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Abstract: The Finite-Difference Method (FDM) plays a pivotal role in the field of stability
prediction, particularly in the modeling and stability analysis of cutting process dynamics.
However, traditional approaches to optimizing the FDM often treat system state terms
and time-delay terms as a monolithic entity, failing to explicitly distinguish between them,
which leads to a lack of specificity in selecting optimization targets. In this study, an
innovative approach is introduced by incorporating the third-order Newton interpolation
method and the fourth-order Hermite interpolation method. By comparing the computa-
tional accuracy and convergence speed, it is found that the 3N-FDM (third-order Newton
Finite-Difference Method) exhibits superior overall performance, and it is clearly pointed
out that increasing the order does not always result in better outcomes. Additionally, this
study selects different discretization numbers, denoted as m, for comparative analysis
to thoroughly evaluate their impact on computational accuracy. Experimental validation
demonstrates the high accuracy of the 3N-FDM. Through a one-way ANOVA (analysis
of variance) of tool wear and workpiece surface roughness, it is revealed that changes in
system state terms have the most significant impact on the feed rate f, followed by the
cutting depth a,, and finally the spindle speed 1. Based on the experimental results and
analysis mentioned above, this study concludes that optimizing system state terms can
more effectively explore the combined influences of processing parameters on processing
quality, production efficiency, and tool wear.

Keywords: system status item; fully discrete; stability; machining parameters; cutting force

1. Introduction

Machining vibrations can primarily be categorized into two types: forced vibrations
and self-excited vibrations [1]. Forced vibrations are typically caused by external harmonic
excitation. Once identified and the source of excitation is determined, appropriate con-
trol measures can often effectively prevent, mitigate, or even completely eliminate such
vibrations. For self-excited vibrations, according to their different generation mechanisms,
chatter can be further refined into the following four categories: force-thermal chatter,
modal-coupling chatter, friction chatter, and regenerative chatter [2]. In the field of milling,
regenerative chatter is widely regarded as the dominant factor leading to instability in the
machining process [3].
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The root cause of regenerative chatter lies in the interaction between the milling force
and the wavy cutting marks left on the workpiece surface by the preceding tool tooth.
Based on this principle, a theoretical cutting diagram is depicted, as shown specifically
in Figure 1. Upon completion of the cutting process, tool tooth 4 leaves wavy cutting
marks on the workpiece surface. When the subsequent tool tooth 1 engages in cutting,
these wavy marks cause fluctuations in the chip thickness and cutting force, which in turn
induce vibrations in the tool. This vibration forms a closed-loop feedback mechanism with
the cutting process, known as the regenerative effect, and it is precisely this effect that
ultimately results in the occurrence of milling chatter [4].

Workpiece

Ideal Cutting Surface
of Bl

ade 4

Actual cutting surface
of blade 4

Feéd Direction

Figure 1. Regenerative chatter principle.

From a mathematical perspective, the milling dynamic process considering the regen-
erative effect can be modeled as a time-delay differential equation system with infinite-
dimensional characteristics that includes a time-periodic matrix. In this system, the time-
periodic matrix plays a crucial role as it determines the stable state of the milling process [5].
Therefore, the problem of determining the stability boundary essentially boils down to
solving the corresponding time-delay differential equation of the system [6].

The stability prediction methods for this problem currently include various approaches,
such as frequency domain methods, discrete methods, and numerical integration meth-
ods. Among these, the full-discrete method occupies a dominant position in the field of
stability prediction. The full-discrete method cleverly uses a finite-dimensional transfer
matrix to approximate the originally infinite-dimensional single-valued operator, thereby
significantly reducing the complexity and computation time of the solution. This method
not only has the advantage of high computational accuracy but also high efficiency and
wide applicability, thus demonstrating significant advantages in practical applications.

The full-discrete method is widely adopted in the field of stability prediction due to its
strategy of using finite-dimensional transfer matrices to approximate infinite-dimensional
single-valued operators, which significantly reduces the solution complexity and compu-
tation time. It offers high computational accuracy, high efficiency, and wide applicability,
demonstrating prominent advantages in practical applications. The full-discrete method
evolved from the semi-discrete method to address the issue of insufficient computational
efficiency. Ding et al. pioneered the use of second-order Lagrange polynomials for interpo-
lating the system state items, known as the second-order FDM [7]. Later, Tang et al. further
applied second-order Lagrange polynomial interpolation to the time-lag items, enhancing
the computational accuracy of stability prediction [8].

To further optimize the computational performance of discrete methods, researchers
continue to explore and adopt various interpolation methods or approximation theories,
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such as Lagrange polynomials, Newton polynomials, Hermite polynomials, and the least-
squares method, to estimate the system’s time-lag items and state items, thereby construct-
ing higher-order full-discrete methods. Specifically, second-order Lagrange polynomials,
second-order Newton polynomials, and third-order Hermite polynomials have been used
to estimate the system state items, while the corresponding time-lag items are interpo-
lated with second-order Lagrange polynomials, second-order Hermite polynomials, and
third-order Newton polynomials, respectively [9-14]. Additionally, Ozoegwu et al. used
the least-squares method to predict the stability lobe diagram, achieving a convergence
accuracy of up to the fourth order [15,16]; Zhou et al. employed fourth-order Lagrange
polynomials to interpolate the time-lag items, proposing the fourth-order FDM [17].

However, it is not difficult to find from the above studies that researchers often choose
to use higher-order interpolation methods or approximation theories in pursuit of higher
computational accuracy. While this does enhance accuracy to some extent, it also causes
the computational workload to increase exponentially, leading to extended computation
times. Therefore, there is an urgent need to find new optimization ideas to improve the
accuracy of the full-discrete method.

During the optimization of the full-discrete method, a commonly overlooked issue is
the accuracy of the discrete number m. When m is too small, the computational accuracy
significantly decreases because too few discrete points may not adequately capture the
detailed characteristics of the system’s dynamic behavior, introducing significant errors.
These errors can accumulate and amplify, eventually leading to prediction results deviating
from reality. Conversely, when m is too large, although it can improve computational
accuracy to some extent, it also leads to a significant reduction in computational efficiency.
Too many discrete points increase the computational workload, making the solution process
complex and time-consuming, not only increasing computational costs but also potentially
limiting the feasibility and practicality of the algorithm in actual applications. Therefore, the
value of the discrete number m has a vital impact on the overall computational performance.

More importantly, the current optimization of the full-discrete method mainly targets
the system state items and system time-lag items, but it does not optimize according to
actual needs. These optimization measures mainly focus on improving the computational
accuracy of the full-discrete method, neglecting the impact of the system state items and
system time-lag items themselves on stability.

In response to the above issues, this paper optimized the system state items using
high-order interpolation methods, analyzed the impact of different interpolation methods
on computational accuracy, and determined the optimal full-discrete method. Additionally,
this paper investigated the influence of different discrete numbers m on accuracy and
computational efficiency, summarized general patterns, and aimed to maximize predictive
accuracy while maintaining computational efficiency. Furthermore, this paper employed
experimental methods to study the relationship between processing parameters and system
state items and summarized the advantages brought by optimizing the system state items.

2. Milling Stability Prediction Based on the Improved
Full-Discrete Method

The full-discrete method ingeniously employs a linear periodic system model with
a single discrete time lag to accurately describe the dynamic process of milling. In this
method, the original system is discretized within a single period. Within each discrete
interval, the system state items, system time-lag items, and periodic coefficient items are
precisely approximated using linear interpolation techniques, and the system response is
obtained directly through integration. According to the system transfer matrix and theory,
the stability of the system can be predicted.
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The milling dynamics equation considering regenerative chatter can be expressed in
an n-dimensional state space as follows:

U(t) = AU(t) + B(t)[U(t) — U(t — )] 1)

A is the constant matrix representing the time-invariant nature of the system, and B is
the periodic coefficient matrix, satisfying the condition B(t + T) = B(t).

To discretize the time delay T into m equal small time intervals, denoted as
T =mt, m € N*, we obtain a series of small time segments kT —nt < t < kv +nt
(where k is a natural number) on each of which, under the initial condition z; = z(kT), the
response of Equation (1) is given by the following:

2() =X Hzkr) 4 [ (AODAQ) +BEOE-T))aE @)

When the time is t = (k + 1)7, the corresponding response xj_ 1 is described as follows:

}dé )

Then, different interpolating polynomials are used to approximate the system

Akt +1—8x(kt+1—)+

kT
— A()T’ Aoé.r
e =€ x<kT>+/o {e AT+ 71— Oxlkt+T—E—T)

state item x(kT+ 7 —¢) and the system periodic coefficient item A(kt+7 —¢) and
B(kt + T — ¢), as well as the time-lag item x(kt +7—¢ — T).

2.1. Applying Higher-Order Interpolating Polynomials to Optimize the System State Item

The system state item is a comprehensive indicator that reflects the current status
of the system in real time, encompassing a range of fundamental physical parameters
such as displacement, velocity, and acceleration. In the field of mechanical processing,
this concept is concretized as the feed rate f, the spindle speed, and the cutting trajectory
of the tool on the workpiece surface. These parameters collectively provide a detailed
description of the dynamic behavior of the system during the mechanical processing
process, playing a pivotal role in ensuring processing accuracy, improving production
efficiency, and optimizing process parameters.

Currently, for the optimization of the system state item, second-order Lagrange inter-
polating polynomials and second-order Newton interpolating polynomials are commonly
used as approximation tools. However, to further explore the potential for optimization, this
study employs third-order Newton interpolating polynomials and fourth-order Hermite
interpolating polynomials to approximate the system state item.

This study aims to compare the differences between these two interpolating polyno-
mial approximation methods in terms of computational accuracy and convergence speed,
analyze the impact of the discrete number m on processing accuracy and computation time,
and summarize the general patterns. Furthermore, exploring whether using higher-order
interpolating polynomials can lead to more excellent computational methods. Through this
exploration, it is expected to reveal the potential of higher-order interpolating polynomials
in enhancing computational efficiency, providing new insights and strategies for opti-
mizing numerical calculation methods, and improving computational efficiency. Finally,
the optimal method is experimentally validated to verify the accuracy of its theoretical
calculation results. During the trial process, different parameter combinations are selected
for testing, and whether chatter occurs during processing is judged through cutting force
curves and data.
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2.1.1. Approximating the State Item with the Third-Order Newton Interpolation Method

The third-order Newton polynomial, selecting four endpoint values, namely, x;.1, X,
Xx_1, and x;_, is used to interpolate the system state item x(k7 + T — {) in Equation (3),
yielding the following expression:

x(kt + T = §) = apxgy1 + boxx + coxx—1 + doxy 2 (4)
I RN O VT TSI s

G=-gntp - tlh=5-72+7 )
_ Pk, P2

="t —nh =gt

The first-order Lagrange polynomial is used to approximate the time-lag item
x(kt + 7 — ¢ — T) in Equation (3), which is specifically described as follows:

Kkt 4T E-T) = Szt (1 - g)kaﬂ ©)

The first-order Lagrange polynomial uses the endpoints of the interval to approximate
the periodic coefficient items A (kT + 7 — §) and B(kT + T — ¢) in Equation (3), which can
be expressed as follows:

AT +T = 8) = A1 + (Ax — Ap1)G/T
B(kt + 7 — &) = Bys1 + (B — Brs1)8 /T
In the formula, Ay and Ay, represent the endpoint values at times ¢t = k7 and
t = (k+ 1)7, respectively.
Subsequently, substituting Equations (4), (6), and (7) into Equation (3), the following is

)

obtained:
(1= Fea)xx1 = (Fo + Fo)x + Fep1Xe—1 + FepaXk—2 + FamXk+1-m + FomXk—m ~ (8)

When matrix (I — F;) " exists, the discrete mapping can be represented as follows:

[ Hii Hp Hp 0 Him Hpn |
I 0 0 00 0
0 I 0 00 0
D=0 0 I 00 0 ©9)
0 0 0 I 0
0 0 0 o1 o0 |
Yi+1 = Dy (10)

Then, the state transition matrix & is represented by a series of matrices Dy, which is
specifically expressed as follows:

Ym = Dy—1Dy—2 - - - D1Doyo (11)

Finally, based on Equation (11), the flutter stability lobe diagram can be obtained using
Floquet theory.
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According to the Floquet theorem, the stability boundary of the milling system can be
determined, and its judgment criterion is shown in Equation (12).

< 1, Stable
max(|A(1)]){ = 1, Critical (12)
> 1, Chatter

2.1.2. Approximating the State Item with the Fourth-Order Hermite Interpolation Method

The fourth-order Hermite interpolating polynomial is used to approximate the state
item X(t) in Equation (3) within the time interval [t;, t;;1]. The first-order derivative of
the response values at any nodes t = t; and t = t; 1 can be expressed as follows:

X(t;) = AX(t:) + B(t:) [X(t;) — X(t; — 7)] (13)

X(tit1) = AX(tit1) + B(tig1) [X(tip1) — X(tip1 — 7)) (14)

Based on the fourth-order Hermite interpolating polynomial, the state item x (k7 + 7 — ¢)
can be interpolated and approximated within the time interval [¢;, ;1] using the derivative
node values X(t;), X(t;1) and the state item node values X (t;_1), X(t;), and X(t;41) as
shown in Equation (3).

X(t) =mXi1 + 01 Xi+ a1 Xipn +di Ximp + a1 Xi—pt1 (15)

In the formula, X; is the abbreviation of X(i - At), and the expressions for aq, by, ¢1, d1,
and e are as follows:

O L L
= (4At4 aan T oz )]

. 2 N3 i 4
by = I+ (A+ Byt — QLLAMEBANE  (ALB)E | (I+AMHBANE

INZ A2 A2 (16)
¢ = 22 _ (AvBi)f | 18 (2Ah+2Bih-SDH
LT 4N 2At 2A13 N
_ _ B | Bt | B o _ B Bigtt
dy =— AR T Az T A — Bitey = 5K — s

In the formula, I is the identity matrix.
The second-order Newton interpolating polynomial is used to approximate the time-
lag item x (kT + 7 — ¢ — T) in Equation (3), which is specifically described as follows:

et t—-T) = (=5~ 3V x o (2 B Ykt (2 - L )y (17)
T \2A2  2Ar) T\ AL AR )L T\ QA2 T oA ) T2

Linear interpolation is used to approximate the periodic coefficient items A (k7 + T — §)
and B(kt + T — ¢) in Equation (3), which is specifically described as follows:

Akt +1-8) =8 A; + LA

_ (18)
B(kt + 1 —§) = %' Bi + 3:Bin1

Substituting Equations (15), (17), and (18) into Equation (2), the following is obtained:

(EAAt + Hi3Biyq1 + H14Bi)Xi + (Hi5Biy1 + Hi6Bi) Xi—1+
Xiy1 = Pi| (Hi7Bit1 + HiBi) Xi—pnt2 + (H19Bit1 + HaoBi) Xi—p1+ (19)
(Hp1Bit1 + H»B;j) Xy
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From Equation (19), it can be seen that if matrix P; is non-singular, then Equation (19)
can be converted into the following form:

(Xis1XiXio1-- Xig1n]” = De[XiXiXiq .- Xiy1al” (20)

In the formula, matrix M; is shown in Equation (21):

Hh Hiz Hi n—1 Hi, n Hi n+1
I 0 0 0 0
D= |0 r .- 0 0 0 (21)
0 0 0 0 I 0

The matrices H{l, Hiz, H{/nfl, Hi,n' and Hi' 141 in Equation (21) are shown in the
following Equation (22):

Mi, = P;(eA* + Hi3Bi1 + HiuBi)  Mi, = P;(Hi5Bis1 + HieB;)
M 4 = Pi(Hi7Bi1 + HisB;) M, = Pi(Hi9Biy1 + HaoB;) (22)
M 1 = Pi(HxBi1 + HxB;)

The stability boundary of the milling system can be determined by the theorem Floquet
as shown in Equation (12).

2.2. Simulation Calculation of Third-Order Newton Interpolation Method and Fourth-Order
Hermite Interpolation Method

The fully discrete stability prediction method constructed above utilizes the third-
order Newton interpolating polynomial (abbreviated as 3N-FDM) and the fourth-order
Hermite interpolating polynomial (abbreviated as 4H-FDM) to perform high-precision
interpolation approximation of the system’s state item. Here, “N” and “H” serve as
identifiers for Newton and Hermite polynomials, respectively, and the digit preceding the
symbol explicitly indicates the order of the polynomial.

To thoroughly investigate and determine the optimal order of the improved fully
discrete method, different-order prediction methods were used to calculate the conver-
gence and stability lobe diagram of a two-degrees-of-freedom milling dynamics model.
Throughout this process, strict adherence to the parameter settings outlined in Table 1 was
maintained to ensure the accuracy and reproducibility of the experiments.

Table 1. Tool system parameters.

Parameter ti 1 t;
Natural Frequency fn 922 Hz
Damping Ratio 4 1.1%
Modal Mass my 0.03993 kg
Cutting Force K; 6 x 108N /m?
Parameters K, 2 x 108N /m?2
Number of Teeth N; 2

To determine the optimal order of the interpolating polynomial for the system state
item, a comprehensive comparative analysis of the fully discrete method at different orders
is required. To this end, an indicator called the local discrete error ||u| — |o]| is introduced,
which quantifies the speed of convergence. Here, || represents the modulus of the critical
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eigenvalue of the state transition matrix, while || is the precise value obtained using the
second-order FDM (Finite-Difference Method) when m = 200.

When conducting a comparative analysis of the convergence speed of the improved
fully discrete method, relevant computational materials were referenced to enhance the
accuracy and clarity of the calculation results and accordingly determined the following
parameters: the spindle speed was set at # = 5000 r/min, and the radial depth of the cut
ratio was selected as a, /D = 0.1 (the ratio of the cutting depth a, to the tool diameter D
is 0.1). Given that up-milling is commonly used in the finish machining process of CNC
machines, we also followed this principle in our calculations. For the machining of high-
temperature alloy materials, cutting depths of 0.2 mm, 0.5 mm, and 1 mm were specified
for finish machining, semi-finish machining, and finer stages of machining, respectively.
these parameter settings were adopted in this calculation, as detailed in Figures 2—4.

200

180 P

&
=]

[Imuf-frmu0]|
i=1 [=] C‘_l i=1 [=]

40

201

30 40 50 B0 70 80 90 100

limul-mu|

30 40 50 60 70 80 a0 100

Figure 3. Convergence rate at a cutting depth a, of 0.5 mm.

Solving Equations (10) and (21) using different-order improved fully discrete methods
yields curves illustrating the relationship between the local discrete error ||| — |o|| and the
discrete number m. These curves offer a direct comparison of the convergence performance
of methods at different orders, facilitating the determination of the optimal interpolating
polynomial order.

From the presentation in Figures 2—4, the black circles represent the 4H-FDM, the blue
solid lines represent the 3N-FDM, and the red stars represent the second-order FDM. It is
observed that the 3N-FDM has a significant advantage in convergence speed compared
to methods of other orders. All three methods exhibit a gradual decrease in convergence
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speed as the axial depth of the cut increases, and this change has a particularly notable
impact on the initial convergence speed.

400

350

300 -

2504

limui-muol|
- - (X
=] o =1
= =1 =

o
=1
T

Figure 4. Convergence rate at a cutting depth a, of 1 mm.

In Figure 2, the initial convergence speed of the 3N-FDM is comparable to that of
the second-order FDM, both faster than the 4H-FDM. However, when m reaches 40, the
convergence speed of the 3N-FDM begins to significantly increase, gradually widening
the gap with the second-order FDM. Meanwhile, the convergence speed of the 4H-FDM
surpasses the second-order FDM at m = 50 and becomes consistent with that of the 3N-FDM
atm =70.

In Figure 3, the initial convergence speed ranking is second-order FDM, 3N-FDM, and
4H-FDM. As m increases, the 3N-FDM overtakes the second-order FDM at m = 40, while
the 4H-FDM matches the second-order FDM at m = 50. When m = 60, the convergence
speeds of the 3N-FDM and 4H-FDM are roughly the same.

In Figure 4, the initial convergence speed ranking is second-order FDM, 4H-FDM,
and 3N-FDM. However, as m further increases, the 3N-FDM begins to exhibit a faster
convergence speed at m = 40, gradually closing the gap with the second-order FDM.
Notably, the convergence speeds of the 4H-FDM and the second-order FDM are almost the
same at m = 50.

Among the three methods, the second-order FDM exhibits the best stability perfor-
mance, with its convergence speed less affected by changes in the cutting depth a,. In
contrast, although the 3N-FDM experiences fluctuations in the initial convergence speed
due to the influence of the cutting depth, it typically achieves the fastest convergence speed
at m = 50. The convergence speed of the 4H-FDM, although slower than the 3N-FDM,
is relatively less affected by the cutting depth a,. It is concluded that using higher-order
polynomial interpolation methods results in a greater computational workload, leading to
slower convergence speeds and requiring more computational time.

To further investigate the performance of these methods, the proposed improved fully
discrete method was employed to calculate the milling stability lobe diagram. The exact
stability limit diagram (SLD) was computed using the second-order FDM with a discrete
number m = 200 serving as the reference curve. Subsequently, the differences between the
4H-FDM, 3N-FDM, and first-order SDM at various levels of discretization (m = 10, m = 20,
m = 30, and m = 40) were compared with those of the second-order FDM. Specifically, the
lines in the comparison are as follows: the blue solid line for the second-order FDM; red
dashed line for the first-order SDM; green dashed line for the 3N-FDM; and black dashed
line for the 4H-FDM. The relevant results are shown in Figures 5-8.
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Figure 5. Lobe diagram with two degrees of freedom at a discretization number m = 10.

0.01

0.009

0.008

0.007

0.006

0.005

wim

0.004

0.003

0.002

0.001

n
*"-'rn-.ma..wh""

0.5 1 15 2
QJ(r/min) <104

Figure 6. Lobe diagram with two degrees of freedom at a discretization number m = 20.
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Figure 7. Lobe diagram with two degrees of freedom at a discretization number m = 30.
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Figure 8. Lobe diagram with two degrees of freedom at a discretization number m = 40.

As shown in Figure 5, the discretization number m is 10, and the calculation time
for the calculation formula is 34.1 s. The lobe diagram of the 3N-FDM shows the highest
similarity and accuracy compared to the second-order FDM. Within the speed range of
5000 r/min to 10,000 r/min, the 3N-FDM performs optimally; within the speed range
of 10,000 r/min to 12,000 r/min, the 3N-FDM exhibits a certain error; within the speed
range of 12,000 r/min to 13,000 r/min, the calculation accuracy of the 3N-FDM is better
than that of the 4H-FDM; and within the speed range of 13,000 r/min to 15,000 r/min, the
calculation accuracy of the 4H-FDM is better than that of the 3N-FDM, and subsequently,
the calculation accuracies of the 3N-FDM and 4H-FDM are consistent. It is concluded that
at a discrete number m = 10, the calculation accuracy of the 3N-FDM is superior to that
of the 4H-FDM. The first-order SDM, due to its smaller discrete value, remains largely
unchanged, resulting in the lowest accuracy.

As shown in Figure 6, the discretization number m is 20, the calculation time for the
calculation formula is 53.8 s, and the 3N-FDM still maintains the highest accuracy. Within
the speed range of 10,000 r/min to 15,000 r/min, the accuracy of the 4H-FDM is lower than
that of the first-order SDM; in other speed ranges, the two perform basically the same.

As shown in Figure 7, the discretization number m is 30, and the calculation time
for the calculation formula is 81.2 s. The lobe diagrams of the 3N-FDM, 4H-FDM, and
first-order SDM almost completely overlap with the second-order FDM. Within the speed
range of 11,000 r/min to 12,000 r/min, the computational accuracy of the three methods
is basically consistent, but they are slightly lower than that of the second-order FDM,
although they also reach an ideal level of accuracy.

As shown in Figure 8, the discretization number m is 40, and the calculation time is
128.5 s. The accuracy of the three methods is further improved, and their lobe diagrams
almost completely overlap with the second-order FDM, all reaching a very ideal level
of accuracy.

Through a comprehensive comparison of the convergence speed and the two-degrees-
of-freedom milling stability lobe diagram, among these three methods, the 3N-FDM demon-
strates the best performance in approximating the system state item, followed by the 4H-
FDM, and the first-order SDM ranks last. It is worth noting that although the 4H-FDM uses
a higher interpolation order, its computational accuracy is lower than that of the 3N-FDM.
This is mainly because computational errors accumulate during the approximation pro-
cess of the system state item, leading to a decrease in computational accuracy. Therefore,
when choosing an interpolation method, it is not always the case that a higher order is
better; instead, multiple factors such as convergence speed, computational accuracy, and
computational cost need to be considered comprehensively.
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As the discrete number m increases, the computational accuracy does indeed improve,
but at the same time, the computation time also increases significantly. However, when
comparing the computational accuracy at a discrete number m = 200 with m = 40, it is
found that the two are basically consistent. This indicates that a larger discrete number m is
not always better because an excessively large value of m can lead to a significant decrease
in computational efficiency, with only a slight improvement in accuracy.

Based on the current research situation presented in this article, a reasonable range
for the discrete number m can be roughly determined, which is between 35 and 45. Of
course, this range is not absolute and may vary depending on the specific research context.
In practical applications, an appropriate value of m can be selected based on the preci-
sion requirements and computational resources to ensure computational accuracy while
maximizing computational efficiency.

In summary, when enhancing the computational accuracy of the fully discrete method,
it is not sufficient to merely rely on increasing the interpolation order while neglecting
the importance of convergence speed. Research on optimizing the fully discrete method
should aim to achieve the dual objectives of high computational accuracy and rapid
convergence. Furthermore, during the optimization process of the fully discrete method,
many parameters are still set based on experience. The scientific calculation of these
parameters will be the key to further improving the computational accuracy of the fully
discrete method in the future.

2.3. Verification Test of Milling Stability Using the 3SN-FDM

By applying the high-order interpolating polynomial method to approximate the
system state item, it is concluded that the 3N-FDM has the optimal performance in approx-
imating the system state item, followed by the 4H-FDM. Using the 3N-FDM fully discrete
method and the system parameters listed in Table 1, along with a specific radial cutting
depth rate a, /D = 1, the lobe diagram is calculated. In this lobe diagram, the upper region
of the curve represents the chatter region, while the lower region represents the stable
cutting region.

By analyzing the waveform characteristics and the magnitude of the cutting force
signals, one can ascertain whether chatter vibration occurs during the machining process.
When chatter vibration emerges in the cutting process, the waveform characteristics of
the cutting force signals undergo noticeable changes. Chatter vibration results in an
augmentation of the amplitude of the cutting force curve, and concurrently, its frequency
also rises, causing greater fluctuations in the cutting force signal. Furthermore, chatter
vibration gives rise to a substantial increase in the cutting force. This is because chatter
vibration, being a detrimental vibration between the tool and the workpiece during the
cutting process, alters the contact area and contact pressure between them, thereby inducing
an elevation in the cutting force.

To verify the accuracy of the lobe diagram calculated by the 3N-FDM fully discrete
method, an experimental validation approach is adopted. Given the restrictions on the
spindle speed n due to the experimental conditions, priority is given to testing at lower
rotational speeds. To this end, a 3 x 2 test point array containing 6 test points is designed
in the left region of the lobe diagram. These test points are named according to the row—
column naming convention, sequentially numbered as point 1-1, point 1-2, etc., with the
specific test point layout shown in Figure 9.
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Figure 9. Test points on the 3N-FDM lobe diagram.

Cutting experiments were conducted for each of these test points. After the experi-
ments, the occurrence of chatter during the machining process was determined by observing
the changes and amplitude fluctuations in the cutting force curves.

Based on the information presented in Figure 9, corresponding cutting depths and
rotational speeds have been clearly defined for each test point. After establishing these
fundamental processing parameters, further refinement of the feed rate f was achieved
through exhaustive research and in-depth consultations with engineers specializing in the
cutting of the GH4169 superalloy. Consequently, a detailed processing parameter table was
formulated, as outlined in Table 2.

Table 2. Specific processing parameters for the test experiment.

Number  Cutting Depth a, (mm) Spindle Speed 7 (r/min) Feed Rate f (mm/min)

1-1 1 7000 70
1-2 1 8250 80
2-1 0.55 7000 110
2-2 0.55 8250 120
3-1 0.2 7000 150
3-2 0.2 8250 160

During the cutting experiments, the GH4169 superalloy was selected as the experi-
mental material. The GH4169 superalloy is a typical difficult-to-machine material, prone to
chatter during processing. Conducting experiments with this material can more accurately
reflect chatter conditions. The specific material properties of the GH4169 superalloy are
shown in Table 3 below.

Table 3. Performance parameters of GH4169 high-temperature alloy.

Chem1F é}l Ratio Mechanical Properties Parameters
Composition
Ni 50~55% Tensile Strength ob (MPa) ~ 1030-1100 (20-25 °C)
Cr 17~21% Yield Strength os (MPa) 850-1000 (20-25 °C)
Mo 2.8~3.3% Rockwell Hardness (HRC) 35-45 (20-25 °C)
Nb 4.75~5.5% Elongation after Fracture 30% (20-25 °C)
Ti 0.65~1.15% Fatigue Limit (MPa) 400 (<600 °C)

To accurately measure the cutting forces during the milling process, a triaxial piezo-
electric dynamometer model 5073 produced by the Swiss KISTLER company was used,
along with a dynamometer stand model 9257 A from KISTLER. To ensure the real-time
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acquisition and accuracy of the data, an HBM GEND5i handheld high-speed data acquisition
system was used, with the sampling frequency set at 6000 Hz. The cutting operation was
performed on a DMG103 machine tool, using a ¢16R3 mm ring cutter. The final form of
the experimental platform is shown in Figure 10.

Signal
Collector

Signal
Amplifier

Figure 10. Cutting experiment platform.

The cutting tests were conducted based on the machining parameters listed in Table 2.
In each set of cutting tests, the consistency of the machining environment was ensured, and
the cutting area remained the same. After the cutting tests, the cutting force curves under
different cutting parameters were obtained, and the magnitudes of the cutting forces were
statistically analyzed.

The specific cutting force curves have been systematically summarized and presented
in Table 4. Based on the precise locations of the test points indicated in Figure 9, the cutting
force curves are arranged in a sequential and orderly manner. In each accompanying figure,
the cutting force variation curves in the X, Y, and Z directions over time or during the
process are depicted sequentially from top to bottom. The average cutting forces, obtained
through measurement and calculation, have been meticulously recorded in Table 5. The
presentation of these data adheres to the standardized format of Table 2, ensuring the
accuracy and readability of the information.

From the data in Table 4, it can be observed that under the processing parameters
corresponding to points 1-2 and 2-2, the cutting force curves exhibit significant fluctua-
tions, accompanied by steep peaks and valleys. These characteristics indicate that during
machining under these two sets of parameters, obvious tool wear occurred, along with
the occurrence of chatter. In contrast, the cutting force curves under other processing
parameters show smaller fluctuations, indicating a relatively stable cutting process in a
stable cutting state.

Based on the cutting force statistics in Table 5, a cutting force variation curve graph
was drawn, as shown specifically in Figure 11. It is found that at points 1-2 and 2-2,
abnormal increases in the cutting forces in all three directions occurred. This phenomenon
indicates that chatter occurred during machining at these two test points. Chatter not only
exacerbates tool wear but also generates greater friction, hindering the smooth progress of
the cutting process and leading to a significant increase in cutting forces.
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Table 4. The cutting force after the completion of the cutting at each point.

First Column Second Column

First Line
Second
Line
Third Line
Table 5. Cutting forces at each point position.
Number Cutting Depth Spindle Speed Feed Rate  X-Direction Cutting Force Y-Direction Cutting Force Z-Direction Cutting Force
ap (mm) n (r/min) f (mm/min) Fy (N) F. (N) F: (N)
1-1 1 7000 70 615.3 601.8 1713.6
1-2 1 8250 80 690.4 674.2 2085.2
2-1 0.55 7000 110 413.9 386.3 1413.3
2-2 0.55 8250 120 537.8 467.4 1741.1
3-1 0.2 7000 150 280.9 352.1 1257.3
32 0.2 8250 160 229.8 235.7 1086.1

Based on the in-depth analysis of the cutting force curves and their numerical values,
it is determined that chatter occurred at points 1-2 and 2-2, while the remaining test points
were in a stable cutting state. This conclusion aligns with the stability boundary predicted
by the 3N-FDM fully discrete method, thus verifying the accuracy of the 3N-FDM fully
discrete method. Therefore, it can be confidently stated that this method is reliable in
practical applications and can be directly applied to subsequent research work. The specific
judgment results are clearly presented in Figure 12 through graphical representation.
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Figure 11. Cutting force curve graph.
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Figure 12. Results of stability verification.

3. Impact of System State Item on Processing Parameters

To further explore the impact of processing parameters on stability and to uncover the
underlying relationship between processing parameters and the system state item, research
on tool wear and workpiece surface roughness was conducted. During this process, not
only were the experimental results tallied, but a multifactorial variance analysis was also
performed to ensure the accuracy and reliability of the conclusions.

Subsequently, the lobe diagram calculated using the 3N-FDM fully discrete method
was used as a guide to continue the experimental work. Based on the original Figure 9,
the number of experimental points was further increased, resulting in a 4 x 4 array that
contained a total of 16 test points, as shown in Figure 13. After conducting an extensive lit-
erature review and in-depth discussions with engineers specializing in cutting the GH4169
superalloy, specific machining parameters were formulated and are detailed in Table 6.

Cutting tests were conducted based on the machining parameters listed in Table 6
(note: previously completed experiments were not repeated). In each set of cutting tests,
the consistency of the machining environment was ensured, and the cutting area remained
the same. After the cutting operations, the wear condition of the tool and the roughness of
the workpiece surface were inspected.

For a precise evaluation of the tool wear conditions, the German-made ZOLLER genius
3 fully automatic tool inspection machine is employed. This equipment boasts impressive
specifications, including an X-axis travel of 600 mm, Y-axis travel of 175 mm, and Z-axis
travel of 100 mm, with a repeatability of =2 um, a display and positioning accuracy of 1 um,
a concentricity of 2 um, and an incident light magnification of up to 200 times. During use,
the tool to be measured is placed securely in the measuring fixture to ensure proper fixation
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and alignment. Then, through the computer interface integrated with the tool measuring
machine, the appropriate measurement program is selected to execute the measurement,
with results displayed instantly. The appearance of this equipment is shown in Figure 14.

-3
3><10

26

06

Q/(r/min) x104

Figure 13. Experimental point positions.

Table 6. Specific processing parameters for continuing the experiment.

Cutting Depth Spindle Speed Feed Rate

Number a, (%nm)p pn (r/mir}:) f (mm/min)
1-1 14 7000 50
1-2 14 8250 55
1-3 1.4 9250 60
1-4 14 10,250 65
2-1 1 7000 70
2-2 1 8250 80
2-3 1 9250 90
2-4 1 10,250 100
3-1 0.55 7000 110
3-2 0.55 8250 120
3-3 0.55 9250 130
3-4 0.55 10,250 140
4-1 0.2 7000 150
4-2 0.2 8250 160
4-3 0.2 9250 180
4-4 0.2 10,250 200

Figure 14. Tool inspection instrument.

To quantify the surface roughness of workpieces, the Chinese-made SMIP-200 surface
roughness tester is utilized. This tester features a high resolution of 0.01 um and a measure-
ment accuracy of (3 + L/200) um, with a sampling length of 480 mm and an evaluation
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length of 680 mm. During the measurement process, the stylus needs to gently contact the
measured surface and maintain good contact; then, the tester is activated, and the stylus
glides linearly at a constant speed across the measured surface while accurately collecting
surface roughness data. Upon completion of the measurement, the tester automatically
processes the data and displays the surface roughness parameters. The appearance of this
tester is shown in Figure 15.

Figure 15. Surface roughness measuring instrument.

Based on the processing parameters provided in Table 6, the cutting experiments were
conducted. During the experimental process, the wear condition of each cutting tool was
measured, and a detailed measurement and statistical analysis were carried out on the
surface roughness of each workpiece. The summary of the tool wear conditions is presented
in Table 7, while the measurement results of the workpiece surface roughness are recorded
separately in Tables 8 and 9.

After analyzing the inspection results in Table 7, the following phenomena are ob-
served:

At test points 1-1, 1-2, 1-4, 2-2, 2-4, 3-2, and 3-4, severe tool wear occurred, and in some
cases, chipping of the tool occurred. Especially at points 1-4 and 2-4, the chipping of the
tool was particularly evident, resulting in a significant decrease in the surface quality of the
workpiece processed under these point parameters.

At points 1-3, 2-1, and 2-3, the wear on the tool was relatively light, mainly manifested
as general localized wear or partial chipping of the cutting edge, and the surface quality of
the workpiece processed under these point parameters was at an average level.

At points 3-1, 3-3, 4-1, 4-2, 4-3, and 4-4, the wear on the tool was the least severe, with
only localized wear on the cutting edge, and the surface quality of the workpiece processed
under these point parameters reached an excellent level.

The surface condition of the workpieces has been summarized in the following Table 8,
while the specific measurement results are detailed in Table 9. Based on the data from
Table 9, a surface roughness variation curve has been plotted and is shown in Figure 16.
These data and observations provide an important basis for the further analysis and
optimization of the cutting parameters.

After an in-depth analysis of the workpiece surface conditions presented in Tables 8 and 9,
the following conclusions are drawn:

At test points such as 1-1, 1-2, 1-4, and 2-2, the surface roughness exceeded 6.3 pm,
categorizing them as rough surfaces. These workpiece surfaces exhibited prominent “fish
scale marks”, which were caused by severe wear of the cutting tool at these locations.
This led to increased friction between the workpiece and the tool, leaving obvious traces
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after chatter occurred. The emergence of these marks significantly increased the surface
roughness of the workpiece.

At points such as 2-4, 3-2, and 3-4, the surface roughness was predominantly above
6.3 um, indicating rough surfaces with clearly visible and unevenly distributed cutting
marks. These were accompanied by variations in the cutting depths, suggesting that chatter
occurred during the cutting process at these points and that the wear of the cutting tool
was also severe.

At points such as 1-3, 2-1, and 2-3, the surface roughness ranged between 3.2 um
and 6.3 pm, categorizing them as moderately rough surfaces. Although the cutting marks
were evident, they were relatively evenly distributed, indicating that the cutting pro-
cess was relatively stable at these points and that the wear of the cutting tool was also
relatively moderate.

At points such as 3-1, 3-3, 4-1, 4-2, 4-3, and 4-4, the surface roughness was approx-
imately 3.2 um, categorizing them as medium rough surfaces. The cutting marks were
almost imperceptible and extremely densely distributed, further proving that the cutting
process was very stable at these points and that the degree of tool wear was relatively light.

Table 7. Tool wear after cutting at each point position.

2 3 4

In Figure 16, the X-axis represents the experimental sequence, and the Y-axis represents
the surface roughness. The graph clearly shows an overall downward trend in surface
roughness. Combining the specific parameters in Figure 13 and Table 6, it is concluded that
the processing stability gradually improved as the cutting depth a,, decreased.

The experimental results regarding the degree of tool wear and workpiece surface
roughness were consistent. Chatter occurred during processing at points such as 1-1,
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1-2, 1-4, 2-2, 2-4, 3-2, and 3-4; mild chatter occurred at points such as 1-3, 2-1, and 2-3;
while stable processing was achieved at points such as 3-1, 3-3, 4-1, 4-2, 4-3, and 4-4. This
confirms the accuracy of the inferences about chatter at each point, as shown in the specific
statistical results in Figure 17. The processing conditions at each point coincided with the
predicted stability boundaries of the lobe diagram, thus verifying the accuracy of the cutting
experiments. The cutting experiment data can be directly applied in subsequent research.

Table 8. Workpiece surfaces after cutting at each point position.

Table 9. Surface roughness measurement results.

Cutting Depth Spindle Speed Feed Rate
Number a, ) D /i) f (mm/min) Ra (um)
1-1 14 7000 50 6.4
1-2 14 8250 55 7.1
1-3 1.4 9250 60 5.6
1-4 14 10,250 65 8.3
2-1 1 7000 70 4.8
2-2 1 8250 80 7.6
2-3 1 9250 90 4.3
2-4 1 10,250 100 6.7
3-1 0.55 7000 110 4.1
3-2 0.55 8250 120 6.2
3-3 0.55 9250 130 4.4
3-4 0.55 10,250 140 6.3
4-1 0.2 7000 150 3.4
4-2 0.2 8250 160 3.2
4-3 0.2 9250 180 3.8

4-4 0.2 10,250 200 3.5
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Figure 16. The measurement results of surface roughness.
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Figure 17. Results of continued experimental verification.

To delve into the combined influence of multiple parameters on surface roughness,
based on the statistical results in Table 9, three-dimensional surface graphs illustrating
the impact of various parameters on surface roughness were meticulously drawn. These
graphs not only intuitively display the coupling relationships between the parameters but
also make the analysis results clearer and easier to understand through sequential labeling.

In this collection, each three-dimensional surface graph corresponds to a specific
combination of parameters. By observing and comparing these graphs, the degree and
trend of the influence of different parameters on surface roughness can be determined.

In Figure 18, the X-axis represents the cutting depth a,, the Y-axis represents the
spindle speed 1, and Z represents the surface roughness. It can be clearly seen from the
graph that the cutting depth a;, has a significant impact on surface roughness: as the cutting
depth a, decreases, the surface roughness also shows a downward trend. In contrast, the
impact of the spindle speed n on surface roughness is less significant; when the spindle
speed n parameter changes, the change in surface roughness is relatively small.

In Figure 19, the X-axis still represents the cutting depth a4y, the Y-axis becomes the
feed rate f, and Z represents the surface roughness. In this graph, both the cutting depth
ap and feed rate f have a significant impact on surface roughness: a decrease in cutting
depth a, leads to a reduction in surface roughness, while an increase in feed rate f reduces
surface roughness. This indicates that by appropriately reducing the cutting depth a;, and
increasing the feed rate f, a lower surface roughness can be achieved.
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Figure 19. The coupled influence of the cutting depth 4, and feed rate f on Ra.

In Figure 20, the X-axis represents the spindle speed 1, the Y-axis represents the feed
rate f, and Z represents the surface roughness. It can be seen from the graph that the
feed rate f has a more significant impact on surface roughness compared to rotational
speed: as the spindle speed n and feed rate f increase, the surface roughness shows a
downward trend.

) 1108

Figure 20. The coupled influence of the spindle speed # and feed rate f on Ra.

To more accurately determine the significance of the impact of each parameter on
the surface roughness, based on the statistical results in Table 9, the single-factor variance
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analysis method was selected. The variance analysis was performed using SPSS 27 software,
and the specific analysis results are shown in Figure 21, and the statistical results are shown
in Table 10.

Tests of Between-Subjects Effects
DependentVariable: Ra

Type Il Sum Fartial Eta
Source of Squares df Mean Square F Sig. Squared
Corrected Model 22,077 [} 4.415 2526 00 558
Intercept 200.200 1 200.200 114,518 =.001 820
ap 12821 2 6.410 3667 044 423
n 6.782 2 3.3 1.940 052 280
F 3.645 1 3.645 7.085 .01 673
Error 17.482 10 1.748
Total 498,580 16
Corrected Total 39.559 15

a. R Squared = 558 (Adjusted R Squared = .337)

Figure 21. Variance analysis results.

Table 10. Statistical results of analysis of variance.

F eta? r Significance
Cutting Depth a,, 3.667 0.423 0.044 Significant
Spindle Speed n 1.94 0.280 0.052 Insignificant
Feed Rate f 7.085 0.673 0.011 Significant

The analysis of the statistical results in Table 10 led to the following conclusions:

The F-value for the cutting depth ay, is 3.667, the p-value is 0.044, and the etaZ-value is
0.423. Since the p-value is less than the significance level of 0.05, it is considered that the
cutting depth a, has a significant impact on surface roughness. Additionally, due to the
effect size being greater than 0.3, it is believed that this impact has a substantial effect.

The F-value for the spindle speed 7 is 1.94, the p-value is 0.052, and the eta?-value is
0.28. Since the p-value is greater than the significance level of 0.05, it is considered that
the spindle speed n does not have a significant impact on surface roughness. However, its
effect size is greater than 0.15, indicating that it still has a certain medium effect.

The F-value for the feed rate f is 7.085, the p-value is 0.011, and the eta?-value is 0.673.
Since the p-value is less than the significance level of 0.05, it is considered that the feed rate
f has a significant impact on surface roughness, and this impact has a very large effect.

In summary, the cutting depth a, and feed rate f have a significant impact on sur-
face roughness, while the spindle speed n does not have a significant impact. Therefore,
it can be inferred that during cutting processing, the cutting depth a, and feed rate f
have a significant impact on cutting stability, while the impact of the spindle speed 1 is
relatively small.

Further comparing the impact of the cutting depth a, and feed rate f, it is found that
the p-value and effect size of the cutting depth a, are both smaller than those of the feed
rate f. Considering that the system state item (such as the displacement and trajectory of
the tool) is a comprehensive indicator reflecting the instantaneous status of the system, it
can be inferred that changes in the system state item have the greatest impact on the feed
rate f, followed by the cutting depth a,, and finally the spindle speed 7.

Based on these conclusions, it is determined that optimizing the system state item can
more efficiently explore the comprehensive impact of processing parameters on processing
quality, production efficiency, and tool wear. This discovery not only clarifies the advan-
tages brought by optimizing the system state item but also provides valuable guidance for
subsequent research and actual production.
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4. Conclusions

This study tightly integrates theory with practice, successfully highlighting the pivotal
role of optimizing system state terms in the research of process parameter optimization.
The high-order interpolation method was adopted to optimize system state terms, and
through comparisons of computational accuracy and convergence speed, it was ultimately
found that the 3N-FDM exhibited particularly outstanding performance.

Furthermore, the specific value of the discretization number m was thoroughly dis-
cussed. The research results indicated that although increasing the value of m can enhance
computational accuracy to a certain extent, it also correspondingly increases computation
time. Therefore, in practical applications, it is recommended to set the value of m within the
range of 35 to 45. Of course, this range is not absolute and may need to be adjusted appropri-
ately according to specific research circumstances. During the optimization process of the
fully discrete method, many parameters are still set based on experience, and the scientific
calculation of these parameters will be the key to further improving the computational
accuracy of the fully discrete method in the future.

By conducting a detailed analysis of the waveform characteristics and values of cutting
force signals, the accuracy of the 3N-FDM was successfully verified. On this basis, further
cutting experiments were conducted, and through a one-way ANOVA, the influencing
factors of tool wear conditions and surface roughness of the workpiece were thoroughly
investigated. The research results showed that the cutting depth 4, and feed rate f have
significant impacts on surface roughness, while the influence of the spindle speed 7 is
relatively smaller. At the same time, it was also inferred that changes in system state terms
have the most significant impact on the feed rate f, followed by the cutting depth a,, and
finally the spindle speed n.

In summary, optimizing system state terms can more effectively explore the compre-
hensive impacts of processing parameters on processing quality, production efficiency, and
tool wear. This conclusion not only deepens the understanding of parameter optimization
in the machining process but also provides valuable guidance and reference for the selection
of process parameters in actual production.
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