optimum. Because it does
not explore all possible combinations of solutions, it is suitable for large-scale problems,
such as SC problems. The case study presented, and a comparison of the results with those
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of a relatively simple 0-1 integer planning method confirmed the feasibility of the proposed
algorithm. This suggests the need for further discussion of its application to large-scale SC.

Table 9. Results of 0-1 linear programming.

Inventory Cost Logistics Cost
Prod Supply - . . - . Total Cost
roduct Chain Supplier Tier2 Tierl Subtotals Supplier— Tier2- Subtotals (A +B)
(@) (b) (o) (A=a+b+c) Tier2(d) Tierl(e) (B=d+e)

A sl-ml-p3  1107.7 2462 476.9 1830.8 18.9 2238 416 1872.4

B s1-m2-p1 861.5 30.8 230.8 1123.1 11.0 20.2 31.3 1154.3

C s2-m3-p2 1723.1 400.0 230.8 2353.8 19.9 27.1 46.9 2400.8
Total Cost 3692.3 676.9 938.5 5307.7 49.8 70.0 119.8 5427.5

Currency: Based on USD.

Unit inventory and logistics costs were determined based on the parameters outlined
in Table 2, Section 3 of this paper. In other words, there is a blind spot regarding the
minimization of the objective function, that is, whether the unit cost is heavily weighted
toward the production or logistics side. Table 10 presents the results of executing the
SCDT by changing the unit inventory cost applied in the case study. Specifically, the unit
inventory cost was reduced by 95%, based on the assumption that the inventory cost was
nearly negligible. This significant reduction highlights the sensitivity of SC configuration
to cost parameters.

Table 10. Results of tabu search algorithm considering modified unit inventory cost.
Inventory Cost Logistics Cost
Prod Supply ; . . 5 " Total Cost
roduct Chain Supplier Tier2 Tierl Subtotals Supplier— Tier2- Subtotals (A +B)
(a) (b) (0 (A=a+b+c) Tier2(d) Tierl(e) (B=d+e)
A s1-m2-p3 55.4 19.2 23.8 98.5 11.0 19.7 30.8 129.2
B s1-m2-pl 43.1 1.5 11.5 56.2 11.0 20.2 31.3 87.4
C s2-m3-p2 86.2 20.0 11.5 117.7 19.9 27.1 46.9 164.6
Total Cost 184.6 40.8 46.9 272.3 42.0 67.0. 109.0 381.3

Currency: Based on USD.

The production members within the SC were altered for Product A, whereas Products
B and C remained unaffected. The SC configuration was determined based on the unit
inventory cost in the case study. For Product A, the configuration s1-m1-p3 was identified;
for Product B, s1-m2-p1; and for Product C, s2-m3-p2. This analysis reveals that a reduction
in the unit inventory cost led to a shift in the SC members for Product A to s1-m2-p3,
whereas those for Products B and C remained unchanged.

Therefore, a discussion is necessary to identify the aspects to consider when reflecting
on inventory and logistics cost parameters. In other words, the SC comprises various
entities, such as manufacturers and distributors, highlighting the need for integrated
analytics. This underscores the importance of further research on SCDT to optimize the
SC. As the composition of key performance indicators for an optimized SC becomes more
diverse, this study proposes an SCDT system that integrates discrete event simulation,
dynamic simulation, and mathematical optimization methodologies, addressing both
production and logistics aspects.

6. Conclusions

Owing to the complexity of SCs, globalization, external changes, and market demand
uncertainty, the manufacturing industry faces demand fluctuations, inventory shortages,
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and delivery delays. SC disruptions lead to market share losses, delayed deliveries, and
reduced customer satisfaction. Therefore, effective SCM is crucial for enhancing opera-
tional efficiency and competitiveness. Although heuristic and metaheuristic methods have
been explored for SCM, they struggle to address uncertainty, risk, and temporal issues
simultaneously. Simulation methodologies have been proposed, but are limited to handling
real-time integration and comprehensive SC analysis. The DT methodology has emerged
to overcome these challenges. However, research on SCDT is nascent, with few studies
encompassing all SC participants.

Therefore, this paper proposes an SCDT methodology that can improve the operational
efficiency of all members through SC monitoring, analysis, prediction, and abnormal
situation responses. The architecture of the SCDT system and the process of operating the
DT application were defined. To reflect the actual operation of the SC, a simulation model
for prediction, an optimization module for calculating the optimal movement location for
each product, and a DT application that integrates them were constructed. Finally, the
effectiveness of the proposed system was demonstrated by applying SCDT implemented
based on the SC of an automobile body production company and analyzing inventory
quantity and cost. The findings of this study confirm that the DT system can derive
countermeasures and support decision-making for abnormal situations, such as delivery
date changes and factory production disruptions, instead of making judgments based on
the manager’s experience.

However, there are still numerous challenges that need to be resolved. This study
validates the proposed SCDT system through a case study involving a small SC and a
limited number of products. Although this approach effectively demonstrates the feasibility
and foundational capabilities of the system, it has limitations in addressing larger and
more complex SC networks. As the scale of the SC increases, the computational time of the
optimization algorithm also increases, limiting the ability to perform real-time decision-
making that overcomes low responsiveness. This may create challenges in supporting swift
and accurate decisions in complex scenarios. To address these challenges, future research
should focus on validating the scalability and adaptability of the system across diverse and
dynamic SC scenarios, including multiple industries and larger networks. Additionally, in-
tegrating stochastic elements, such as random machine downtimes and variable production
demands, better reflects real-world uncertainties and improves system robustness.

Next, the tabu search algorithm was selected because of its effectiveness in handling
combinatorial optimization problems, particularly in dynamic and high-dimensional en-
vironments, like SCs. Its adaptive memory mechanism helps to avoid local optima, and
its flexibility allows for the incorporation of real-world constraints, such as production
availability and product-specific limitations. Moreover, tabu search balances computational
efficiency with solution quality, making it suitable for real-time decision-making. However,
it is important to acknowledge the need for benchmarking algorithms against alternative
methods. Future research will involve a comparative analysis with other optimization
techniques, such as genetic algorithms and machine learning-based approaches, to pro-
vide a comprehensive evaluation of the system’s performance and identify opportunities
for improvement.

As a last remark, this study optimizes SC operations based on the inventory and logis-
tics costs derived from a single case study. However, these costs may vary depending on the
SC situation, and additional economic indicators could offer a more comprehensive evalua-
tion of the system’s impact. Future research will explore suitable cost-weighting methods
to minimize total production and logistics costs. Incorporating additional economic met-
rics such as energy consumption and carbon emissions enables a more comprehensive
assessment of the system’s contribution to sustainable SCM.
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