Problems in Assessment of Novel Biopotential Front-End with Dry Electrode: A Brief Review
Abstract
:1. Introduction
2. Device Evaluation and Comparison Methods
2.1. Quantitative Measurement of Electrical Circuit Characteristics (a)
2.2. Qualitative Physiological Signal Evaluation Characteristics (b)
2.3. Comparative Assessment with a Reference Device (c)
3. Recommendations and Comments
Reference—Type of Signal—Type of Electrodes Recommended | Custom Chip Design/Off—Shelf Components | Input Impedance—Noise Figure | Power Consumption and Power Supply Range | Multichannel Design Available | Type of Evaluation (a, b, c). See Introduction |
---|---|---|---|---|---|
[6]—ECG, EEG, EMG—integrated dry electrode | Both | 20 GΩ//15 pF—marked as 'to be defined' | Bipolar ±2.4 V to ±4 V 2.5 mA supply current | NA | a: only gain and bandwidth are declared |
[7]—ECG, EEG, EMG—contactless and dry electrodes | Made with off-shelf component (also basic schematic of Plessey [6]) | 15 GΩ estimated at 1 Hz—70 nV/Hz estimated at 1 Hz | NA | NA | a: bandwidth and noise b: ECG recordings in parallel with photo-plethysmographic device |
[15]—EEG—contactless and dry electrodes | Made with off-shelf component (custom PCB design) | >15 TΩ//2 pF —noise estimation at 10 Hz (include electrodes and digital transmitter | Unipolar/bipolar up to ±18 V (limited to 3.3 V due to wireless transmitter) Current consumption: <1 mA per channel | Yes (fully described in prior art: [19] | a, b, c: full electronic characterization (no CMRR), qualitative evaluation of signal performed by neurophysiologist, 8 + 3 subjects for parallel evaluation against two different sample devices |
[29]—ECG, EEG, EMG—standard electrodes | Made with off-shelf component | NA | 2.7 to 5.5 V Current consumption: 150 µA | NA | Only a (include CMRR characterization) and partial b, one single ECG shown |
[20]—ECG, EEG, EMG—dry electrodes | Custom chip and custom PCB design | 50 TΩ//60 fF 200 nV/Hz estimated at 1 Hz | 3.3 V Current consumption: 1.5+3.3 µA | Not shown | a (include CMRR); b (no EEG traces in time domain shown) |
[45]—EEG—dry electrodes | NA | NA (although the device is commercially available authors should have provided a summary of specifications) | NA | Yes | b, c: Authors calculate correlation between wet and dry electrodes similarly as shown in [15] |
Author Contributions
Conflicts of Interest
References
- Webster, J.G. Medical Instrumentation Application and Design; John Willey: Hoboken, NJ, USA, 1998. [Google Scholar]
- Prutchi, D.; Norris, M. Design and Development of Medical Electronic Instrumentation; John Willey: Hoboken, NJ, USA, 2005. [Google Scholar]
- Gargiulo, G.D.; Bifulco, P.; Calvo, R.A.; Cesarelli, M.; Jin, C.; McEwan, A.; van Schaik, A. Electronic Biosensor Circuits and Systems. In Intelligent and Biosensors; Somerset, V.S., Ed.; IN-TECH: Rijeka, Croatia, 2010. [Google Scholar]
- Gargiulo, G.D.; Bifulco, P.; Calvo, R.A.; Cesarelli, M.; McEwan, A.; Jin, C.; Ruffo, M.; Romano, M.; Shephard, R.; van Schaik, A. Giga-Ohm High-Impedance FET Input Amplifiers for Dry Electrode Biosensor Circuits and Systems. In Integrated Microsystems Electronics, “Photonics, and Biotechnology”; Iniewski, K., Ed.; CRC Press: Boca Raton, FL, USA, 2011. [Google Scholar]
- Chi, Y.M.; Jung, T.-P.; Cauwenberghs, G. Dry-Contact and Noncontact Biopotential Electrodes: Methodological Review. IEEE Rev. Biomed. Eng. 2010, 3, 106–119. [Google Scholar]
- PS25203B EPIC Ultra High Impedance Electrophysiological Sensor, Technical Data; Plessey Company Inc: Fairport, NY, USA, 2012.
- Harland, C.J.; Clark, T.D.; Prance, R.J. Electric potential probes—New directions in the remote sensing of the human body. Meas. Sci. Technol. J. 2002, 13, 163–169. [Google Scholar] [CrossRef]
- Gargiulo, G.D.; Shephard, R.W.; Tapson, J.; McEwan, A.L.; Bifulco, P.; Cesarelli, M.; Jin, C.; Al-Ani, A.; Wang, N.; van Schaik, A. Pregnancy detection and monitoring in cattle via combined foetus electrocardiogram and phonocardiogram signal processing. BMC Vet. Res. 2012, 8, 164. [Google Scholar] [CrossRef]
- Degen, T.; Jäckel, H. A Pseudodifferential Amplifier for Bioelectric Events With DC-Offset Compensation Using Two-Wired Amplifying Electrodes. IEEE Trans. Biomed. Eng. 2006, 53, 300–310. [Google Scholar]
- Chi, Y.M.; Cauwenberghs, G. Micropower Non-Contact EEG Electrode with Active Common-Mode Noise Suppression and Input Capacitance Cancellation. In Proceedings of 31st Annual International Conference of the IEEE EMBS, Minneapolis, MN, USA, 2–6 September 2009.
- Prance, R.J.; Debray, A.; Clark, T.D.; Prance, H.; Nock, M.; Harland, C.J.; Clippingdale, A.J. An ultra-low-noise electrical-potential probe for human-body scanning. Meas. Sci. Technol. J. 2000, 11, 291–297. [Google Scholar] [CrossRef]
- Burke, M.J.; Gleeson, D.T. A Micropower Dry-Electrode ECG Preamplifier. IEEE Trans. Biomed. Eng. 2000, 47, 155–162. [Google Scholar] [CrossRef]
- Gargiulo, G.; Bifulco, P.; Calvo, R.A.; Cesarelli, M.; Jin, C.; van Schaik, A. Mobile Biomedical Sensing with Dry Electrodes. In Proceedings of IEEE ISSNIP, Sydney, Australia, 15–18 December 2008.
- Gargiulo, G.; Bifulco, P.; Cesarelli, M.; Romano, M.; Ruffo, M.; Calvo, R.A.; Jin, C.; van Schaik, A. An Ultra-high Input Impedance ECG Amplifier for Long Term Monitoring of Athletes. Med. Devices Evid. Res. 2010, 5, 1–9. [Google Scholar]
- Gargiulo, G.; Calvo, R.A.; Bifulco, P.; Cesarelli, M.; Jin, C.; Mohamed, A.; van Schaik, A. A new EEG recording system for passive dry electrodes. Clin. Neurophysiol. 2010, 121, 686–693. [Google Scholar] [CrossRef]
- Gargiulo, G.; Cohen, G.; McEwan, A.; Oh, T.I.; Mohamed, A.; Tapson, J.; Nguyen, D.T.; van Schaik, A.; Wabnitz, A. Active electrode design suitable for simultaneous EIT and EEG. Electron. Lett. 2012, 48, 25. [Google Scholar] [CrossRef]
- Spinelli, E.M.; Martínez, N.; Mayosky, M.A.; Pallàs-Areny, R. A Novel Fully Differential Biopotential Amplifier With DC Suppression. IEEE Trans. Biomed. Eng. 2004, 51, 1444–1448. [Google Scholar]
- Paradiso, R.; Loriga, G.; Taccini, N. A wearable health care system based on knitted integrated sensors. IEEE Trans. Inform. Technol. Biomed. 2005, 9, 337–344. [Google Scholar] [CrossRef]
- Gargiulo, G.; Bifulco, P.; Calvo, R.A.; Cesarelli, M.; Jin, C.; van Schaik, A. A Mobile EEG System with Dry Electrodes. In Proceedings of IEEE Biomedical Circuits and Systems Conference (BIOCAS), Baltimore, MD, USA, 20–22 November 2008.
- Chi, Y.M.; Maier, C.; Cauwenberghs, G. Ultra-High Input Impedance, Low Noise Integrated Amplifier for Noncontact Biopotential Sensing. IEEE J. Emerg. Sel. Top. Circuits Syst. 2011, 1, 526–535. [Google Scholar] [CrossRef]
- Prance, R.J.; Beardsmore-Rust, S.; Aydin, A.; Harland, C.J.; Prance, H. Biological and Medical Applications of a New Electric Field Sensor. In Proceedings of the 2008 ESA Annual Meeting on Electrostatics, Minneapolis, MN, USA, 17–19 June 2008.
- ANSI. Medical Electrical Equipment—Part 2–27: Particular Requirements for the Basic Safety and Essential Performance of Electrocardiographic Monitoring Equipment; IEC 60601-2-27:2011; AAMI: Arlington, VA, USA; p. 83.
- Bailey, J.J.; Berson, A.S.; Garson, A.; Horan, L.G.; Macfarlane, P.W.; Mortara, D.W.; Zywietz, C. Recommendations for Standardization and Specifications in Automated Electrocardiography: Bandwidth and Digital Signal Processing. Circulation 1990, 81, 730–739. [Google Scholar] [CrossRef]
- Assambo, C.; Burke, M.J. Low-Frequency Response and the Skin-Electrode Interface in Dry-Electrode Electrocardiography. In Advances in Electrocardiograms—Methods and Analysis; Millis, R.M., Ed.; INTECH: Rijeka, Croatia, 2012. [Google Scholar]
- Bonow, R.O.; Mann, D.L.; Zipes, D.P.; Libby, P.; Braunwald, E. Braunwald’s Heart Disease: A Textbook of Cardiovascular Medicine, 9th ed.; Elsevier: Amsterdam, The Netherlands, 2012; Volume 1. [Google Scholar]
- Levinzon, F.A. Ultra-Low-Noise High-Input Impedance Amplifier for Low-Frequency Measurement Applications. IEEE Trans. Circuits Syst. 2008, 55, 1815–1822. [Google Scholar] [CrossRef]
- Bermúdez, A.N.; Spinelli, E.M.; Muravchik, C.H. Biopotential amplifier for potential gradient measurements. J. Phys. 2007, 90, 012022. [Google Scholar]
- Spinelli, E.M.; Martinez, N.H.; Mayosky, M.A. A Transconductance Driven-Right-Leg Circuit. IEEE Trans. Biomed. Eng. 1999, 46, 1466–1470. [Google Scholar] [CrossRef]
- Dobrev, D.P.; Neycheva, T.; Mudrov, N. Bootstrapped two-electrode biosignal amplifier. Med. Biol. Eng. Comput. 2008, 46, 613–619. [Google Scholar] [CrossRef]
- Mihajlovic, V.; Molina, G.G.; Peuscher, J. To What Extent Can Dry and Water-Based EEG Electrodes Replace Conductive Gel Ones? A Steady State Visual Evoked Potential Brain-Computer Interface Case Study. In Proceedings of International Conference on Biomedical Engineering (ICBE 2011), Wuhan, China, 10–12 May 2011.
- Baba, A.; Burke, M.J. Measurement of the electrical properties of ungelled ECG electrodes. Int. J. Biol. Biomed. Eng. 2008, 2, 89–97. [Google Scholar]
- Huigen, E.; Peper, A.; Grimbergen, C.A. Investigation into the origin of the noise of surface electrodes. Med. Biol. Eng. Comput. 2002, 40, 332–338. [Google Scholar] [CrossRef]
- Malmivuo, J.; Plonsey, R. Bioelectromagnetism—Principles and Applications of Bioelectric and Biomagnetic Fields; Oxford University Press: Oxford, UK, 1995. [Google Scholar]
- TexasInstruments. Low-Power, 8-Channel, 24-Bit Analog Front-End for Biopotential Measurements, Technical Data. 2012.
- Metin, A. Wiley Encyclopedia of Biomedical Engineering; Wiley & Sons, Inc.: Hoboken, NJ, USA, 2006. [Google Scholar]
- Joseph, D.B. The Biomedical Engineering Hand Book, 2nd ed.; Bronzino, J.D., Ed.; CRC Press: Boca Raton, FL, USA, 2000; Volume 1. [Google Scholar]
- Winter, B.B.; Webster, J.G. Reduction of Interference Due to Common Mode Voltage in Biopotential Amplifiers. IEEE Trans. Biomed. Eng. 1983, BME-30, 58–62. [Google Scholar] [CrossRef]
- Spinelli, E.M.; Pallàs-Areny, R.; Mayosky, M.A. AC-Coupled Front-End for Biopotential Measurements. IEEE Trans. Biomed. Eng. 2003, 50, 391–395. [Google Scholar] [CrossRef]
- American Clinical Neurophysiology Society. Guideline 1: Minimum technical requirements for performing clinical electroencephalography. J. Clin. Neurophysiol. 2006, 23, 86. [Google Scholar] [CrossRef]
- Gargiulo, G.; Bifulco, P.; Cesarelli, M.; Jin, C.; McEwan, A.; van Schaik, A. Wearable Dry Sensors with Bluetooth Connection for Use in Remote Patient Monitoring Systems. Stud. Health Tech. Info. 2010, 161, 57–65. [Google Scholar]
- Gargiulo, G.D.; Tapson, J.; van Schaik, A.; McEwan, A.; Thiagalingam, A. Unipolar ECG Circuits: Towards More Precise Cardiac Event Identification. In Proceedings of 2013 IEEE International Symposium on Circuits and Systems (ISCAS), Beijing, China, 19–23 May 2013; pp. 662–665.
- Gargiulo, G.; McEwan, A.; Bifulco, P.; Cesarelli, M.; Jin, C.; Tapson, J.; Thiagalingam, A.; van Schaik, A. Towards true unipolar ECG recording without the Wilson Central Terminal (Preliminary results). Physiol. Meas. 2013, 34, 991–1012. [Google Scholar] [CrossRef]
- Gargiulo, G.; McEwan, A.; Bifulco, P.; Cesarelli, M.; Jin, C.; Tapson, J.; Thiagalingam, A.; van Schaik, A. Towards true unipolar biopotential recording: A preliminary result for ECG. Physiol. Meas. 2012, 34. [Google Scholar] [CrossRef]
- Velis, D.; Plouin, P.; Gotman, J.; da Silva, F.L. Recommendations Regarding the Requirements and Applications for Long-term Recordings in Epilepsy. Epilepsia 2007, 48, 379–384. [Google Scholar] [CrossRef]
- Estepp, J.R.; Monnin, J.W.; Christensen, J.C.; Wilson, G.F. Validation of a Dry Electrode System for EEG, in Human Factors and Ergonomics Society. Proc. Hum. Factors Ergonomics Soc. Ann. Meet. 2009, 53, 1171–1175. [Google Scholar] [CrossRef]
- Wang, I.-J.; Liao, L.-D.; Wang, Y.-T.; Chen, C.-Y.; Lin, B.-S.; Lu, S.-W.; Lin, C.-T. A Wearable Mobile Electrocardiogram Measurement Device with Novel Dry Polymer-based Electrodes. In Proceedings of 2010 IEEE Region 10 Conference (TENCON 2010), Fukuoka, Japan, 21–24 November 2010; pp. 379–384.
- Iguchi, H.; Watanabe, K.; Kozato, A.; Ishil, N. Wearable Electroencephalograph system with preamplifier electrodes. Med. Biolog. Eng. Comput. 1994, 32, 459–461. [Google Scholar] [CrossRef]
- Alizadeh-Taheri, B.; Smith, R.L.; Knight, R.T. An active microfabricated scalp electrode array for EEG recording. Sens. Actuators 1996, 54, 606–611. [Google Scholar] [CrossRef]
© 2014 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Gargiulo, G.D.; Bifulco, P.; Cesarelli, M.; Fratini, A.; Romano, M. Problems in Assessment of Novel Biopotential Front-End with Dry Electrode: A Brief Review. Machines 2014, 2, 87-98. https://doi.org/10.3390/machines2010087
Gargiulo GD, Bifulco P, Cesarelli M, Fratini A, Romano M. Problems in Assessment of Novel Biopotential Front-End with Dry Electrode: A Brief Review. Machines. 2014; 2(1):87-98. https://doi.org/10.3390/machines2010087
Chicago/Turabian StyleGargiulo, Gaetano D., Paolo Bifulco, Mario Cesarelli, Antonio Fratini, and Maria Romano. 2014. "Problems in Assessment of Novel Biopotential Front-End with Dry Electrode: A Brief Review" Machines 2, no. 1: 87-98. https://doi.org/10.3390/machines2010087
APA StyleGargiulo, G. D., Bifulco, P., Cesarelli, M., Fratini, A., & Romano, M. (2014). Problems in Assessment of Novel Biopotential Front-End with Dry Electrode: A Brief Review. Machines, 2(1), 87-98. https://doi.org/10.3390/machines2010087