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Abstract: The optimization of wind energy conversion efficiency has been recently boosting
the technology improvement and the scientific comprehension of wind turbines. In this context,
the yawing behavior of wind turbines has become a key topic: the yaw control can actually be
exploited for optimization at the level of single wind turbine and of wind farm (for example, through
active control of wakes). On these grounds, this work is devoted to the study of the yaw control
optimization on a 2 MW wind turbine. The upgrade is estimated by analysing the difference between
the measured post-upgrade power and a data driven model of the power according to the pre-upgrade
behavior. Particular attention has therefore been devoted to the formulation of a reliable model for
the pre-upgrade power of the wind turbine of interest, as a function of the operation variables of all
the nearby wind turbines in the wind farm: the high correlation between the possible covariates of
the model indicates that Principal Component Regression (PCR) is an adequate choice. Using this
method, the obtained result for the selected test case is that the yaw control optimization provides
a 1% of annual energy production improvement. This result indicates that wind turbine control
optimization can non-negligibly improve the efficiency of wind turbine technology.

Keywords: wind energy; wind turbines; control and optimization

1. Introduction

Wind turbines control optimization is a major topic in the scientific literature about wind energy.
Actually, the possible applications are impressive and widely impact on the practical wind farm
operation as well as on the future perspectives of horizontal-axis wind turbines technology.

For example, it is remarkable that wind turbine control optimization can be conceived at the level
of each single wind turbine or at the wind farm level. This work deals with the former type of approach;
nevertheless it is important to recall that cooperative control [1–3] and wake steering [4–8] are two
closely related aspects, currently standing at the frontier in the wind energy research: the objective
is adopting non-trivial yaw and-or pitch control strategies [9,10], in order to optimize the power
production and possibly mitigate mechanical loads at the level of wind farm.

It should be noticed as well that another line of research has been currently developing and it
deals with the control optimization at the level of single wind turbine. The practical application of
this kind of control design technology evolution is the power capture efficiency improvement for
wind turbines operating since a certain number of years. Also as regards this field of intervention,
the attention is focused on the management of the blade pitches and of the yaw.

The control and monitoring of blade pitches is fundamental, in order to prevent the wind
turbine from being affected by rotor loads impacting severely on the residual useful lifetime (RUL).
For this reason, therefore, there are several studies in the literature dealing with pitch imbalance
detection [11–16]. Since the blade pitch management is the most common control of the torque of
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wind turbines, on one hand a pitch imbalance or an inappropriate control can be shown to affect
considerably wind turbine performance [17,18]. On the other hand, blade pitch control optimization is
an extremely promising direction for the power production upgrade of wind turbines. This has been
addressed, for example, in [19]: the blade pitch optimization is simulated and the impact on wind
turbine performance is studied by means of a novel Kernel regression method.

The yaw behavior is a key issue as regards performance and mechanical aspects of wind turbines.
For this reason, similarly to what happens as regards blade pitch, on one hand it is important to detect
and correct yaw misalignment with respect to the wind direction; on the other hand it is important as
well to design more advanced yaw control strategies for increasing the wind power capture. In [20],
operation data analysis is performed and the behavior of a wind turbine in yaw is classified through
the formulation of a yaw index in relation to the power curve. In [21], Computational Fluid Dynamics
(CFD) simulations are performed in order to characterize the influence of yawed inflow conditions
on wind turbine performance: a cosine law for the relation between yaw angle and power output
reduction is proposed. In [22], an equivalent wind speed model and a yaw error model are employed
for estimating how much yaw misalignment affects wind turbine performance. It arises that an average
misalignment of 10◦ can cause a power loss up to the 10%. This result provides a remarkable order
of magnitude, justifying why the diagnosis of yaw misalignment is particularly important for wind
turbine practitioners. The difficulty in achieving this objective is given by the fact that wind turbine cup
anemometers are mounted on the nacelle and therefore behind the rotor: in [23], it is discussed that the
yaw control based on this kind of measurements can be non-optimal and can affect the performance
up to 5%. Furthermore, the use of nacelle anemometers measurements for yaw misalignment detection
can be prohibitive and for this reason LIDAR [24] anemometers are often employed, despite for
wind turbine owners the adoption of further sensors means paying a cost. Nevertheless, in [25],
it is shown that appropriate nacelle anemometer data analysis can be effective for the diagnosis of
yaw misalignment.

The above matters of fact justify that the design of optimized yaw control strategies has been
recently attracting a certain attention in the literature. For example, in [26], it is discussed that the
conventional way of estimating the direction of the incoming flow is by using transducers placed
atop the nacelle and downwind of the rotor, while advanced upwind measurement techniques could
diminish the yaw error and improve the power capture of wind turbines. In [27], a new yaw control
structure is designed, basing on a wind direction predictive model; simulations are performed and the
results are compared against operation data of wind turbines adopting the state of the art in industrial
yaw controls and it is supported that the proposed novel yaw control can diminish the yaw error.
In [28], two yaw control systems are designed (a direct measurement-based conventional logic control
and a soft measurement-based advanced model predictive control) and a multi-objective Particle
Swarm Optimization-based method is employed to optimize control parameters. Operation data of
a 1.5 MW wind turbine are employed in order to estimate the possible power capture improvement
provided by each of the two proposals. In [29], a novel data driven yaw control algorithm synthesis
method based on Reinforcement Learning is introduced and the potential power capture improvement
is simulated under several wind speed scenarios using the TurbSim software.

The common ground of the above manuscripts is that, in each study, operation data of wind
turbines are employed as a basis for simulating the potential power improvement provided by
innovative yaw control strategies. The present study has instead a different point of view and fills
a lack in the literature about this subject: in this work, actually, an improved yaw control strategy
recently adopted in industrial wind farms is studied. Since operation data before and after the upgrade
of the yaw control system for the wind turbine of interest are at disposal, this work is not about
simulation of innovative yaw controls: it deals instead with the assessment of innovative yaw controls.

To the best of the authors knowledge, this study is the first of this kind as regards yaw control
and in general is connected to some recent studies in the wind energy literature, dealing with the
assessment of wind turbine power curve upgrades. Actually, since the wind is a stochastic source,
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this objective is challenging because it must necessarily be based on the comparison between the
post-upgrade power production and a model of how much the wind turbine would have produced in
the same conditions if the upgrade had not taken place.

Modeling the power output of a wind turbine with the necessary precision for this kind of
objective is complex, because of the multivariate dependency on climate conditions and operation
parameters, and this situation calls for devoted techniques that have been addressed in some recent
studies. Chronologically, the first study is [19]. Two test cases are addressed: vortex generators
installation on wind turbine blades and pitch angle optimization. The former test case is addressed
through operation data analysis and the latter is addressed through the simulation of operation data,
basing on the logic of the pitch control system. A modification of the Kernel regression method is
proposed for dealing with this kind of problems. Sideways, vortex generators, and more in general
aerodynamic retrofitting of wind turbine blades, is one of the most important strategies for improving
the power capture: see for example [30–39]. The impact of vortex generators installation on wind
turbine power production is addressed also in [40]: in that work, the same Kernel method of [19]
is adopted using ordinary wind turbine operation data (with, in general, sampling time of some
minutes). The turning point of that study is that a much simpler method (the so-called side-by-side,
based on the comparison, before and after the upgrade, of the difference between the power of
the target upgraded wind turbine and the power of a reference wind turbine) can be successfully
employed if the data set is particularly large: this is achieved by employing time-resolved operation
data, with a sampling time of the order of the seconds. This side-by-side method has been conceptually
generalized in [41], where a combined aerodynamic and control upgrade is studied and the power of
the wind turbine of interest is modeled through linear regression: the input variables for the model
result to be operation parameters (power, blade pitches, rotor revolutions per minute and so on) of the
nearby wind turbines and are selected among all the possible covariates at disposal through stepwise
regression algorithm. A similar approach has been adopted also in [42], while in [43,44] non-linear
regression methods (like Artificial Neural Networks) are employed for assessment studies of wind
turbine power curve upgrades.

On these grounds, the present study is devoted to the assessment of the yaw control optimization
on a 2 MW wind turbine operating in southern Italy. A preliminary analysis of the operation
data (conducted in Section 2) indicates that the optimization is effective because the occurrence
of considerably high yaw errors diminishes. The challenging point is the quantification of the power
improvement: this practically consists of the necessity of a reliable model for the power of the
wind turbine of interest. An ordinary linear regression (as in [41], for example) is not effective
for the test case of interest, because of the remarkably high mutual correlation between the possible
covariates of the model: the objective is therefore achieved in this work through a Principal Component
Regression (PCR) and the result of this study is that the yaw control optimization provides a production
improvement of the order of the 1%. The method should be considered a distinctive part of the outcome
of this study, because it can be successfully employed for control and monitoring purposes in wind
energy applications, and it should be noticed that resolving with an acceptable precision a performance
improvement of this order of magnitude is a complex task, because of the multivariate dependence of
the power output of a wind turbine on atmospheric conditions and operating parameters.

Summarizing, the structure of the manuscript is as follows: in Section 2, the test case wind farm
and the data sets at disposal for the study are described. Section 3 is devoted to the description of the
methods. The results are collected and discussed in Section 4. Section 5 is devoted to the conclusions
and the further direction.

2. The Test Case and the Data Set

The layout of the wind farm is reported in Figure 1 and in Table 1 the inter-turbine distances are
reported in units of the rotor diameter. The wind turbine of interest is T1 and is indicated in red in
Figure 1. The wind farm is composed of nine wind turbines sited in a flat terrain. The hub height is
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80 m, the rotor diameter is 82.5 m, the cut-in wind speed is 3.5 m/s, the rated wind speed is 14.5 m/s
and the cut-out wind speed is 25 m/s.

It should be noticed that several wind turbines are placed at around 4 rotor diameters with respect
to their nearest ones: this indicates that potentially the wind farm is characterized by considerable
wake interactions between wind turbines. The analysis of the wind rose (Figure 2) actually indicates
that this possibility is a matter of fact.
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T4 7.0 20.2 4.0 0 5.8 7.3 11.5 15.1 18.9
T5 4.2 14.4 7.0 5.8 0 4.4 8.7 12.9 17.2
T6 8.6 14.1 10.2 7.3 4.4 0 4.6 8.6 12.9
T7 12.9 13.3 14.7 11.5 8.7 4.6 0 4.2 8.6
T8 17.1 15.1 18.6 15.1 12.9 8.6 4.2 0 4.4
T9 21.5 18.2 22.6 18.9 17.2 12.9 8.6 4.4 0

A long standing collaboration between the University of Perugia and the Renvico company140

(www.renvicoenergy.com) has been established for wind turbine performance control and monitoring141

and for early fault diagnosis [45–48]. As regards the assessment of wind turbine power upgrades, the142

established framework is as follows:143

• one or more target wind turbines are selected for a pilot test;144

• the upgrade is installed on the selected wind turbine;145

• after some months of operation with the upgrade, the performance improvement is estimated146

through studies similar to the present one;147

• on the grounds of this estimate, a decision is taken about extending the upgrade installation to148

the rest of the wind farm or not.149

Figure 1. The layout of the wind farm.

Table 1. Inter-turbine distances in rotor diameters.

Wind Turbine T1 T2 T3 T4 T5 T6 T7 T8 T9

T1 0 16.1 5.6 7.0 4.2 8.6 12.9 17.1 21.5
T2 16.1 0 21.2 20.2 14.4 14.1 13.3 15.1 18.2
T3 5.6 21.1 0 4.0 7.0 10.2 14.7 18.6 22.6
T4 7.0 20.2 4.0 0 5.8 7.3 11.5 15.1 18.9
T5 4.2 14.4 7.0 5.8 0 4.4 8.7 12.9 17.2
T6 8.6 14.1 10.2 7.3 4.4 0 4.6 8.6 12.9
T7 12.9 13.3 14.7 11.5 8.7 4.6 0 4.2 8.6
T8 17.1 15.1 18.6 15.1 12.9 8.6 4.2 0 4.4
T9 21.5 18.2 22.6 18.9 17.2 12.9 8.6 4.4 0

A long standing collaboration between the University of Perugia and the Renvico company
(www.renvicoenergy.com) has been established for wind turbine performance control and monitoring
and for early fault diagnosis [45–48]. As regards the assessment of wind turbine power upgrades,
the established framework is as follows:

• one or more target wind turbines are selected for a pilot test;
• the upgrade is installed on the selected wind turbine;
• after some months of operation with the upgrade, the performance improvement is estimated

through studies similar to the present one;
• on the grounds of this estimate, a decision is taken about extending the upgrade installation to the

rest of the wind farm or not.

Therefore, this study deals with the assessment of the pilot test and T1 has been the selected wind
turbine, operating since a certain date with the improved yaw control. The selection of the pilot wind
turbine for the power upgrade test can be based on several considerations. For example, one can point

www.renvicoenergy.com
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at testing the power upgrades at the wind turbines more affected by wakes, in order to estimate the
improvement at the most disadvantaged wind turbines of the farm. On the other way round, one can
test the upgrade at upstream isolated wind turbines, in order to estimate the impact of the upgrade
when the working conditions of the pilot wind turbines are the best possible for the given wind farm.
For the present test case, the decision has been a compromise between the two above considerations.
Actually, it can be observed (Figure 1) that the wind farm is composed of one isolated wind turbine
and a compact cluster of eight wind turbines; in this cluster, the T6–T9 group is slightly disadvantaged
because of multiple wake interactions when the wind blows from the 270◦ and 300◦ sectors (Figure 2).
Therefore, selecting T1 as pilot wind turbine means selecting a wind turbine from the main cluster,
mostly operating upstream (Figure 2).

The data at disposal have been consequently organized in two sets as follows:

• The first data set is denoted as Dbef and contains the data collected from 1 March 2017 to 25 August
2018. It is a period prior to the intervention on turbine T1.

• The second data set is denoted as Daft and contains the data collected from 1 September 2018 to
1 March 2019. It is a period after the yaw control optimization on turbine T1.

The data have been filtered, using the appropriate counter available in the Supervisory Control
And Data Acquisition (SCADA) system, on the request that each wind turbine in the wind farm has
been productive. Upon data filtering, Dbef results to be composed of 31,755 measurements and Daft is
composed of 12,739 measurements.

The wind direction roses measured at T1 nacelle during Dbef and Daft are reported in Figure 2
and it arises that the wind direction distributions before and after the upgrade are remarkably similar.
The ratio between the average nacelle wind speeds measured at T1 during Dbef and Daft is 1.04.
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Figure 2. The wind direction roses at T1 during Dbef and Daft.

The data have ten minutes of sampling time and the available validated measurements for each
wind turbine in the wind farm are

• nacelle wind direction;
• power output;
• ambient temperature;
• nacelle position;
• rotor speed;
• generator speed;
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The yaw control upgrade considered in the present work consists of an optimization of the nacelle
response when the yaw error exceeds a certain threshold. The net effect should be a decrease of the
occurrence of high yaw errors and this implies an increase of the power production, because the power
of a wind turbine depends on the yaw error with a cosine cube law [22]. The dynamical improvement
could be appreciable through the analysis of time-resolved data (with a sampling time of the order of
the second); for the present study, operation data with ten minutes of sampling time were at disposal
and the yaw upgrade effect reasonably can be detected only by a statistical point of view. Actually,
from the nacelle wind direction and the nacelle position measurements, it is possible to estimate the
yaw error as their difference. For wind turbine T1, the yaw misalignment as a function of the power is
reported in Figure 3 for data sets Dbef and Daft. This plot provides a qualitative assessment of the fact
that, after the upgrade of the yaw control, the frequency of considerably high yaw errors diminishes.
A quantitative indication has been obtained by computing the frequency of absolute yaw errors higher
than a threshold (10◦): it arises that for T1, the frequency decreases from the 10% to the 6.2% from Dbef
and Daft. Consistently, this effect is not visible for the other wind turbines in the farm that have not
been upgraded.
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3. The Methods

The objective of this part of the work is formulating a reliable model for the power of the wind
turbine of interest (T1). This is necessary because the estimate of the production upgrade (described in
detail in Section 4) basically consists of the comparison between the measured power after the upgrade
and the model of how much the wind turbine would have produced under the same conditions if the
upgrade had not taken place.

The idea for the model formulation is describing the on-site conditions through the ambient
condition measurements at each wind turbine in the farm and through the operation variables of each
wind turbine in the farm: all these quantities can in principle be input variables of the model for the
power of T1 (denoted as y in the following). This principle has been adopted, for example, in [41] and
in that work the variables selection for the model has been performed through a stepwise regression
algorithm. The critical point as regards the application of that kind of regression for the present test
case deals with the fact that some of the possible input variables are very highly correlated. This is due
to the fact that the dynamics of the present wind farm is severely intertwined: the wind farm is sited in
flat terrain and the layout is quite compact, differently with respect to the test case of [41] (characterized
by considerable altitude variations within a very vast wind farm layout). For example, the rotor speeds
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or blade pitches of nearby wind turbines in this test case wind farm can have a correlation coefficient
up to 0.99 and this indicates that the multicollinearity problem must be addressed in the regression.

On these grounds, the Principal Component Regression (PCR) [49] has been selected for this
study: sideways, the use of this method for control and monitoring purposes in wind energy has been
growing [50]. The procedure goes as follows. Let Yn,1 = (yi, . . . , yn)T be the vector of measured output
(namely the power of T1) and Xn,p = (xi, . . . , xn)T be the matrix of covariatives. n is the number of
observations and p is the number of covariatives. Notice that it might be appropriate that the X matrix
has been rescaled and different possibilities are currently employed: rescale each column of X with
its standard deviation (with or without having translated the mean of each column to 0), or rescale
overall the X matrix with its maximum. For this work, it has been observed that the results do not
depend sensibly on the normalization of the X matrix but slightly lowest averages mean errors are
obtained when the X is not normalized and therefore this choice has been pursued.

The ordinary least squares regression assumes that

Y = Xβ + ε, (1)

where β are the regression coefficients that must be estimated from the input variables data matrix X
and ε are random errors. The ordinary least squares estimate of β is given by

βols =
(

XTX
)−1

XTY (2)

The principal component estimate of β is obtained as follows. Let

X = U∆V T (3)

be the singular value decomposition of X. This means that the columns of U and V are orthonormal
sets of vectors denoting the left and right singular vectors of X and ∆ is a diagonal matrix, whose
elements are the singular values of X. This allows decomposing XXT as:

XXT = VΛVT , (4)

where Λ = diag
(
λ1, . . . , λp

)
and λ1 ≥ · · · ≥ λp ≥ 0.

XVi is the i-th principal component and Vi is the i-th loading corresponding to the i-th principal
value λi.

The Principal Component Regression assumes that a linear relation can be established between
the transformed data matrix W = XV and the target Y . In other words, the Principal Component
Regression can be viewed as an ordinary least squares regression between W and Y .

The usefulness of the Principal Component Regression and its superiority with respect to ordinary
least squares regression is that the decomposition in Equation (4) indicates a sort of regularization
scheme: namely the matrix W can be truncated including a desired number of principal components.
This is particularly useful for addressing the problem of multicollinearity of covariates, because when
two or more covariates are highly correlated, X tends to lose its full rank and this implies that XXT

has some eigenvalues tending to 0. Truncating up to a certain number of principal components means
regularizing the covariates matrix in order that it has full rank. It should be noticed that there are
critical points also as regards the truncation [49], because there are arguments supporting that the
principal components associated with eigenvalues with low absolute value can carry meaningful
information. Nevertheless, for the objectives of the present study it has verified that this is not the case
and the decisive point is including at least a certain amount of principal components.

Finally, the principal component estimate of β is given as

βPCR = V
(

W TW
)−1

W TY , (5)
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where it is assumed that the matrices can be truncated to a desired number of columns, i.e.,
principal components.

The structure of the model for the test case of interest has been selected as follows. The output Y
is the power of T1; the covariatives matrix X has been selected to be composed of power, rotor speed,
generator speed, nacelle position and ambient temperature at each wind turbine of the wind farm,
except T1. This has been done because it is likely that the yaw control optimization at T1 changes the
relation between operation parameters and power output: therefore, the operation parameters of T1
cannot be used as references for modeling the power of T1. Therefore, if one considers the Dbef data
set, Y is a vector of 31,755 data and X is a matrix with 31,755 rows and 40 columns (5 variables for
8 wind turbines).

The selection of an adequate number of principal components for the regression is performed
through K-fold cross-validation [51]. The procedure goes as follows: divide Dbef randomly in two
fractions, where (K − 1)/K of the data are used for training and the remaining 1/K are used for
validation. K = 10 is selected for this study. The training data are therefore employed for estimating β

through Principal Component Regression (Equation (5)) and the model estimate of the validation data
is given by

Ŷvalid = XvalidβPCR (6)

This procedure is repeated for each fold selection. The Mean Square Error (MSE) is selected for
the estimating the regression error. It is defined as

MSE =
1

nvalid

nvalid

∑
i=1

(ŷi − yi)
2 , (7)

where nvalid is the number of observation of Xvalid. The MSE values are subsequently averaged on the
folds selection and therefore, for a given number of principal components included in the regression,
a unique metric for estimating the quality of the regression is obtained. The results for the K-fold
cross-validation are reported in Figure 4 and it arises that, if the number of principal components is
higher or equal than 5, the average MSE is basically stable. For this reason, 5 principal components
have been selected for this study. A sensitivity analysis has been performed and it has been observed
that the results do not change substantially by including more than 5 principal components.
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It is also possible to appreciate qualitatively how the principal component decomposition
improves the quality of the regression. Consider the data set Dbef: the target y is plotted against
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the power of T4 (one of the covariatives having higher coefficient of determination R2 with respect to
y) in Figure 5 and against the first principal component of the covariatives matrix in Figure 6.
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4. The Results

The data sets at disposal are employed as follows:

• Dbef is randomly divided in two subsets: D0 ( 2
3 of the data set) and D1 ( 1

3 of the data set). D0 is
used for training the model and constructing the weight matrix βPCR, D1 is used for validating
the model.

• Daft (also named D2 for simplifying the notation in the following) is used to quantify the
performance improvement.

The upgrade can be estimated as a change in the behavior of the residuals for the D2 data set,
with respect to D1. This should happen because the model is trained with pre-upgrade data and is
employed to simulate one pre-upgrade data set (D1) and one post-upgrade data set (D2). Namely,
the residuals between measurements and model estimates should averagely be 0 for the data set
D1, while they should be negligibly be higher than 0 for the data set D2 (because the measured
power should be higher than the power simulated according to a model trained with the pre-upgrade
behavior). In the following, the procedure is reported for verifying if this is the case (and with what
statistical significance) and for quantifying the upgrade.
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Therefore, consider Equation (8) with i = 1, 2.

R(xi) = y(xi)− ŷ(xi). (8)

For i = 1, 2, one has that the mean residual is

δi =
1
Ni

∑
x∈Di

y(x)− ŷ(x) (9)

and the mean absolute residual is

δ̄i =
1
Ni

∑
x∈Di
|y(x)− ŷ(x)| , (10)

where Ni is the number of measurements in data sets D1 and D2 respectively.
Since the measured y and estimated ŷ powers have all the same time basis (ten minutes),

the quantity
∆ = ∆2 − ∆1, (11)

where

∆i = 100 ∗ ∑x∈Di (y(x)− ŷ(x))
∑x∈Di y(x)

(12)

is a percentage estimate of the energy improvement provided by the yaw control upgrade.
The above procedure has been repeated several times, by varying the random selection of D0

(and consequently of D1). The repetitions have been performed until the standard deviation of the
∆ estimates (obtained for the different runs of the procedure) has become stable: as a rule of thumb,
it can be said that 30 repetitions are sufficient. For each of these 30 runs of the model, ∆, δi and δ̄i have
been computed: these values have been averaged over the model runs and are reported in Table 2 with
a subscript indicating that they are the averages.

Table 2. Statistical behavior of the residuals between measurement and estimation, for the different
random choices of the D0 and D1 data set.

Residual δave (kW) δ̄ave (kW)

R(x1) −0.2 78.0
R(x2) 8.2 85.2

From Table 2, it arises that the upgrade can be detected as an average increase of 8 kW in the
difference between measurements and model estimates. A further question can be posed: how much
statistically significant is this difference? The answer can be obtained by performing a Student’s
t-test to inquire if there is any statistically significant change in the turbine output after the upgrade.
The t-statistic is computed as

t =
R̄2 − R̄1

σR

√
1

N1
+ 1

N2

. (13)

In Equation (13), N1 and N2 are the numbers of data in, respectively, D1 and D2; R̄1 and R̄2 are
the average residuals in data sets D1 and D2 respectively; σR is given in Equation (14):

σR =

√
(N1 − 1) S2

2 + (N2 − 1) S2
2

N1 + N2 − 2
, (14)

where S1 and S2 are the standard deviations of the residuals in data sets D1 and D2 respectively.
The t-statistic (Equation (13)) is computed to be of the order of 10−10 and this indicates that the
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probability that the upgrade is non-effective and that the observed difference in the residuals is given
by random data picking within the same statistical ensemble is correspondingly low.

The average energy improvement is computed to be ∆ = 1.0%. In other words, the estimate is
that, since the yaw control of T1 has been optimized, T1 has produced the 1.0% more than it would
have done if the upgrade had not taken place. The standard deviation is computed as σ∆ = 0.1% and
therefore the result can be presented as ∆ = 1.0± 0.1%

Finally, in order to appreciate how the yaw control upgrade changes the power production, it is
possible to report a plot like the one in Figure 7: R(x1) and R(x2), computed on a sample model
run, are displayed. The data are averaged in power production intervals, whose amplitude is 10% of
the rated.
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A Crosscheck of the Results

The reliability of the proposed method and of the results for T1 have been crosschecked by repeating
the procedure for a wind turbine that has not undergone the yaw control optimization. In this case,
actually, the performance improvement should consistently be estimated to be vanishing. T9 has been
selected for this test. Therefore, the output y for the model is the power of T9 and the covariatives matrix
is composed of the variables listed in Section 2 of the wind turbines T2 to T8. T9 operation variables are
excluded from the possible covariatives, as is done in Section 3 for T1, and the operation variables of T1
are excluded because they will have changed after the yaw control upgrade.

The results of the K-fold cross-validation procedure are reported in Figure 8: on these grounds,
the decision has been employing 5 principal components but it should be noticed that the results do
not change sensibly when including more than 5.

The results for the performance assessment are reported in Table 3 and Figure 9. The main
indication is that the average difference between model estimate and power measurements changes
of only 1 kW, while for T1 the average variation is 8 kW (Table 2). From Equations (11) and (12),
one obtains ∆ = −0.2%. The t-statistic (Equation (13)) is computed to be 0.4 and therefore the
hypothesis that the performance of T9 during Dbef and Daft come from the same statistical ensemble
can not be rejected.

These results indicate, consistently, that the performance of T1 has changed after the upgrade and
this can be detected with the proposed models with statistical significance; on the other way round,
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it can be detected with statistical significance that a non-upgraded wind turbine has performance
compatible with the hypothesis that the performance has not changed.
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Table 3. Statistical behavior of the residuals between measurement and estimation, for the different
random choices of the D0 and D1 data set. Turbine T9.

Residual δave (kW) δ̄ave (kW)

R(x1) −0.4 78.0
R(x2) −1.5 82.1
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5. Conclusions

This study has dealt with the assessment of wind turbine yaw control optimization through the
analysis of operation data. As discussed in Section 1, yaw control optimization is a topic that has
been recently attracting a certain attention. The available studies in the literature mainly deal with the
design of novel yaw control strategies and the simulation of the possible production improvement.
This work instead fills a lack in the literature because the point of view is different. The test case is
a 2 MW wind turbine operating in a wind farm composed of 9 wind turbines totally: the wind turbine
of interest has undergone a yaw control optimization (diminishing the frequency of remarkably high
yaw errors, as can be qualitatively appreciated from Figure 3) and operation data before and after the
intervention have been at disposal for this study. Therefore, the main objective of this work was the
assessment of one yaw control optimization implemented in operating wind farms for industrial use.
The assessment of this kind of control optimizations (and, in general, of wind turbine power curve
upgrades) is interesting on its own, but it is further motivated by the fact that the efficiency of power
upgrades can depend remarkably on the flow and on the on-site wind farm conditions.

The objective of this work practically translates in the formulation of a reliable data driven model
for the power of the wind turbine of interest. This happens because the simplest way for assessing
a wind turbine power upgrade is comparing the post-upgrade power production against a model
of how much the wind turbine would have produced if the upgrade had not taken place. Particular
attention has therefore been devoted to the formulation of an appropriate model for the power of the
test case wind turbine. The underlying principle has been the use of the operation parameters of the
nearby wind turbines in the farm as references for describing the on-site conditions.

Due to the remarkable multicollinearity of the possible model covariatives, a Principal Component
Regression has been considered to be an adequate type of model. As regards the present test case, it has
been observed that 5 principal components can be sufficient for modeling the power of the wind turbine
of interest. Using this kind of model, it has been estimated that the wind turbine has its improved its
power production of the 1% after the yaw control optimization. Sideways, this estimate is compatible
with the available studies in the literature, indicating the rule of thumb that the impact of wind turbine
control upgrades is of the order of the 1% of the annual energy production. A crosscheck of the
results has also been proposed, by adopting the same kind of method for performance monitoring on
a non-upgraded wind turbine and the obtained results are consistent.

Summarizing, these results support that the yaw is an important topic as regards the design
of innovative wind turbine controls. Furthermore, these results should encourage wind turbine
practitioners in the adoption of the most innovative wind turbine control strategies that are at disposal
in the industry.

There are several possible further directions of the present work. One possibility is evidently
the study of other test cases, in particular about yaw and in general about wind turbine control
optimization. Another possibility is the adoption of more powerful information sources, as for example
time-resolved data (as done for example in [40]) because this would also allow appreciating the
dynamics of the actual improved control strategies. A more general development regards instead the
adopted methodology because, as discussed for example in [50,52], Principal Component Regression
can be particularly useful for control and monitoring wind energy applications, dealing for example
with advanced performance analysis, fatigue load analysis, early fault diagnosis.
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