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Abstract: With the development of smart and precision agriculture, new challenges have 

emerged in terms of response speed and adaptability in agricultural equipment control. 

Active Disturbance Rejection Control (ADRC), an advanced control strategy known for 

its strong robustness and disturbance rejection capabilities, has demonstrated exceptional 

performance in various fields, such as aerospace, healthcare, and military applications. 

Therefore, investigating the application of ADRC in agricultural control systems is of 

great significance. This review focuses on the fundamental principles of ADRC and its 

applications in agriculture, exploring its potential use and achievements in precision ag-

riculture management, intelligent agricultural control, and other agricultural control sec-

tors. These include the control of agricultural machinery, field navigation and trajectory 

tracking, agricultural production processes, as well as fisheries and greenhouse manage-

ment in various agricultural scenarios. Additionally, this paper summarizes the integra-

tion of ADRC with other control technologies (e.g., LADRC, SMC) in agricultural appli-

cations and discusses the advantages and limitations of ADRC in the aforementioned ar-

eas. Furthermore, the challenges, development trends, and future research directions of 

ADRC in agricultural applications are examined to provide a reference for its future de-

velopment. 

Keywords: active disturbance rejection control; agricultural automation; precision 

agriculture; control system integration; agricultural production optimization; system 

robustness 

 

1. Introduction 

Agriculture, as a fundamental industry responsible for producing food and materials 

that support human survival and industrial development, is one of the cornerstones of 

human society. According to a report by the United Nations Food and Agriculture 

Organization, the global agricultural and food systems produce approximately 9 billion 

tons of food annually [1], making it a key pillar of many national economies. However, 

modern agriculture is facing a range of challenges, including environmental changes, 

resource scarcity, pollution, and low production efficiency. 

In response to the intensifying issues of food crises and population aging, countries 

around the world have initiated the modernization of agriculture [2]. Agriculture 4.0 

leverages a range of emerging technologies to upgrade traditional farming methods, 
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optimizing the value chain of global agriculture, while offering disruptive solutions at 

various stages of the agricultural production chain [3]. 

With the emergence and development of smart and precision agriculture, 

agricultural production has become increasingly reliant on unmanned equipment to 

enhance productivity and efficiency. In the past decade, the use of unmanned intelligent 

devices, such as Unmanned Ground Vehicles (UGVs), Unmanned Aerial Vehicles (UAVs), 

Unmanned Surface Vehicles (USVs), and robots in agriculture, has surged dramatically to 

meet the automation demands of agricultural processes like seeding, crop protection, and 

harvesting. However, over the past few decades, the complex behaviors and high-

precision requirements of unmanned intelligent devices have posed challenges for 

researchers [4]. Therefore, to meet the needs of smart agriculture, it is essential to develop 

effective control strategies for unmanned equipment. In recent years, the development 

and research of effective control for these devices have focused primarily on control 

strategies such as adaptive control, robust control, and ADRC [5]. 

In recent years, classical control strategies have been applied to numerous unmanned 

intelligent agricultural devices [6–18]. Agriculture is a complex system composed of 

subsystems such as soil, plants, water, climate, and machinery. The nature of biological 

production in open fields results in unique communication characteristics and control 

mechanisms influenced by three key factors: climate, soil–water–fertilizer dynamics, and 

agricultural operations [19]. However, these classical control methods typically consider 

only simplified mathematical models of agricultural devices. These models (e.g., PID) are 

often affected by various uncertainties, leading to a decline in control performance [20,21]. 

It has been demonstrated in many cases that neglecting the effects of uncertainties and 

disturbances on these models can significantly hinder the achievement of the target 

motions. Such effects often manifest in the closed-loop stability of unmanned intelligent 

devices, reducing control precision [5]. Moreover, since agricultural production is a 

multivariable and complex control process, precision and smart agriculture place higher 

demands on the control of unmanned devices. The increasing difficulty of designing 

control systems based on accurate models further limits the development and application 

of some classical control methods in agriculture. 

As a result, the development of advanced control strategies for complex, 

multivariable, and high-latency control processes in unmanned agricultural devices has 

become a research hotspot in recent years. In the past few decades, the successful 

application of ADRC technology in agricultural processes, such as seeding, crop 

protection, and harvesting, as well as in facility agriculture, has highlighted its vast 

potential in the agricultural field. 

As a model-free control method [22], ADRC has rapidly developed and been 

successfully applied across various agricultural production domains due to its simplicity 

of implementation, easy tuning, strong robustness, and high disturbance rejection 

capabilities [5,20,23]. This control strategy has consistently outperformed traditional 

methods in experiments across multiple fields. Additionally, similar to PID, ADRC has 

the ability to self-optimize and integrate with other control methods to achieve 

coordinated control, and it has been extensively researched and applied in various fields 

[24,25]. Furthermore,\, numerous researches have demonstrated that combining ADRC 

with control techniques such as fuzzy control [26,27] and H-infinity robust control [28] 

yields excellent results. Furthermore, the stability of control can be enhanced by 

optimizing ADRC parameters through appropriate optimization algorithms [29]. 

Meanwhile, deep learning has been applied for the real-time tuning of ADRC parameters 

[30]. The advantages of ADRC, without a doubt, underscore its immense potential for 

controlling unmanned intelligent devices in various agricultural production processes. 
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Additionally, other numerical simulations, like molecular dynamics [31–33], have shown 

their potential for parameter generation as well. 

As shown in Figure 1, the research interest in ADRC has been steadily increasing, 

highlighting its significant potential in the agricultural sector. However, there is currently 

no review summarizing the applications of ADRC in agriculture. Therefore, the purpose 

of this paper is to fill this gap by reviewing the current applications of ADRC in agriculture 

from two perspectives: the traditional ADRC approach and its integration with other 

technologies. This paper primarily focuses on ADRC control strategies developed within 

academia and does not include commercial applications of ADRC. Relevant research was 

identified through searches in databases such as CNKI, PubMed, ScienceDirect, and Web 

of Science, using keywords such as “ADRC,” “Active Disturbance Rejection Control,” 

“Agriculture/Agricultural,” and “Crop.” 

 

Figure 1. Number of papers accessed on Web of Science using the search terms “ADRC” and “Active 

Disturbance Rejection Control” every 5 years. 

The structure of this paper is as follows as in Figure 2: Section 2 provides an overview 

of ADRC, briefly reviewing its fundamental components and principles, including the 

Tracking Differentiator (TD), Extended State Observer (ESO), and Nonlinear State Error 

Feedback (NLSEF). It also introduces the second-order system as an example to explain 

these concepts and discusses the current challenges and issues faced by ADRC in 

agricultural applications; Section 3 presents a detailed review of the current applications 

of ADRC in agriculture, encompassing the control of agricultural machinery and 

equipment, field navigation and trajectory tracking, agricultural production processes, 

and various agricultural scenarios such as aquaculture and greenhouse management; 

Section 4 reviews the application of optimized ADRC technologies (such as LADRC) and 

the integration of ADRC with other techniques (such as SMC) in the agricultural field, 

summarizing the respective advantages of each; Section 5 offers a summary and 

discussion of the strengths and weaknesses of ADRC in agricultural applications, while 

also providing some useful suggestions to address the existing shortcomings, offering 

insights for future research directions; Section 6 concludes with a review and summary of 

the entire paper. 
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Figure 2. Main categories of applications of ADRC technology in the agricultural field. 

This study highlights the integration of Active Disturbance Rejection Control 

(ADRC) with advanced technologies, emphasizing its effectiveness in enhancing control 

precision and system robustness within precision agriculture. It underscores ADRC’s ro-

bustness and adaptability in managing the complex, nonlinear, and uncertain conditions 

inherent in agricultural systems. While ADRC has rapidly advanced in addressing com-

plex control challenges in precision farming, a comprehensive review remains absent. Fu-

ture research should focus on field validation, intelligent algorithm optimization, and ex-

ploring ADRC’s potential to address global agricultural challenges. 

2. Overview of ADRC 

2.1. Components and Fundamentals of ADRC 

Active Disturbance Rejection Control (ADRC) is a novel control theory developed 

based on PID control principles but independent of the mathematical model of the con-

trolled object. It was first proposed by Han in the 1990s [34–36]. ADRC is primarily used 

for controlling systems with the following types of uncertainties: 

     1( , , , , )    


n nx f x x x t t bu , (1)

where f  represents the unknown model disturbances and external disturbances. The 

structure of the ADRC controller is shown in Figure 3, consisting mainly of three parts: 

(1) the Tracking Differentiator (TD), which arranges the transition process and provides 

the differential signals of the process; (2) the Extended State Observer (ESO), which ob-

serves the internal states of the system; and (3) the Nonlinear Feedback (NF) control 

scheme, which compensates for system errors [20,37]. 

 

Figure 3. The structure of the ADRC controller. 
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Equations (2)–(11) briefly explain the three main components of the ADRC controller, 

using a second-order system as an example. For a second-order system, the controlled 

object is described as: 

 

1 2

2 1 2

1

, , ,

 


 
 







x x

x f x x w t bu

y x

, 
(2)

where  1 2, , ,f x x w t  denotes the internal and external disturbances of the system, rep-

resenting the total disturbance of the system. The stability of ADRC in uncertain second-

order systems critically relies on the assumption of boundedness for system uncertainties 

(�) and their time derivatives (�̇). This assumption ensures that the controller can effec-

tively estimate and suppress disturbances without compromising system stability. A 2017 

study demonstrated that the boundedness of disturbances and their derivatives is a pre-

requisite for applying the Lyapunov stability criterion [38]. Based on this, the design of an 

appropriate Lyapunov function can guarantee system stability under unknown disturb-

ances. Similarly, when disturbances are bounded, the ADRC controller can effectively 

track reference trajectories and suppress disturbances, thereby ensuring system stability 

and robustness [39]. Although disturbances in practical applications are not always 

strictly bounded, ADRC can still perform effective estimation and suppression within rea-

sonable practical limits. This underscores the applicability of this assumption in bridging 

theoretical analysis and practical implementation. 

Tracking Differentiator (TD): 

Nonlinear: 
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Linear: 
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where � denotes the set value, � denotes the tracking speed factor, and ℎ denotes the 

filtering factor. 

Extended State Observer (ESO): 
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where ���, ���, ��� is the control parameter of ESO, and its expression ��� can be re-

ferred to [20,22,37] as follows: 
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, 

(6)

where � and � are the parameters used in designing the controller, which need to sat-

isfy the inequalities 0 < � < 1 and � > 0. 

Control volume formation: 
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   1 1 1 e v k z k , (7)

   2 2 2 e v k z k , (8)

 
 3

0 
z k

u k u
b

, (9)

where �� and �� indicate the error between TD and ESO. 

Nonlinear Feedback (NF): 

Nonlinear state error feedback exists in many forms. For different control systems, 

the forms may be different. Two of the more common forms are listed below: 

   0 1 1 1 2 2 2, , , ,      u fal e fal e , (10)

or 

 0 1 2 1, , , u fhan e c e r h , (11)

Figure 4 shows the structure of the PID controller, consisting of the PID controller 

and the controlled object. In the control system PID controller involves three independent 

parameters [40]—proportional value (P), integral value (I) and derivative value (D)—de-

scribing P, I and D in terms of time, i.e., P depends on the current error, I depends on the 

accumulation of the past error, and D is a prediction of the future error based on the cur-

rent rate of change. The mathematical description of the algorithm is: 

     
 

   
 

0

0

1 
   

 

  





t

p d

i

t

p i d

de t
u t K e t e t dt T

T dt

de t
K e t K e t dt K

dt

, 
(12)

where �(�) is the output signal of the controller, �(�) is the deviation of the input signal 

from the output signal, �� is the scaling factor of the controller, ��  is the integration time 

of the controller, �� is the derivation time of the controller, �� is the integration factor of 

the controller, and �� is the differentiation factor of the controller. 

 

Figure 4. The structure of the PID controller. 

After the Laplace transform, the transfer function can be wri�en as: 

 
 
 

1
1
 

    
 

p d

i

U s
G s K T

E s T s

, 
(13)

where �� is the proportional gain, ��  is the integration time constant, and �� is the de-

rivative time constant. 

Unlike PID control, which needs to generate the control output by weighting the cur-

rent error of the system (P), the integral of the error (I), and the differential of the error 
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(D), ADRC control only needs to use the inputs and outputs as the source of information 

without the need to build an accurate mathematical model, and generates the compensa-

tion amount of the uncertainty model to the output effect through the ESO, so that the 

object’s uncertainty can be compensated in the feedback in order to realize the high-pre-

cision control of the system and effective suppression of disturbances [41]. Compared with 

PID control, ADRC focuses more on the real-time sensing and suppression of internal and 

external perturbations of the system, and therefore, ADRC has higher robustness and 

adaptivity. 

2.2. Challenges and Needs in Agriculture 

2.2.1. Main Challenges in the Agricultural Production Process 

The unstructured working environment of agricultural production introduces signif-

icant complexity, which poses various challenging control-related issues in agricultural 

systems [42]. These challenges are primarily manifested in the following aspects: 

 Nonlinearity of Agricultural Systems: Due to the inherent complexity of agricultural 

operations, agricultural systems are often nonlinear. Determining the observability 

and controllability of these systems is an exceedingly difficult task, requiring exten-

sive research. The nonlinear characteristics of agricultural systems imply that their 

responses do not follow simple linear pa�erns. While linear control methods like ex-

tended Kalman filters and basic PID controllers can effectively handle basic control 

tasks such as autonomous navigation, automatic speed regulation, and straight-line 

tracking, their difficulty in parameter adjustment results in poor performance with 

traditional linear control methods [43]. 

 Time variability and Uncertainty in Agricultural Environments: Agricultural envi-

ronments are often affected by seasons, weather, and other external factors, leading 

to time-varying or uncertain system parameters [44]. The time-varying and uncertain 

nature of agricultural environments make it difficult for control systems to accurately 

predict and adjust to these changing conditions. 

 Variability of Agricultural Parameters: Agricultural systems typically involve com-

plex interactions between multiple variables, such as soil moisture, temperature, and 

light intensity. This significantly increases the complexity of control systems, affect-

ing system stability. Additionally, due to the variability of agricultural parameters 

and the complexity of their interactions, it is challenging to establish accurate and 

reasonable models [45]. 

 Economic Considerations in Agricultural Production: Beyond the above require-

ments, agricultural production must also consider energy consumption and cost-ef-

fectiveness. Therefore, control system design must involve the creation of efficient 

control strategies to achieve desired goals while minimizing costs. 

These characteristics of agricultural production necessitate the consideration of more 

potential influencing factors and the development of more effective regulation methods 

when designing control strategies, raising the bar for research in agricultural control 

methodologies. 

2.2.2. Limitations of Traditional Control Methods 

Traditional control methods, such as PID control, Model Predictive Control (MPC), 

neural network control, and fuzzy control, have been continuously refined and improved 

through academic research. However, they still face numerous limitations when address-

ing the challenges posed by agricultural systems. 

PID Control: This method is simple and intuitive, often used in greenhouse climate 

control or irrigation systems. However, PID controllers are less adaptable to nonlinear 
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systems and are easily affected by external disturbances. In dealing with nonlinear or 

time-varying systems, PID controllers may underperform, as they usually require an ac-

curate system model for parameter design, which is often difficult to obtain or accurately 

describe in practical applications [46]. Additionally, PID performance can be impacted by 

significant measurement noise or external disturbances, and it requires experienced engi-

neers to manually tune parameters. Given the limited technical support in agricultural 

production, this can pose challenges in complex systems. 

Model predictive control: It is widely applied in multivariable systems and control 

problems with constraints, thanks to its robustness and ability to handle dynamic system 

constraints [47]. It can be used to optimize planting cycles or irrigation strategies. How-

ever, its high computational complexity demands precise system modeling and involves 

solving state observation and feedback problems. In real-world applications, many sys-

tems exhibit complex nonlinearities or uncertainties, limiting MPC’s effectiveness. More-

over, MPC typically requires significant computational resources for state estimation and 

control calculation, making it difficult to apply in resource-constrained environments or 

where real-time performance is critical [48]. 

Neural Network Control: Neural network control utilizes neural network models for 

system modeling and control, offering strong adaptability. However, this approach faces 

challenges such as high data requirements, the “black box” nature of the model, and over-

fi�ing issues. Additionally, due to differences in climate types, greenhouse structures, and 

crop varieties, the generalizability and adaptability of neural network models may be lim-

ited [49], making it difficult to handle the time-variability and variability inherent in agri-

culture. 

Fuzzy Control: Fuzzy control effectively deals with complex systems that lack accu-

rate mathematical models or exhibit significant uncertainty. Compared to traditional 

mathematical control methods, fuzzy control is easier to understand and tune [50,51]. 

However, designing and tuning fuzzy control systems is relatively complex, involving the 

definition of fuzzy sets, the determination of membership functions, and the formulation 

of rules. This complexity makes system development and optimization challenging. Ad-

ditionally, the fuzzy nature of these systems may lead to decreased stability and robust-

ness under environmental changes, noise interference, or parameter uncertainty [52]. 

Fuzzy control often requires substantial computational resources to perform fuzzy rea-

soning and rule execution, and this can lead to high computational costs when dealing 

with large-scale, high-dimensional problems [53]. 

These limitations make traditional control methods less effective in handling the 

complex, nonlinear, or uncertain systems typical of agricultural production. 

In contrast, ADRC requires only input and output information, eliminating the need 

for an accurate mathematical model while still achieving high-precision control and effec-

tive disturbance rejection. Its strong robustness and adaptability give it great potential for 

meeting the high-precision control demands posed by unstructured agricultural working 

environments. 

3. Application of ADRC Technology in Agriculture 

3.1. Agricultural Machinery and Equipment Control 

Agricultural machinery control technology is an indispensable component of mod-

ern agriculture. The application of automation and intelligent control technologies enables 

agricultural machinery to perform precise operations, increase production efficiency, re-

duce labor costs, and minimize environmental impact [54]. In the field of agricultural ma-

chinery, ADRC demonstrates significant advantages in motion control, addressing chal-

lenges posed by various unstructured environmental factors such as terrain, soil condi-

tions, and wind direction. 
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Zhu et al. [55] designed an ADRC-based dual steering motion control system for a 

plant phenotype robot chassis to meet the agronomic needs of apple cultivation and to 

cope with the challenges of the complex environment in large fields on the robot’s driving 

performance. The results of Simulink dynamics simulation experiments, steering motion 

simulation experiments, and field experiments show that the proposed ADRC control 

model’s performance is significantly be�er than the traditional PID dual steering control 

model. are significantly be�er than the traditional PID dual steering control model. These 

results are highly consistent with Zhang’s [56] autonomous navigation control method for 

agricultural vehicles based on ADRC technology, showing stronger adaptability and more 

stable robustness compared to her previous research [15], highlighting the superiority of 

ADRC. 

UGVs and AGVs have numerous applications in agriculture. In addition to wheeled 

drives, tracked drives are also widely used in agriculture. However, due to the lack of 

effective slip prediction and compensation, tracked vehicles may not accurately follow the 

designated path in practical agricultural operations. To address this issue, Sebastian et al. 

[57] proposed a universal mathematical model based on the ADRC framework that can 

account for system state scaling and movement caused by slip by enhancing parameters. 

The controller designed based on this model can predict and compensate for the impact 

of slip on AGVs in real time. The feasibility of this approach was validated under both flat 

and uneven terrain conditions (including asphalt, vinyl surfaces, artificial turf, grass, and 

gravel), improving AGV path tracking performance and filling a gap in slip control for 

tracked drives in agriculture. 

For tracked sprayers used in orchard pest control, the vehicle mass decreases as the 

spray liquid is consumed, and multi-source unknown disturbances, such as liquid slosh-

ing in the tank, nonlinear friction, air resistance, and unmodeled system components, can 

affect the tracked unmanned vehicle. To address this issue, Wang et al. [58] designed a 

tracked orchard sprayer robot employing ADRC to enhance system noise resistance, as 

shown in Figure 5. This robot uses two active disturbance rejection controllers to receive 

the desired speed and angular velocity, outpu�ing corresponding control signals to en-

hance its noise resistance. Subsequent field trials further validated the feasibility of the 

developed system, achieving a canopy leaf coverage rate of approximately 50% and sig-

nificantly improving the robot’s control accuracy. 

 

Figure 5. System control block diagram based on ADRC [58]. 

Similar to other equipment control research, studies on UAV control combined with 

ADRC often remain limited to simulations or lack practical application scenarios, with 

their practical utility still open to discussion. He et al. [59] proposed a parameter 
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optimization control strategy based on ADRC to address the high requirements for a�i-

tude control in column-type plant protection UAVs, as well as various unknown disturb-

ances and parameter uncertainties during flight. Simulation results indicated that the pro-

posed control strategy achieved faster response and higher robustness compared to PID 

and Fuzzy PID controllers. However, this study lacks field trials and does not specify con-

crete agricultural application scenarios. 

The rise and development of precision agriculture and smart agriculture impose 

higher requirements on the control of agricultural machinery. The control accuracy of ag-

ricultural machinery directly determines its operational quality and has a decisive impact 

on crop yields. Traditionally, many researchers applied classic control strategies, such as 

PID control, Ackermann control, and sliding mode control, to fields such as chassis motion 

control, heading control, and a�itude control of agricultural machinery. However, with 

the advancement of precision and smart agriculture, agricultural machinery faces increas-

ingly demanding performance requirements to adapt to various unstructured environ-

mental factors such as different terrains, soil conditions, and wind directions. As a result, 

traditional control strategies are increasingly inadequate to meet the current needs of ag-

ricultural production. 

As reviewed in Section 3.1, ADRC, with its strong robustness, high adaptability, and 

fast response performance, has significantly improved the control accuracy and disturb-

ance rejection capability of agricultural machinery such as UGVs, tractors, and UAVs. 

Compared to traditional control strategies, ADRC is be�er suited for applications in com-

plex agricultural operational environments. 

3.2. Farm Navigation and Trajectory Tracking 

Precise trajectory tracking control for autonomous agricultural machinery is crucial 

for ensuring that agricultural vehicles follow their intended paths and perform accurate 

agricultural tasks. Achieving rapid and precise trajectory tracking control in autonomous 

agricultural machinery helps reduce energy consumption, minimize crop damage, and 

consequently lower economic losses during agricultural production [60,61]. However, the 

modeling of autonomous agricultural machinery systems often involves nonlinearities 

and parameter uncertainties, which significantly complicate trajectory tracking control. 

Additionally, the complexity of field environments frequently introduces unknown exter-

nal disturbances that can affect tracking accuracy. 

The working environment of field wheeled follower vehicles is extremely complex 

and harsh, making their movement and precise positioning control technologies particu-

larly challenging. To address this issue and improve agricultural productivity and mod-

ernization, Zhang et al. [62] designed an adaptive finite-time trajectory tracking control 

strategy with an adaptive extended state observer to enhance trajectory tracking accuracy 

and convergence speed of agricultural UGVs in complex environments. Their method, 

demonstrated in the MATLAB/Simulink simulation environment, outperformed tradi-

tional PID control. However, this research remains in the simulation and prototype stages, 

and its practical application needs further investigation. 

In current rice paddy agriculture, the complexity of the operating environment leads 

to imprecise control issues [63], which severely limits the development of rice paddy ma-

chinery and negatively impacts the production efficiency and quality of rice and other 

paddy crops. Tang [64] used the Yanmar VP6E rice transplanter head as an experimental 

platform, automating the steering system with a parallel stepper motor and thro�le con-

trol system using an electric push rod device. Based on ADRC, Tang proposed a path-

tracking method with high stability and strong speed adaptability. 

Autonomous orchard vehicles are becoming an essential part of modern fruit pro-

duction. These robots, which must operate autonomously in complex orchard 
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environments and perform tasks such as weeding, spraying, pruning, and harvesting, 

need to achieve precise trajectory tracking and adapt to uneven surfaces or harsh condi-

tions such as wet, muddy, or snowy environments [65]. Research by Bayar et al. [66] in 

2013 demonstrated the significant potential of ADRC for trajectory tracking in autono-

mous orchard vehicles. In subsequent research [67], they developed a slippage estimator 

and adapted it into a car-like robot model. Experimental results, shown in Figure 6, indi-

cate that this method improved the accuracy and performance of orchard autonomous 

vehicle control systems. 

 

Figure 6. Trajectory tracking experiment results performed in the snowy and inclined region. (a) 

Actual trajectories, (b) Inclination angles of the experimental region, (c,d) Actual trajectories in lon-

gitudinal (x) and lateral (y) directions. The notations “wo/S” and “w/S” specify without and with 

slip estimation [68]. 

High-precision field navigation and path-tracking control are crucial for determining 

the operational quality and ecological benefits of agricultural vehicles [63]. However, con-

ventional kinematic-based methods [69,70] often neglect vehicle dynamic parameters, 

such as cornering stiffness and slip angles, which can lead to reduced complexity in over-

all control design. While classical control strategies such as PID [71] and Pure Pursuit con-

trol [72] have demonstrated good performance in low-speed agricultural vehicle naviga-

tion and path-tracking tasks under nondisturbance conditions, they struggle with the var-

iable road conditions and parameter uncertainties often encountered in unstructured en-

vironments of agricultural vehicles [44]. 

These issues make it challenging for both kinematic-based methods and classical con-

trol strategies to meet the high-precision requirements of modern precision and smart ag-

riculture for field navigation and path tracking in agricultural vehicles. In contrast, as re-

viewed in Section 3.2, ADRC significantly enhances control accuracy in field navigation 

and path tracking due to its canonical form that transcends the boundary between linear 

and nonlinear systems, and its concept of extended state or total disturbance, which en-

compasses a broad range of uncertainties and disturbances, including model uncertainties 

and external unknown disturbances. This makes ADRC be�er suited to the development 

requirements and goals of precision and smart agriculture. 
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3.3. Agricultural Production Process Control 

Process control in agricultural production is a key technology for improving produc-

tion efficiency, optimizing resource utilization, and ensuring product quality in modern 

agriculture. The advent and development of agricultural automation have significantly 

reduced the time and effort required to perform repetitive tasks [73]. However, the ad-

vancement of precision agriculture has introduced new requirements for the control ac-

curacy of various automation machinery in agricultural processes, which traditional 

methods like PID struggle to meet. As a result, ADRC, with its rapid response capability 

and strong robustness, is increasingly being applied across different agricultural pro-

cesses such as sowing and weeding. 

To address the complex environments of grassland and enhance the efficiency and 

quality of pneumatic seeders while improving their automation and precision, Chen [74] 

developed a kinematic model for the walking system and steering mechanism of a pneu-

matic seeder based on ADRC. A steering controller and path tracker were designed, and 

the impact of grassland terrain on seeding quality and automatic control was analyzed. 

The physical implementation of this research is shown in Figure 7. Field trials demon-

strated that the ADRC could reduce steering adjustment time to within 2 s and achieve 

steering accuracy within 1°, outperforming traditional PID, and, thus, significantly im-

proving seeding accuracy and quality. 

 

Figure 7. Photos of steering controller performance test [74]. 

Most current research on weeding mechanisms focuses on horizontal rotation and 

swinging weeding [75]. However, during weeding operations, the actuators do not sepa-

rate from the soil, which can result in the actuators failing to effectively avoid crops, 

thereby increasing the risk of damaging crops and their roots [76]. Researchers from South 

China University of Technology have integrated ADRC into both the hydraulic control 

system and the weeding mechanism of a weeder designed with deep learning [77]. This 

integration achieved minimal overshoot, with adjustment times within 1 s and steady-

state error controlled to within 6 mm, effectively addressing the seedling damage caused 

by misalignment of the weeding components with the seedling rows. 

The strong robustness and rapid response capability of ADRC have led to its success-

ful application in crop stalk recovery, combine harvester threshing, and density-forming 

machines [78–80]. Lyu [78] applied ADRC to the electro–hydraulic proportional speed 

control system of a sweet potato vine crushing and recovery device, enhancing its disturb-

ance resistance against variable loads during crushing and improving the stability of the 

vine crushing and recovery process. This application resulted in a crushing qualification 

rate of 89.41% and a recovery rate of 92.60%. To enhance the real-time performance, accu-

racy and adaptability of the threshing drum control method in sunflower combine har-

vesters, Zhang et al. [79] designed a control system based on ADRC and dynamic matrix 
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models, and validated its stability in drum speed control through simulations, bench tests, 

and field experiments. 

Harvesting robots based on mechanical arms are prone to external disturbances, such 

as natural conditions and collisions, which can lead to crop and branch damage as well as 

mechanical arm failures [81]. Therefore, developing hand–eye coordination methods for 

mechanical arms is crucial. Su et al. [82] proposed an advanced hand–eye coordination 

method based on ADRC, which exhibits strong adaptability and robustness. Given the 

high demands for control precision and adaptability in soft claw grasping mechanical 

arms for agricultural harvesting robots [83], Su et al.’s method has promising applications 

in this field. 

In agricultural production, repetitive tasks are prevalent, making modern agriculture 

labor-intensive and costly. However, the quality of agricultural operations has a critical 

impact on yield, economic efficiency, and ecological benefits. Furthermore, precision and 

smart agriculture impose higher accuracy requirements on agricultural automation ma-

chinery, which traditional strategies struggle to meet. Due to its robustness, rapid re-

sponse capability, ease of adjustment, and strong compatibility with other new technolo-

gies, ADRC demonstrates superior control performance in various agricultural produc-

tion control tasks. The successful applications of ADRC in various agricultural production 

processes, as reviewed in Section 3.3, highlight its advantages over traditional control 

strategies and significantly enhance the effectiveness of agricultural automation machin-

ery in complex production scenarios. 

3.4. Other Agricultural Sectors 

As the demand for automation and intelligent control in the agricultural sector con-

tinues to grow, ADRC, with its superior robustness and dynamic performance, has grad-

ually been applied to a broader range of agricultural subfields. ADRC has demonstrated 

significant advantages in aquaculture and greenhouse management. 

Aquaculture, as an integral part of agriculture, plays a crucial role in addressing 

global food security by enhancing the intelligence and automation of production. China, 

as a major aquaculture nation, accounts for more than 60% of the world’s farmed aquatic 

products [84]. However, the development of aquaculture is still constrained by issues such 

as pollution caused by fish dying from natural or unnatural causes and low production 

efficiency. It is well known that dead fish sink to the bo�om, making their removal a sig-

nificant challenge for researchers. Tang et al. [85] proposed a two-degree-of-freedom un-

derwater manipulator with an ADRC-based controller, as shown in Figure 8. This study 

greatly improved the system’s ability to handle nonlinearities, strong coupling, and model 

uncertainties. Comparative experiments confirmed that the underwater manipulator em-

ploying the ADRC significantly outperformed traditional PD control and continuous slid-

ing mode control in terms of accuracy, dynamic characteristics, and robustness. It not only 

enhances the intelligence and automation of aquaculture production but also improves 

water quality and reduces pollution caused by fish mortality, indicating the great poten-

tial of ADRC in improving water quality control. 
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Figure 8. Underwater manipulator trajectory tracking experimental platform [85]. 

With the rapid advancement of science and technology, greenhouse control systems 

have become increasingly intelligent, evolving from simple data collection and control 

systems to sophisticated intelligent systems, such as expert systems [86]. In the United 

States, integrated greenhouse network management systems have emerged, combining 

climate regulation, field irrigation, and crop fertilization [87]. The introduction of such 

applications has undoubtedly raised new requirements for the precision, responsiveness, 

and robustness of intelligent greenhouse control. Meanwhile, global challenges such as 

energy shortages, excessive greenhouse gas emissions, and population growth have in-

troduced additional challenges to smart greenhouse control [88,89]. Thanks to its superior 

characteristics, ADRC has been successfully applied in greenhouse control and is becom-

ing a research hotspot in the field of intelligent greenhouse systems. 

In response to these challenges, Xiao et al. [90] developed a greenhouse mechanism 

model to achieve temperature management and energy consumption reduction through 

intelligent control. Based on this model, they proposed two intelligent control methods: 

ADRC and Fuzzy ADRC. These methods regulate greenhouse temperature and energy 

efficiency by adjusting window openings and using heaters. Simulation results showed 

that the model achieved an accuracy of up to 97%. Compared to standard ADRC, the 

Fuzzy ADRC strategy reduced the time required to reach optimal operating conditions by 

10 h during 60 h of continuous operation, decreased temperature overshoot by 60%, and 

saved approximately 15% in energy consumption. Although this study verified the excel-

lent characteristics of ADRC, it lacked field experiments and did not provide comparisons 

with traditional control strategies like PID control, which requires further exploration. 

Most of the aforementioned applications of ADRC in intelligent greenhouse control 

are limited to single-factor control. However, F. Garcia-Manas et al. [91] developed a two-

input, two-output (TITO) model for greenhouses, utilizing a pipe heating system and a 

dehumidification system to regulate nigh�ime temperature and relative humidity. The 

success of this study indicates that ADRC has broader application potential in other sub-

fields of intelligent greenhouse control, warranting further investigation. 

The prospect of wide application of ADRC technology in fishery intelligence and 

greenhouse intelligent control tasks has been initially shown, as shown in Table 1, and its 

potential to address the challenges of water pollution, inefficient fishery aquaculture, 

global energy shortages, excessive greenhouse gas emissions, population growth, and 

food security has been gradually recognized. In the future, ADRC technology is expected 

to further promote the innovation and development of agricultural intelligence and auto-

mation. 
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Table 1. Comparison of ADRC and other control technologies. 

Task Models Behavior Result 

Wheeled chassis motion 

control [55] 

PID  ADRC significantly outperforms the PID and Ackermann models in 

terms of various performances such as pendulum angular velocity, 

turning radius and disturbance recovery time. 

Ackerman Controls  

ADRC √ 

Agricultural vehicle heading 

control [15,56] 

FOPID  The results of simulation experiments comparing two controllers, 

FOPID and ADRC, assuming constant-value perturbation and time-

varying perturbation signals, show that the control performance of 

ADRC is more superior. 

ADRC √ 

UAV Attitude Control [59] 

PID  Compared with the existing PID and Fuzzy PID methods for 

attitude control of plant protection drones, experimental results 

show that ADRC exhibits excellent adjustment capability and 

robustness, effectively achieving attitude control for tandem plant 

protection drones. 

Fuzzy PID  

ADRC √ 

Note: Behavior column “√” indicates the be�er performance. 

4. Application of ADRC in Combination with Other Technologies  

in Agriculture 

4.1. Application of LADRC in Agriculture 

Linear Active Disturbance Rejection Control (LADRC) is a simplified version of 

ADRC, in which the parameters of the controller and observer are linked to their fre-

quency, converting the parameter tuning process into a bandwidth adjustment problem. 

This method was first proposed by Gao [92–94]. The advantage of LADRC lies in its inde-

pendence from precise mathematical models of the system. The core idea is to use a Linear 

Extended State Observer (LESO) to estimate and compensate for system disturbances and 

uncertainties in real time, transforming the system into a cascaded integral form for con-

trol. The basic structure of LADRC is shown in Figure 9a. Compared to ADRC, LADRC 

introduces the concept of bandwidth, reducing the number of parameters and simplifying 

the tuning process, all while maintaining the performance of ADRC. This results in a much 

simpler structure and fewer control parameters [95,96], further enhancing the potential of 

ADRC across various control tasks. Owing to this advantage, LADRC has been widely 

applied in the agricultural sector. 

In response to the rapid reaction demands of weeding operations, building on their 

previous research [97], Liu et al. designed a hydraulic servo system based on LADRC to 

reduce seedling damage rates during weeding [98]. Given that proportional directional 

valves often have significant input dead zones, which can greatly reduce controller per-

formance and cause system output oscillations near the setpoint, they developed a non-

linear dead zone compensation module. Using an ESO, they proposed a residual dead 

zone compensation method, as illustrated in Figure 9b. Simulink simulations and experi-

ments conducted on a platform based on the compensation method demonstrated that the 

system achieved a response time within 0.7 s and a steady-state error of less than 0.7 mm, 

significantly improving control accuracy and reducing seedling damage during weeding. 

However, this study remains confined to simulation and laboratory experiments, with 

further research needed to evaluate its effectiveness in real-world applications. 
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(a) (b) 

Figure 9. (a) the basic structure diagram of LADRC; (b) Structure of the experimental hydraulic 

system [99]. 

In Chen et al.’s research [99], a LADRC-based control strategy was proposed for the 

alignment control of a weeding mechanism. Experimental results indicated that the 

steady-state error was controlled within 6 mm, with almost no overshoot, and the adjust-

ment time was kept within 1 s, filling a gap in practical field studies on LADRC’s applica-

tion in weeding mechanism alignment control. 

In the field of motion control for agricultural machinery, LADRC has been widely 

applied to address the control requirements of various mobile platforms. Wang et al. [80] 

proposed a method to optimize LADRC parameters using the Sparrow Search Algorithm 

(SSA) for a mobile straw densification machine. Experimental results demonstrated that 

this method outperformed traditional PID control in terms of control indices like se�ling 

time and overshoot. Yu [100] designed a Decoupling Linear Active Disturbance Rejection 

Controller (DLADRC) for a field-following wheeled vehicle system. Based on the kine-

matic analysis of the relative position between the leading vehicle and the following ve-

hicle, as well as the motion of the child vehicle and its drive motors, a mathematical model 

of the follower system was developed. MATLAB simulations showed that the DLADRC 

control strategy yielded be�er performance than traditional PID control in terms of over-

shoot, transient response time, and the average error and standard deviation of lateral and 

longitudinal distances between vehicles. Additionally, Xia et al. [101] developed an eight-

degree-of-freedom dynamic model for a semi-tracked vehicle and proposed an LADRC 

controller for controlling the vehicle’s vertical motion and pitch angle. Simulations of the 

suspension system on random road excitations indicated that LADRC provided superior 

control of the suspension system’s acceleration and pitch angle compared to fuzzy control. 

Chen et al. [102] applied an improved LADRC method for path-tracking control of a six-

wheeled steering vehicle on soft terrain (shown in Figure 10a), achieving excellent perfor-

mance in disturbance a�enuation and adjustment efficiency. This highlights LADRC’s sig-

nificant potential for autonomous orchard vehicles. 

In UAV control, LADRC has found successful applications in a�itude control, flight 

path planning, and load suspension systems of agricultural UAVs [102–107], improving 

system robustness. Mo et al. [104] applied LADRC to vertical and yaw control subsystems 

of UAVs with suspended loads, enhancing flight stability. Liang et al. [108] proposed two 

double-loop control schemes based on ADRC and LADRC to verify the anti-wind inter-

ference performance of a quadrotor UAV. Their experimental results further validated 

LADRC’s capacity to integrate with other control methods and enhance overall perfor-

mance. 

Pesticide spraying is a key method for pest control in modern agriculture, and preci-

sion pesticide spraying technology can significantly improve pesticide efficiency while 

reducing environmental pollution, aligning with the goals of sustainable agriculture 
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[109,110]. However, due to complex field conditions and factors, such as acceleration and 

deceleration during vehicle operation, disturbances in pipeline pressure and flow can hin-

der accurate pesticide spraying. To address this issue, Ji et al. [111] applied LADRC to a 

flow control valve, using a Linear Extended State Observer (LESO) to observe total dis-

turbances. A 12 m commercial boom sprayer was used for field testing of the proposed 

control strategy. The results, as shown in Figure 10b, demonstrated that the improved 

controller achieved a 3–5 s faster response time and a 2–9% increase in steady-state accu-

racy compared to PID control. 

 
 

(a) (b) 

Figure 10. (a) Block diagram of the system controller, (I) Decoupling of the system, (II) Block dia-

gram of the improved LADRC [102]; (b) Field spray quantity data curve (uniform motion) [111]. 

In conclusion, LADRC greatly simplifies the structure and parameter tuning of 

ADRC with its excellent adaptability and robustness without affecting performance 

[95,96]. LADRC can efficiently reconstruct the system state and provide precise control, 

thus improving the stability and performance of the whole system, as shown in Table 2. 

Table 2. Comparison of LADRC with other control technologies. 

Task Models Behavior Result 

Straw compact mode 

machine water content 

control [80] 

Smith-PID  Compared with smith-PID and smith-LADRC, SSA-Smith-LADRC 

has the advantages of accurate regulation, strong anti-interference 

ability and elimination of time lag. 

Smith-LADRC  

SSA-Smith-LADRC √ 

Weed component to row 

control [99] 

PID  The results show that the LADRC technique has superior anti-

jamming performance in terms of row-to-row control of the weeding 

component, reflecting its strong robustness. 
LADRC √ 

Precision spraying of 

pesticides [111] 

PID  Compared to traditional PID and modified PID control, LADRC 

controllers have greater immunity and robustness, while the 

difficulty of setting control parameters is greatly reduced 

Optimized PID  

LADRC √ 

Note: Behavior column “√” indicates the be�er performance. 

4.2. Combination of SMC and ADRC Applications in Agriculture 

Sliding Mode Control (SMC) is an effective control technique for dealing with non-

linear systems. It was first proposed by Emelyanov and Filippov in the late 1950s [112], 

and further developed by Utkin and others [113]. Today, SMC has evolved into a well-

established design method for nonlinear control systems. The basic concept involves de-

signing a sliding surface such that once the system state reaches this surface, it remains in 

its vicinity [114,115]. SMC excels in responding quickly to system changes and demon-

strates robustness against external disturbances and parameter uncertainties. Given the 
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complex and dynamic nature of agriculture, along with high real-time requirements, the 

combined use of SMC and ADRC holds great promise in various agricultural processes. 

Approximately 71% of the Earth’s surface is covered by water, making water re-

sources essential to the aquaculture industry. However, water resources are increasingly 

polluted [116]. In freshwater aquaculture, floating and submerged waste, such as plastic 

bo�les and dead fish, are harmful to aquatic life. Cui et al. [117] developed a novel integral 

sliding mode controller (ISMC) based on a multiple-input and multiple-output extended 

state observer (MIMO-ESO), addressing challenges posed by unmeasured velocities, un-

known disturbances, and uncertain hydrodynamics of robots. A rigorous theoretical anal-

ysis demonstrated that the proposed control method achieved asymptotic tracking per-

formance, outperforming the traditional potential difference (PD) control method. Wang 

et al. [118] proposed a finite-state machine active disturbance rejection control 

(FSMADRC) method for controlling robotic manipulators in autonomous underwater ve-

hicles (AUVs), achieving lower energy consumption compared to PID and fuzzy logic 

controllers (FLC). These studies highlight the enhanced performance of combining SMC 

with ADRC, particularly in aquaculture pollution mitigation. 

Addressing the complexity of paddy field operations and the low level of agricultural 

machinery automation, Long and Li [119,120] developed a trajectory tracking and posture 

control model for high-clearance sprayers using sliding mode active disturbance rejection 

control (SADRC). They proposed a trajectory-tracking algorithm with fast response and 

strong anti-disturbance capabilities. Their research showed that this control strategy 

achieved excellent results in both simulation and real-world rice field plant protection 

tasks. 

In addition to aquaculture, researchers have combined SMC and ADRC for agricul-

tural tractor control. Jiang et al. [121] designed a modified sliding mode active disturbance 

rejection control (MSMADRC) system to address inaccuracies in the automatic mechanical 

transmission (AMT) shifting mechanism of small tractors. Simulation results showed that 

MSMADRC improved position control accuracy by 37% compared to SMC and 75% com-

pared to ADRC, with the shortest response time of 0.7 s. Zhang et al. [122] combined 

nonsingular fast terminal sliding mode (NFTSM) control with a finite-time disturbance 

observer (FDO) to develop a control strategy for improving trajectory tracking perfor-

mance in tractor straight driving and headland turning under slip conditions. This 

method’s high precision, fast response, strong robustness, and anti-disturbance capabili-

ties demonstrate the potential of SMC + ADRC in reducing shift times, eliminating power 

interruptions, and improving shift quality. However, these studies are limited to simula-

tions and require further field testing to validate practical applicability. 

In agricultural UGVs and UAV trajectory tracking, Ge et al. [123] proposed a novel 

adaptive sliding mode control (ASMC) method for path tracking, which enabled the lat-

eral error of UGVs to converge to zero. The uncertainty in tire cornering stiffness was 

adaptively adjusted by a sliding mode observer (SMO). Both simulation and field tests 

indicated that ASMC provided robust performance against external disturbances, param-

eter uncertainties, and varying road conditions without prior road information. Zhang et 

al. [124] designed a sliding mode active disturbance rejection control system for a quad-

rotor UAV, enabling fast and accurate tracking of flight trajectories. Fu et al. [125] applied 

SMC + ADRC to the path tracking of USVs, proposing a TSM + ADRC control strategy 

and verifying its effectiveness through simulations. These studies highlight the broad ap-

plication potential of SMC + ADRC in navigation and trajectory tracking for complex ag-

ricultural environments. 

The combination of SMC and ADRC significantly enhances the stability and robust-

ness of systems in complex agricultural environments, as summarized in Table 3. SMC 

provides strong nonlinear control capabilities, while ADRC handles system uncertainties 
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and dynamic changes through adaptive mechanisms. This synergy not only optimizes 

control accuracy but also improves the system’s adaptability, making it highly suitable for 

agricultural applications. 

Table 3. Comparison of SMC + ADRC with other control technologies. 

Task Models Behavior Result 

Underwater robot control 

[117] 

PID  MIMO-ESO ISMC tracks the desired trajectory more accurately with 

less tracking bias and outperforms PD controllers in terms of peak 

overshoot and convergence speeds. 
MIMO-ESO ISMC √ 

Trajectory tracking for 

paddy sprayers [120] 

PID  SADRC outperforms PD attitude control in terms of overshoot and 

stabilization time duration, and is able to improve sprayer trajectory 

tracking accuracy in complex environments 
SADRC √ 

UGV path tracing [123] 

PID  The ASMC demonstrated the best tracking performance compared 

to the PID control and the SMC, which shows the great potential of 

the ADRC for UGV trajectory tracking tasks 

SMC  

ASMC √ 

Note: Behavior column “√” indicates the be�er performance. 

4.3. Combination of Other Technologies and ADRC Applications in Agriculture 

In modern agriculture, the continuous advancement of technology and the pursuit 

of increased production efficiency have led to the integration of advanced control technol-

ogies into agricultural practices. ADRC, with its exceptional adaptability and robustness, 

is increasingly being combined with various control technologies to optimize the perfor-

mance of agricultural production systems. This integration not only enhances the system’s 

ability to adapt to environmental changes but also improves the precision of crop man-

agement, resource allocation, and production monitoring. 

The world is currently facing a crisis of water scarcity, which is particularly severe in 

China [126]. Additionally, due to geographical and population demands, there is a short-

age of agricultural irrigation water resources in China [127]. In response to the growing 

issue of secondary salinization in soil in some regions of China, Liu [128] applied ADRC 

to the flow control of water–fertilizer integrated machines and utilized the Univariate 

Marginal Distribution Algorithm (UMDA) to optimize the ADRC controller parameters. 

Simulink simulation experiments and practical tests indicated that the UMDA-ADRC con-

trol strategy outperforms traditional PID control. However, this study did not report the 

specific performance metrics of the optimized control, and its effectiveness requires fur-

ther validation. 

Wang et al. [129] addressed the high demands for a�itude control during the flight 

of agricultural drones by proposing an Adaptive Composite Disturbance Rejection Con-

trol (ACDRC) technique. They conducted wind disturbance experiments under lateral 

and horizontal flows and further validated the effectiveness of their control method in 

vegetable and co�on fields. They also performed comparative experiments with Adaptive 

Disturbance Observer Control (ADOC). 

Furthermore, the integration of ADRC with other techniques has seen preliminary 

applications in the navigation and trajectory tracking of articulated vehicles and agricul-

tural tractors. Guevara et al. [130] designed an ADRC system with a Double-Stage Dis-

turbance Observer (DS-DO) to improve the backward trajectory-tracking performance of 

Generalized N-Trailers (GNT) under nonideal conditions. The ADRC + DS-DO control 

method proposed was validated through simulations and field experiments. The results 

showed that the tracking error of ADRC + DS-DO was reduced by 57% compared to tra-

ditional ADRC, as detailed in Table 4, demonstrating its practical importance in outdoor 

applications and making it a potential solution for implementing automation in agricul-

tural machinery. 



Machines 2025, 13, 111 20 of 31 
 

 

Table 4. Comparison of other technologies + ADRC with traditional control technologies. 

Task Models Behavior Result 

Fertilizer flow control [128] 

PID  The superiority of the ADRC controller and the feasibility of UMDA 

for ADRC optimization are verified based on the actual effect of the 

action. 

ADRC  

UMDA + ADRC √ 

UAV flight interference 

suppression [129] 

ADRC  The superiority and effectiveness of the ACDRC technique in UAV 

anti-disturbance performance is demonstrated by indoor 

experiments. 
ACDRC √ 

Tractor tracking [130] 

LESO  The practical importance of ADRC + DS-DO in outdoor practical 

applications is demonstrated, while ADRC + DS-DO provides a 

solution to the problem of error accumulation along the vehicle 

chain. 
ADRC + DS-DO √ 

Note: Behavior column “√” indicates the be�er performance. 

In agricultural lighting systems, LED lights are commonly used in controlled agricul-

ture to enhance crop yield. Since LED lights are DC loads while the power grid provides 

AC supply, a Power Factor Correction (PFC) converter is needed as an interface between 

the grid and LED lights. Miao et al. [131] proposed a new Boost PFC + ADRC converter 

control method and developed a harmonic-robust phase-locked loop scheme capable of 

eliminating measurement DC drift and providing harmonic robust estimation of grid volt-

age. Subsequently, they conducted a comprehensive simulation study varying the inclu-

sion of a nonlinear function in the baseline PI controller. The experimental results showed 

that the proposed technology reduced total harmonic distortion by 42% to 65% compared 

to the baseline PI method, which could significantly lower the operating costs of agricul-

tural lighting systems. 

In summary, the combination of ADRC with other control technologies has demon-

strated significant advantages in the agricultural field, as shown in Table 4. By integrating 

the adaptability and robustness of ADRC with the benefits of other control strategies, 

these combined technologies can significantly enhance the precision, stability, and effi-

ciency of agricultural production systems. However, practical applications still face nu-

merous challenges, such as system integration complexity and environmental adaptabil-

ity issues. Future research should further explore the deep integration of these technolo-

gies in agricultural production to overcome existing obstacles and achieve smarter and 

more efficient agricultural management solutions. 

5. Discussions 

5.1. Advantages of ADRC Technology in Agricultural Cybernetics 

The global issues of food crises, aging populations, and environmental pollution are 

driving countries around the world towards agricultural modernization [132–134]. Auto-

mation and intelligence in agriculture are significant markers of modern agriculture. 

However, traditional control methods, such as PID, model predictive control, and fuzzy 

control, have been difficult to adapt to the requirements of modern agricultural produc-

tion operations. Since its introduction in 1999, Active Disturbance Rejection Control 

(ADRC) technology has achieved remarkable success across various domains, including 

industry, aerospace, electronics, power systems, maritime applications, healthcare, auton-

omous driving, and defense, demonstrating its extensive application potential. For in-

stance, in the industrial sector, Zheng Qing et al. [135] applied ADRC to the temperature 

control system of an extruder in a North American factory, achieving more than a 50% 

reduction in energy consumption and a significant improvement in product performance. 

In the maritime field, Sun Xiaoming et al. [136] integrated ADRC with deep reinforcement 

learning to propose an enhanced method for improving ship anti-rolling performance, 
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substantially enhancing control accuracy and response capabilities. Furthermore, Hu 

Xiaohao et al. [137] and Cao Guizhou et al. [23] validated the rapid response and disturb-

ance rejection capabilities of ADRC in power systems, while Chen Gang et al. [138] uti-

lized it in the gear-shifting control of autonomous robotic arms, significantly improving 

shifting accuracy. These studies underscore the exceptional advantages of ADRC in opti-

mizing the control of complex systems [139–144], highlighting its immense potential for 

applications in unstructured agricultural operation scenarios. 

Agriculture is the fundamental industry for producing the food necessary for human 

survival. It is essentially a complex system composed of multiple subsystems, including 

soil, water, plants, climate, and machinery. System modeling and control theory offer sig-

nificant opportunities for the creation of agricultural production tools [145–148], thus pro-

moting more manageable agricultural production. Consequently, ADRC demonstrates 

significant applicability in this field. This review highlights that ADRC and its improved 

control methods have been successfully applied across numerous agricultural areas, in-

cluding agricultural equipment motion control, field navigation and trajectory tracking, 

agricultural production process control, aquaculture management, and smart greenhouse 

control. The advantages of ADRC over other control methods are summarized as follows, 

and the comparison results can be seen in Table 5. 

Table 5. Overall comparison of ADRC with other control technologies. 

Aspect ADRC PID MPC Fuzzy Control 
Neural Network 

Control 

Nonlinear  

Handling 
����� �� ���� ���� ���� 

Disturbance  

Rejection 
����� �� ���� ��� ��� 

Model  

Dependency 
����� � �� ��� ��� 

Adaptability ����� � ���� ��� ���� 

Computational 

Load 
���� ����� �� ��� �� 

Integration  

Potential 
����� �� ���� ���� ���� 

Agricultural Use ����� �� ���� ���� ���� 

Note: �: Minimal performance or suitability; �����: Outstanding performance or suita-

bility. ⭐: Represents minimal performance or suitability. ⭐⭐: Indicates limited performance or 

capability. ⭐⭐⭐: Reflects moderate effectiveness or utility. ⭐⭐⭐⭐: Denotes good perfor-

mance with notable strengths. ⭐⭐⭐⭐⭐: Represents excellent or optimal performance, highly 

recommended. 

 Handling Nonlinearity of Controlled Objects: Han’s groundbreaking work on feed-

back system structures in 1980 [149] pointed out that, under certain conditions, dy-

namic systems, whether linear or nonlinear, can be transformed into a canonical form 

of cascade integrators through feedback. Based on this, ADRC has demonstrated its 

efficient control capabilities in nonlinear environments, particularly in the complex 

and variable field of agricultural control. 

 Handling Wide-Ranging Uncertainty and Disturbances: Xue and Huang [150] com-

pared ADRC with Disturbance Observer-Based Control (DOBC) and found that for 

systems with both model uncertainties and disturbances, ADRC and DOBC yield 

similar control results. However, as disturbances increase, ADRC begins to exhibit 

advantages by emphasizing the “total disturbance” affecting the output process ra-

ther than the disturbances entering at their original positions. This allows ADRC to 
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stabilize the system and shape the transient response, making it highly promising for 

the uncertain, disturbed, and time-variant agricultural working environments. 

 Low Dependency on Models: One of ADRC’s advantages in agriculture is low de-

pendency on models. Agricultural environments are complex and variable, encom-

passing factors such as soil types, climate conditions, and crop needs. Traditional 

control methods often require accurate models for precise control. In contrast, ADRC 

estimates disturbances and uncertainties in the system in real time without relying 

on precise mathematical models [151]. This approach allows ADRC to remain effec-

tive even when the system model is not entirely accurate or when parameters change, 

enhancing the efficiency and reliability of agricultural production through its flexi-

bility and robustness. 

 Self-Optimization and Integration with Other Control Technologies: ADRC fea-

tures superior self-optimization capabilities, enabling it to dynamically estimate ex-

ternal disturbances and internal states, thereby adjusting control strategies to opti-

mize system performance. This characteristic allows it to maintain high accuracy and 

system stability even in uncertain environments. Additionally, ADRC’s flexibility ex-

tends to its ability to effectively integrate with other control technologies. The review 

highlights that ADRC has been successfully combined with advanced control tech-

nologies, such as fuzzy control and neural networks, further enhancing the adapta-

bility of control systems in uncertain and dynamic environments, and gaining wide-

spread use in the agricultural field. 

5.2. Challenges of ADRC Technology in Agricultural Cybernetics 

ADRC has been widely applied in the agricultural sector and has gradually become 

a research focus in contemporary agricultural control theory. However, its shortcomings 

during practical use should not be overlooked. Based on a review of existing literature, 

this paper summarizes the current challenges and limitations of ADRC in agriculture as 

follows: 

 Limited Real-World Applications: Most research on ADRC technology for agricul-

tural machinery remains confined to simulation experiments or laboratory prototype 

experiments. There is a lack of field experiments in real agricultural se�ings, which 

means that some unknown factors may be overlooked in practical scenarios, leading 

to insufficient practical applicability of the research. 

 Limited Research on UAVs: The application of ADRC in agricultural UAVs is often 

restricted to specific aspects of motion control. There is a lack of research on motion 

control performance under multi-factor disturbances. Therefore, the overall control 

performance of ADRC for UAVs remains to be thoroughly investigated. 

 Limited Exploration in Smart Greenhouse Control: Current studies on ADRC for 

smart greenhouse control are mostly limited to laboratory model experiments or sim-

ulations based on software such as MATLAB and LabView. Additionally, existing 

research often focuses on single-factor control, such as temperature, light, or humid-

ity. In actual greenhouse production, factors such as temperature, light, and humid-

ity all directly affect yield and economic benefits. 

 Gaps in Aquaculture Control: There remains a significant gap in the application of 

ADRC technology for aquaculture control. 

 Focus on Navigation and Trajectory Tracking: ADRC applications in unmanned ag-

ricultural equipment are mainly focused on navigation and trajectory tracking, and 

not enough a�ention has been paid to actuator control, which needs to be further 

researched. 
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These challenges and limitations need to be thoroughly addressed in the practical 

application and development of ADRC to achieve optimal outcomes in the agricultural 

sector. 

5.3. Future Directions of ADRC Technology in Agricultural Cybernetics 

The application of ADRC in agriculture can be categorized into standalone applica-

tions and its integration with other technologies. This paper primarily explores ADRC in 

two ways: its independent application in agriculture and its combination with other con-

trol techniques. Based on the challenges identified in the agricultural application of 

ADRC, the following suggestions are proposed: 

1. Field Applications in Agricultural Production: Building on the results from simula-

tion and laboratory experiments, future studies should focus on conducting experi-

ments in real-world agricultural environments such as rice paddies and co�on fields. 

Environmental factors like soil moisture and crop growth stages should be consid-

ered, and ADRC parameters should be optimized to adapt to these conditions. Long-

term and large-scale field tests are necessary to evaluate the effectiveness of the tech-

nology, identify new challenges, and enhance its practical applicability. 

2. UAV Applications: In the field of UAVs, future research should explore the simulta-

neous application of ADRC to UAV a�itude control and payload suspension control. 

Improvements in control stability and precision can be achieved through algorithm 

enhancements, and combining ADRC with path planning and autonomous flight 

technologies could further extend its functionality. 

3. Smart Greenhouse Control: Yield in greenhouses is directly influenced by factors 

such as gas concentration, lighting, and temperature. Therefore, future research 

should adopt ADRC strategies to simultaneously control multiple factors in smart 

greenhouses rather than limiting control to single variables like temperature. Inte-

grating ADRC with sensor data and hyperspectral technology [152–154] can enable 

more precise control of greenhouse conditions. 

4. Aquaculture Applications: ADRC has potential applications in aquaculture, includ-

ing water quality control (e.g., waste removal), water environment management, and 

the control of feed and medication dispensing. By optimizing water quality monitor-

ing and adjustment, and integrating with water quality sensors and automation 

equipment, ADRC can facilitate intelligent water quality management. 

5. ADRC Optimization: Future research should explore combining ADRC techniques 

with intelligent algorithms and deep learning techniques. Previous research on tra-

ditional control strategies has used intelligent algorithms to optimize controller pa-

rameters [155–157]. Similarly, ADRC can benefit from combining with intelligent al-

gorithms to improve its performance. In addition, combining ADRC with deep learn-

ing can lead to further improvements. Known for its efficiency, accuracy and robust-

ness, deep learning has been widely used in agriculture [158–162]. By utilizing deep 

learning, ADRC control strategies can optimize themselves to further improve the 

overall performance of the ADRC system. 

As ADRC becomes more widely adopted in various agricultural domains, its rapid 

response capabilities, strong robustness, and disturbance rejection will continue to en-

hance the intelligence and precision of agricultural production, ultimately increasing 

yields and the economic value of agriculture. 
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6. Conclusions 

In summary, this paper provides a comprehensive review of the application of ADRC 

in the agricultural sector, revealing its immense potential in addressing the complex de-

mands of modern agriculture. ADRC, with its exceptional precision, high robustness, and 

rapid response capabilities, has achieved significant results in various aspects such as ag-

ricultural equipment motion control, field navigation and trajectory tracking, and agricul-

tural production process control. Researchers have also combined the advantages of 

ADRC with other technologies, leading to widespread applications across numerous 

fields. 

In the domain of agricultural machinery control, ADRC has notably enhanced the 

control precision and disturbance rejection capability of agricultural equipment due to its 

outstanding robustness, significant adaptive capacity, and fast response characteristics. 

Compared to traditional control strategies, ADRC offers superior performance in the com-

plex environments of agricultural operations. In field navigation and trajectory tracking, 

ADRC addresses external uncertainties and disturbances more efficiently through its abil-

ity to manage both linear and nonlinear systems, greatly improving the control precision 

of agricultural vehicles and aligning with the goals of precision and smart agriculture. In 

agricultural production process control, ADRC demonstrates excellent control perfor-

mance owing to its robustness, quick response, convenient adjustment features, and high 

compatibility with emerging technologies. The successful application of ADRC in agricul-

tural production highlights its superiority over traditional control strategies, significantly 

enhancing the effectiveness of automated agricultural machinery in complex production 

environments. Moreover, ADRC shows broad application potential in various agricul-

tural fields, such as aquaculture and greenhouse management, and is increasingly recog-

nized as an effective tool to address global challenges such as water quality pollution, 

inefficient aquaculture, global energy shortages, excessive greenhouse gas emissions, pop-

ulation growth, and food security. 

However, current research is still primarily focused on simulation experiments and 

laboratory prototypes, lacking validation in large-scale and real-world application scenar-

ios. Additionally, specific applications of ADRC in agricultural UAVs, smart greenhouse 

multi-factor integrated control, aquaculture, and actuator control require further investi-

gation. To address these gaps, this paper proposes several improvement suggestions: con-

ducting further experimental validations in actual agricultural se�ings, expanding re-

search on ADRC for UAV a�itude and payload control, advancing multi-factor integrated 

control in smart greenhouses, exploring its application in aquaculture, optimizing con-

troller performance with intelligent algorithms, and investigating integration with deep 

learning technologies. These suggestions provide valuable directions for future research 

and emphasize the potential benefits of combining ADRC with intelligent algorithms in 

complex agricultural environments. 

Looking ahead, with the widespread application of ADRC technology, the intelli-

gence and precision of agricultural production will be further enhanced, leading to in-

creased efficiency and yield in agriculture as well as significant economic and environ-

mental benefits. Continued exploration and optimization of ADRC in agriculture will un-

doubtedly advance the modernization of agriculture and create a more sustainable and 

efficient agricultural ecosystem. 
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