
machines

Article

The Proposition of an Automated Honing Cell
with Advanced Monitoring

Adam Barylski and Piotr Sender *

Department of Manufacturing and Production Engineering, Gdańsk University of Technology,
80-233 Gdańsk, Poland; abarylsk@pg.edu.pl
* Correspondence: piotr.sender@pg.edu.pl; Tel.: +48-662-082-579

Received: 3 September 2020; Accepted: 22 October 2020; Published: 28 October 2020
����������
�������

Abstract: Honing of holes allows for small shape deviation and a low value of a roughness profile
parameter, e.g., Ra parameter. The honing process heats the workpiece and raises its temperature.
The increase in temperature causes thermal deformations of the honed holes. The article proposes
the construction of a honing cell, containing in addition to CNC honing machine: thermographic
camera, sound intensity meter, and software for collecting and analyzing data received during
machining. It was proposed that the level of sound intensity obtained during honing could be
monitored continuously and that the images from a thermographic camera could be analyzed on-line.
These analyses would be aimed at supervising honing along with the on-line correction of machining
parameters. In addition to the oil cooler, the machining cell may have an automatic selection of the
grain trajectory shape, with specified value of the radii of curvature of the abrasive grain trajectories,
according to the wall thickness of the honed workpiece, which will result in reducing the temperature
generated during honing. Automated honing cell can mostly increase honing process efficiency.
Simulations in FlexSim showed the possibility of increasing the efficiency of the honing process more
than 20 times.

Keywords: honing of holes; kinematics of honing; automation of honing; abrasive grain trajectories;
FlexSim; thermography

1. Introduction

The honing process heats the workpiece and raises its temperature. Specialist literature dealing
with the honing process of cylindrical surfaces draws attention to the issue of the temperature increase
during machining [1–11], which causes the thermal deformation of the honed hole. The temperature
increase is also a very important issue during the honing process of flat surfaces by grinding with
lapping kinematics as shown in [12]. Another interesting issue, in addition to the coexisting issue,
i.e., surface texturing [13], is the use of new honing methods [14–17] and honing equipment used
during machining [18,19] to improve the quality of the holes obtained [20–24].

The process of honing is influenced by the selection of proper machining parameters [1,25–30],
which directly affects the obtained cylindricity deviations of the honed holes [9,10,31–35].
Much attention in the literature has also been devoted to examining the possibility of creating a
new honing equipment and machines [18] as well as machining strategy, during which a different shape
of oil channels cross-hatch could be obtained [12,36–46] which influences the further development of
honing methods [47–52].

Irene Buj-Corral [2] described the methodology of selecting the appropriate density of the abrasive
whetstone based on the analysis of the acoustic signal recorded in honing process and checked that
roughness of honed cylinders increases mainly with abrasive grain size, followed by honing head
pressure. She researched that tangential speed influences roughness slightly [53]. Similarly, Chavan [38]
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describes the effect of the pressure of the abrasive whetstone and the honing speed on the obtained
roughness profile parameters. Deepak [27] dealt with in detail the influence of honing parameters
on the obtained parameters of the roughness profile of honed surface. He stated that the rotational
speed of the head had the greatest influence on the Rz, Rk, and Rvk parameters, while the linear speed
of the jump had the greatest influence on the Rpk parameter. Barylski [1] indicates that the selection of
parameters affects the size of the honed material and affects the amount of temperature generated in
the workpiece.

The latest literature describes the use of the neural network method to supervise the honing
process [54], but the analysis of parameters leads to obtaining the desired roughness profile parameters.
In this article, it is proposed that the neural network completely diagnose the process of honing,
including the analysis of the sound signal obtained during honing and the analysis of thermograms
recorded during honing, which is a novelty in proposing the direction of the honing process and
its automation.

2. Kinematics of Honing Process

Goeldel [41,55] proposed to use new shapes of grain paths for honing of cylindrical holes.
Bujukli [56] describes the effect of the honing head stroke length on the improvement of the cylindrical
shape deviation of the honed hole.

Figure 1 shows the cross-section of the honing head and the speeds occurring in the machining
system: Vax—axial linear speed of the honing head [m/min], Vaz—peripheral speed of the honing
head [m/min], Vexp—infeed speed of abrasive whetstone [µm/min].

1 

 

 
Figure 1. Honing head with main honing speeds; 1—honed cylinder liner, 2—abrasive whetstone,
3—expanding mandrel, 4—pressure and machined diameter measurement, 5—temperature
measurement, 6—vision system.

The honing head has a vision system (item 6), which records the real-time image of the honed
surface, introducing data to the neural network that verifies the number of oil channels produced in
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such a way that the continuity for the flowing oil is broken. The gauge of the pressure force and the
diameter of the machined hole (item 4) and the temperature gauge (item 5) enable the supervision of
the honing process in real time.

The basic formulas that define the honing kinematics (Figure 1) are:
- resultant cutting speed [m/min]

Vc =

√
V2

ax + V2
az (1)

- linear speed of the head in reciprocating motion [m/min]

Vax = 2Lnax (2)

where: L is the length of the head stroke in the axial direction, in reciprocating motion [m]; nαx is the
head stroke frequency in reciprocating motion [1/min]; Vaz is the peripheral speed of the head [m/min]

Vaz =
πdn
1000

(3)

where: n is the head rotation speed [min−1]; d is the diameter of the honed hole [mm];
And

tgα =
Vax

Vaz
(4)

where: α is the honing angle [◦].
The honing angle is a parameter influencing the oil consumption and the amount of toxic

compounds emitted to the environment during the operation of internal combustion engines [57].
It also affects the coefficient of friction of the piston rings against the cylinder surface [38,42,58,59],
which has a direct impact on engine power losses.

The honing angle depends on the mutual relation of the rotational speed and the speed of the
axial linear stroke of the head. A higher value of the rotational speed with a lower value of the honing
head stroke speed makes the angle closer to the horizontal direction, a lower value of the rotational
speed with a lower value of the head stroke speed makes the angle closer to the vertical direction.

Figure 2 shows an exemplary trajectory of the abrasive grain (item 1) obtained during honing on
the developed surface of the machined hole (item 2). The advantage of the honing cell is the automatic
selection of the shape of the abrasive grain trajectory, with different values of the grain trajectory
curvature, which directly affects the amount of temperature generated in the workpiece.

There are a many combinations possible in the honing process of oil channel angle. This diversity
is presented in Table 1. Various honing researchers and different engine manufacturers suggest the
use of different honing angles, but this article proposes the use of honing with variable kinematics,
which enables the creation of a scratch grid in the form of curvilinear oil channels.

Honing with traditional kinematics is carried out without a change in the machining parameters.
Figure 3 shows traditional honing process, where rotational speed of honing had has a constant
value during process. This honing method allows to create cross-hatch shape of abrasive grain
trajectories. The rotational speed of the honing head at the beginning of the cycle increases from zero
to a constant value (Figure 3a), the feed value increases from zero to a constant value (Figure 3b).
In honing with constant kinematics, the stroke length increases linearly (Figure 3c), while the grain
path length increases according to the curve shown in Figure 3d.

Honing with variable kinematics is carried out with a change in the machining parameters.
Figure 4 shows non-traditional honing process, where rotational speed of honing had has a different
rotation speed in one single cycle of honing process. This honing method allows to create different
shape of abrasive grain trajectories. The rotational speed of the honing head at the beginning of the
cycle increases from zero and can still increase or decrease in turn (Figure 4a), the feed value increases
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from zero and can increase and decrease in turn, etc., the return of the speed vector can change to
the opposite in any way (Figure 4b). In honing with variable kinematics, the stroke length increases
not linearly but curvilinear and according to the rotational speed and stroke speed value (Figure 4c),
while the grain path length increases according to the curve shown in Figure 4d.Machines 2020, 8, x 4 of 30 
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grain trajectories, 2—expanding of honed surface, 3—honed cylinder liners with honing head, 4—
additional honing head oscillation motion in vertical direction, 5—additional honing head oscillation 
motion in horizontal direction, 6—additional oscillation motion of honing head rotation direction. 
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Figure 2. Possible directions of movement of honing head in honing of cylindrical holes: 1—abrasive
grain trajectories, 2—expanding of honed surface, 3—honed cylinder liners with honing head,
4—additional honing head oscillation motion in vertical direction, 5—additional honing head oscillation
motion in horizontal direction, 6—additional oscillation motion of honing head rotation direction.
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Table 1. The honing angles discussed in the literature.

Authors or Companies Literature Item Number Honing Angle [◦]

Bouassida H. [57]

45
Entezami S., Farahnakian M., Akbari A., [59]

Karpuschewski B., Welzel F., Risse K., Schorgel M. [60]
Mansori El. M., Goeldel B., Sabri L. [61]

Brush research manufacturing Co. Inc. [62] 25–30
Buj-Corral I., Vivancos-Calvet J. [3] 36.9; 38.6; 53.1

Chavan P.S., Harne M.S. [38] 46–57
Dahlmann D., Denkena B. [63] 110

Graboń W., Pawlus P., Wos S., Koszela W., Wieczorowski M. [42] 15.5; 55; 72; 125
Demirci I., Mezghani S., Yousfi M., El Mansori M. [64] 50–130

Deshpande A.K., Bhole H.A., Choudhari L.A. [65] 25–75
Fiat Chrysler America [66] 36

Goeldel B., Mansori M., [40]

50
Graboń W., Pawlus P., Sep J. [67]

Michalski J., Woś P. [68]
Reizer R., Pawlus P., Galda L., Graboń W., Dzierwa A. [69]

Pawlus P., Cieslak T., Mathia T., [52]
Goeldel B., Mansori M., [55] 45, 135

Jocsak J. [43] 30, 35, 40, 45, 60, 90
Johansson S., Nilsson Per.H., Ohlsson R., Anderberg C.,

Rosen B.G. [44]
40, 140Johansson S., Nilsson Per.H., Ohlsson R., Anderberg C.,

Bengt-Goran Rosen [45]

Kim J.K., Xavier F.A., Kim D.E. [70]
Kapoor J., [71] 15–22

Knoll G., Rienacker A., [48] 10, 30, 60, 90, 120, 150,
170

KS Motor Service International GmbH [72] 40, 60, 80

Lawrence D.K., Ramamoorthy B. [27]
41, 48, 51, 54, 59, 61, 64,

71, 74, 84, 88, 89, 102, 105,
111

Mezghani S., Demirci I., Yousfi M., Mansori E.M. [49] 40–60; 120–140

Mezghani S., Demirci I., Zahouani H., Mansori E.M. [73] 10, 20, 30, 40, 50, 60, 70,
80, 100, 110, 130, 140, 150

Obara R.B., Souza R.M. [51] 66
Reizer R. Pawlus P. [74] 53

Pimpalgaonkar M.H., [75] 20–60
Qin P.P., Yang C.I., Huang W., Xu G.W., Liu C.J. [76] 30, 45

Sabri L., Mezghani S., Mansori E.M.,
Le Lan Jean-Vincent [77] 51.14; 30–60; 140

Gashev E.A., Muratov K.R., [39]

variable anglePolyanchikov Yu. N., Plotniko A.L.,
Polyanchikova M.Yu., Kursin O.A., [78]

Sender P. [5–8]
Yousfi M. [79–85]

Tripathi B.N., Singh N.K., Vates U.K. [20] 25–75
Yuan S., Huang W., Wang X., [13] 45, 90

Deepak Lawrence K., Ramamoorthy B. [27]
43, 50, 53, 56, 60, 63, 68,
74, 79, 81, 94, 106, 108,

114
Ozdemir M., Korkmaz M.E., Guanay M.B.Buj-Corral I.,

Vivancos-Calvet J., Coba-Salcedo M.
[86]
[87] 40–80

Q. Wang, Q. Feng, Q.F. Li and C.Z. Ren [88] 83.70

Table 1 shows the honing angles that are discussed in the specialist literature.
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Figure 3. Traditional kinematics of honing process, (a) constant value of honing speed, (b) constant linear
speed of honing head, (c) linear value of honing head, (d) length of abrasive grain path in traditional
honing process; 1—an example of abrasive grain path.

Because of the disordered distribution of the grain in the abrasive stone, the grain fracture planes
are at any angle to the grain direction, determined by the vector of the resultant honing speed Vc.
During honing, the direction of the forces acting on the grain changes. Some of the grains are too
weak in a given plane to transfer cutting forces, so that new cutting edges are constantly created
during the honing process. Changing the direction of grain work also prevents the deposition of the
processed material particles on the grain working surfaces; because of this phenomenon the change
of the direction of the velocity vector Vc, i.e., variable honing kinematics, is an important parameter
influencing the course of the process [5–8] and reduces the friction coefficient in the piston-cylinder
assembly [80,82,84,85]. The value of normal acceleration an is responsible for the change of the vector
Vc direction and the trajectory curvature.



Machines 2020, 8, 70 7 of 29
Machines 2020, 8, x 6 of 30 

 

 

Figure 4. Variable kinematics of honing process—an example of abrasive grain trajectory obtained 
during honing with variable linear and tangential speed. Components of the cylindrical honing 
process: 1—an example of abrasive grain path received in variable kinematics of honing, 2—
comparative abrasive grain path obtained in traditional honing. 

Table 1 shows the honing angles that are discussed in the specialist literature. 
  

Figure 4. Variable kinematics of honing process—an example of abrasive grain trajectory obtained
during honing with variable linear and tangential speed. Components of the cylindrical honing process:
1—an example of abrasive grain path received in variable kinematics of honing, 2—comparative
abrasive grain path obtained in traditional honing.

3. Methods

The article proposes the construction of a honing cell, containing in addition to CNC honing
machine: thermographic camera, sound intensity meter, and software for collecting and analyzing data
received during machining. It was verified that the main factor hindering the serial honing treatment
is the deformation of the shape of the honed hole, caused by the heating of the workpiece due to the
friction of the abrasive stone against the honed surface, which also causes a change in the diameter
of the hole. The prevention of this phenomenon consists in controlling the temperature to which
the honed workpiece is heated during machining, and in carrying out the treatment in such a way
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that the amount of temperature increase is reduced due to the selection of proper honing parameters,
depending on the shape and CCR (the curve curvature radius) of the abrasive grain trajectories [5].

Honing cell principle of operation: 1—numerical simulation of deformations, stresses,
and heat flow, 2—programming of honing head movements with the selection of the appropriate shape
of the abrasive grain path adjusted to the thickness of the section or sections of the honed workpieces,
3—supervising of honing during the process, measuring of diameter and cylindricity of honed hole,
measuring of sound signal, 4—correcting of actual machining parameters.

3.1. The Equipment of the Honing Cell

Figure 5 shows a CNC vertical milling center equipped with the honing instrumentation,
a thermographic camera, surface roughness measure gauge, and sound intensity meter. Each of
the three shown laptops analyzed different signals and their output values obtained during the
honing process.

The key issue of the proposed automated honing cell is to be able to supervise the honing process
by analyzing the audio signal and by analyzing the images obtained from the thermographic camera
during the process. The task of supervision of honing process should be to generate abrasive grain
paths with different shape of grain trajectories and with different radii of curvature, depending on
the data obtained from the analysis of the acoustic signal and from the analysis of the thermogram of
the workpiece.
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Figure 5. Haas VF-3SS milling machine with honing equipment: 1—thermal imaging camera,
2—software of thermal imaging camera, 3—Mitutoyo SJ-210 roughness meter, 4—software of Mitutoyo
SJ-210 roughness meter, 5—sound intensity meter, 6—vibration meter, 7—air nozzle.

3.2. Numerical Simulations of Honing Process

The honing cell should verify the influence of honing parameters on the size of the temperature
increase, which is related to thermal deformation of the honed hole. The measurement should be
carried out before machining, by performing a numerical simulation of honing.
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Figure 6 shows the image recorded during the numerical simulation, showing the heat flux flow
through the honed cylinder liner. The occurrence of different values of heat flux is clearly noticeable,
depending on the thickness of the section of honed workpiece. The differences affect the non-uniform
cylindrical deformation, more information is included in [5–8]. The simulation will provide information
about the size of deformation for various possible variants of machining parameters, e.g., the amount
of pressure of the abrasive whetstone on the workpiece.
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Figure 6. Image from computer simulation of honing process—heat flux flow; 1—the thickest machined
cross–section, 2—the thinnest honed cross-section, 3—maximum value of the measured heat flux.

The different temperature value of the honed workpieces causes the occurrence of different values
of thermal stress in different places of the workpiece and affects the deformation of the cylinder shape,
which is an undesirable phenomenon.

The honing cell should verify the influence of honing parameters on the amount of stresses and
deformations occurring during honing in the workpiece. The measurement should be carried out
before machining, by performing a numerical simulation of honing (Figure 7).

3.3. Programming of the Grain Trajectories in Non-Conventional Way

It was verified in [5] that the shape of the abrasive grain trajectories obtained in the honing
process influenced the size of the temperature rise in the honed workpieces. In addition, abrasive grain
trajectories can be generated using mathematical functions such as sin(x), cos(x) etc., which would
allow the creation of a path of any shape, also curves with different radii of curvature.

A very interesting issue is the problem of programming the path of the abrasive grain, different
one than the traditional path resultant from the rotational and linear speeds of the honing head,
which is so far used in most honing machines manufactured by leading manufacturers. In the proposed
approach, a curvilinear path can be selected and generated depending on the cross-sections of the
honed workpiece. It is defined in the form of a mathematical formula that defines a curvilinear path
of various shapes with variable shape parameters (radius of curvature, amplitude size, frequency of
change of direction). This kind of non-conventional programming can be realized in the CAD/CAM
system, and previously planned in CCR (curve curvature radius) module.
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Figure 2 shows the window view from the CAD/CAM Alphacam software, where it is possible to
define a curvilinear path by adding a circular vibration to the path of varying magnitude and frequency
of change of abrasive grain move direction.

Changing the shape of the abrasive grain path from a circular path to a sinusoidal path. Most basic
form of sine wave describing the time function t is:

y = A sin(ωt + f) (5)

where: A—amplitude,ω—pulsation in radians per second (closely related to the frequency in hertz),
f—phase shift (if the phase is different from zero, the function graph looks shifted in time by 0 s).
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The curves describing the trajectory of the abrasive grain may have various shapes, characterized
by a different curvature of the grain trajectory [5]. The grain trajectory may take any shape,
while performing which the honing head may more or less frequently change the direction of
the axial movement (Figure 8). The quality of the hole made depends on the accuracy of the honing
head movement [89,90].
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horizontal direction of the treated surface. The function marked with digit 1 has one change of the
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has one change in the head movement direction in the lower turning point and two changes in the
direction of the upper turning point.

Figure 9 shows the modification of the cylindrical path, which consists in changing the shape into
a sinusoidal shape.Machines 2020, 8, x 12 of 30 

 

 

Figure 9. Programming in non-conventional way by adding oscillation frequency and amplitude’s 
high to circular path generated in CAD/CAM system; 1—entering parameters, 2—circular path, 3—
the resulting sinusoidal trajectory. 

Figure 10 shows how to modify the shape of the machining path (item 2 from Figure 9) to a zig-
zag shape path or a sinusoidal path (item 3 from Figure 9). 

 
Figure 10. The method of modifying the shape of the machining path in CAD/CAM system 
Alphacam. 

Figure 9. Programming in non-conventional way by adding oscillation frequency and amplitude’s
high to circular path generated in CAD/CAM system; 1—entering parameters, 2—circular path,
3—the resulting sinusoidal trajectory.



Machines 2020, 8, 70 12 of 29

Figure 10 shows how to modify the shape of the machining path (item 2 from Figure 9) to a zig-zag
shape path or a sinusoidal path (item 3 from Figure 9).

Machines 2020, 8, x 12 of 30 

 

 

Figure 9. Programming in non-conventional way by adding oscillation frequency and amplitude’s 
high to circular path generated in CAD/CAM system; 1—entering parameters, 2—circular path, 3—
the resulting sinusoidal trajectory. 

Figure 10 shows how to modify the shape of the machining path (item 2 from Figure 9) to a zig-
zag shape path or a sinusoidal path (item 3 from Figure 9). 

 
Figure 10. The method of modifying the shape of the machining path in CAD/CAM system 
Alphacam. 

Figure 10. The method of modifying the shape of the machining path in CAD/CAM system Alphacam.

3.4. Setting of Honing Parameters

Automated honing cell should automatically setup the needing abrasive grain trajectories shape,
as shown on Figure 9. Construction of honing head should allow for two-way steering of direction of
abrasive whetstone and honing head movement (Figure 11) and should have possibilities to receive a
machined surface images during process.
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Incorrect honing parameters result in an excessive temperature increase and may cause the whetstone
wear out in a very short time. Figure 12 shows the whetstone: 1—new, 2—after machining with
incorrect pressure at the beginning of honing process, 3—worn out in a very short time.
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It is advantageous to set machining parameters influencing uniform wear of the machining tool.

3.5. Supervision of Honing during Process

A very important issue for the automatic honing cell, in addition to the selection of machining
parameters after the initial numerical simulation of the honing process, is to verify, supervise, and correct
the obtained machining results in real time of honing process.

3.5.1. Supervising of Surface Textures

Figure 13 shows the surface obtained after honing with a variable value of the linear feed of the
honing head. Variable honing kinematics, unlike traditional kinematics, enables the creation of oil
scratches with new, and never used earlier, shapes of abrasive grain trajectories. The literature clearly
shows the advantages of honing with variable kinematics, which reduces the wear of the machining
tool and with surfaces with lower roughness profile parameters, e.g., Ra and Rpk.
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of 1000–3000 mm/min—average value of tangent angle to the grain trajectory of 14◦; 1—sample abrasive
grain path; 2—tangent line to the abrasive grain path.
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Figures 14 and 15 shows examples of surfaces obtained after honing, on which, in addition to
measuring the deviation in the shape of roundness and cylindricity and the parameters of the roughness
profile, the quality of received texture of machined hole is checked.
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Figure 15 shows the surface after honing, with texture defects in the form of: 1—scratches,
2—point heterogeneity. The quality of the obtained surface is determined by the homogeneity of the
dimensions, shape, and texture of the obtained surface after honing process.

Figure 16 shows the verification of the obtained oil channel pattern in a schematic manner.
The verification consists in checking whether the obtained oil channels are continuous, or whether
they are clogged with fragments of the honed workpiece’s material. The individual layers of neural
networks check whether the image fragment shows an oil channel shape is a line, whether it is a curve,
whether the shape is broken, or the break is caused by the intersection of oil channels or the presence of
the workpiece material in the oil channel. In the event that the verification would confirm a significant
number of oil channel breaks, the shape of the grain path should change, and the treatment should
ensure the minimum number of places with a break for oil flow.
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3.5.2. Analysis of Image of Honed Workpieces in Matlab’s Image Processing Toolbox

Figure 17 shows a cone representing the HSV color description method. Each color has its own
shade, brightness, and value by which the color can be defined.

At the beginning of the honing process, the workpiece temperature is equal to the ambient
temperature. During processing, the temperature of the workpiece increases, which causes thermal
deformations of the honed hole. The temperature rise of the item can be observed on-line through the
Matlab Image Processing Toolbox module.

3.6. Correcting of Honing Parameters

The honing cell should include a CNC honing machine, a thermal infrared camera, a microphone,
and modules of e.g., Matlab’s software for on-line image and sound level spectrum analysis, an oil
cooler and a CCR (curve curvature radius) module—the matching module of the shape of the abrasive
grain trajectories received on developed surface of the machined workpieces to a certain thickness of
the cross section of the honed workpiece.

Figure 18 shows possible actions to be performed during the honing process by automated
honing cell: (a) FEM mesh overlay and working pressure setting, (b) determination of thermal
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conditions, (c) deformation, sound level and image analysis, (d) determination of honing parameters,
(e) honing with variable kinematics setting with CCR module, (f) receiving variable shape of abrasive
grain trajectories optimized to manufacturing conditions.
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Figure 18. Schematic diagram of honing algorithm: (a) FEM mesh overlay and working pressure
setting, (b) determination of thermal conditions, (c) deformation, sound level and image analysis,
(d) determination of honing parameters, (e) honing with variable kinematics setting with CCR module,
(f) receiving variable shape of abrasive grain trajectories optimized to manufacturing conditions.



Machines 2020, 8, 70 17 of 29

Figure 19 shows schematically the process parameters verified on-line during the treatment.
Depending on the values of the obtained parameters, the values of the machining parameters would
be corrected automatically.
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Figure 19. Schematic diagram of automated honing process.

The main factor influencing the differentiation of efficiency of manufacturing is the lack of the
need to multiple cool the honed workpieces before the end of the honing process, and lack of the
multiple measurements of the obtained diameter and shape deviation of honed hole.

4. Results

Performing numerical simulations makes it easier to plan the machining process. Owing to the
simulation, we can find out the size of deformations and stresses occurring during honing, which
allows us to decide on the selection of the right machining parameters.

Owing to the sound signal level analysis and thermal image of honed workpieces analysis one
can establish the needed parameters of the honing process.

4.1. Stresses and Deformations in Machined Workpieces

In Figure 20 digit 1 indicates the location of the stress measurement, that the honing cell could
monitor online. A honing head with the ability to measure the amount of pressure of the whetstone on
the treated surface would allow for the verification of the shape deviation of the honed hole.
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Figure 21. Numerical simulation—deformation of a cylinder with a variable wall thickness: 1—the 
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Figure 20. Results of numerical analysis of honing process of cylinder linear with different thickness
of cross-section; (a) simulation result of the entire assembly, (b) assembly simulation result without
cylinder linear, (c) assembly simulation result without cylinder linear and without honing head body,
(d) simulation of stresses obtained during honing process.

Figure 21 shows the numerical inhomogeneous simulation values of the deformation of the honed
hole obtained during honing of thin-walled workpiece with a variable wall thickness, which shows the
actual manufacturing difficulties of this type of workpieces.

Machines 2020, 8, x 19 of 30 

 

 

Figure 20. Results of numerical analysis of honing process of cylinder linear with different thickness 
of cross-section; (a) simulation result of the entire assembly, (b) assembly simulation result without 
cylinder linear, (c) assembly simulation result without cylinder linear and without honing head body, 
(d) simulation of stresses obtained during honing process. 

 

Figure 21. Numerical simulation—deformation of a cylinder with a variable wall thickness: 1—the 
greatest cylindrical deformation value of honed workpiece; 2—the smallest cylindrical deformation 
value of honed workpiece. 

Figure 21. Numerical simulation—deformation of a cylinder with a variable wall thickness:
1—the greatest cylindrical deformation value of honed workpiece; 2—the smallest cylindrical
deformation value of honed workpiece.
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4.2. Analysis of Sound Signal Level, Received During Honing Process, in Matlab’s Audio Toolbox

Figure 22 shows a graph of the intensity of the sound signal, which was obtained during honing
with varying kinematics. Measured sound was introduced into the Matlab Audio Toolbox. Distance
from peak to peak in horizontal direction, in the diagram shown in Figure 22, indicates the time of
the honing cycle (movement of the striking head up and down). Similarly, to Buj-Corral I. [2], it has
been verified that the choice of honing parameters is reflected by the amount of sound signal emission
(Figure 22), which means that the acoustic signal analysis is a good tool for verifying the honing process.
Figure 23 shows the test stand with the equipment for measuring the sound intensity level.
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Figure 22. Matlab Audio Labeler—analysis of sound level vs honing process time conducted on CNC
vertical milling machine Haas VF-3SS. Honing with variable kinematics condition, with different value
of honing head stroke speed; 1—shorter honing cycle time, 2—longer honing cycle time, 3—honed
workpiece, 4—honing equipment.

Figure 24 shows the sound pressure level for different mean values of the variable stroke feed of
the honing head. Figure 24 shows that the lower value of the sound intensity level is obtained for the
mean value range of the variable stroke feed of the honing head.
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A lower sound level [dB] value means the occurrence of lower cutting forces, associated with the
occurrence of lower cutting forces for the middle range of the applied feed.
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4.3. Analysis of Image of Honed Workpieces in Matlab’s Image Processing Toolbox

Figures 25 and 26 show the temperatures of the processed object obtained during honing. Using
the HSV description method, it was proposed to analyze the temperature distribution over the surface
of the entire object. Instead of checking the highest temperature to which the honed object has
heated up, an analysis of the uniformity of the temperature of the entire object was proposed. As shown
in Figure 25, the temperatures analyzed in the Matlab Image Processing Toolbox module (value and
degree of heating of the object) are verified using the Hue, Value, and Saturation parameter.
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Figure 25. Matlab Image Colour Thresholder—analysis of thermogram of honed workpiece on
CNC vertical milling machine Haas VF-3SS (earlier stage of honing (than on Figure 26). H—hue,
S—Saturation, and V—Value (HSV).

It can be clearly noticed that in Figure 26, i.e., on the workpiece after processing (heated from
honing), the H parameters shift to the right toward the red shade, which means that the workpiece
has heated up (the recorded thermogram shows a higher temperature than at the beginning of the
treatment). The value and saturation of the color, the S and V parameters, respectively, also shift to
the right, which suggests an increase in the temperature value on a larger surface of the object to
be polished.

The task of the automatic cell is to monitor the degree of heating of the object, while the H
parameter takes the appropriate color value, the S and V parameters respectively will confirm that the
object has been heated evenly over the entire surface.



Machines 2020, 8, 70 22 of 29

As shown in Figure 26 the hotter the temperature of honed workpiece, the more bright red color.
Figure 26 also shows the shifting of the amount of the measured light color to the right, i.e., toward the
lighter colors, by means of arrows.
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The analysis of the thermogram, in contrast to the analysis of only the maximum temperature of
the workpiece, can provide information about the local temperature increase of the honed workpiece
during machining, which provides comprehensive knowledge about the temperature rise in the
workpiece for different cross-section thicknesses and for different places on the honed hole.

Figure 27 shows a window view from the FlexSim 2020 simulator in which a simulation of honing
on an automated cell was prepared and compared to conventional honing. The automatic cell enables
more than 20 times faster production than in the conventional way.
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Figure 27. Window from the FlexSim 2020 simulator—comparison of production on a conventional
station and on an automatic cell; 1—automated honing cell (efficiency of automated honing cell:
11.6 workpieces/h), 2—conventional honing cell (efficiency of traditional honing: 0.5 workpiece/h).
3 and 4—FlexSim 2020 simulation’s algorithms of honing process in Process Flow.
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5. Discussion

Building a test stand with all components listed in the article will allow to produce workpieces of
complex shapes with different wall thickness and required specifications. The proposed honing cell
consists of CNC honing center with honing equipment, thermographic camera, profilographometer,
sound intensity measuring device, software for a thermographic camera, software for a roughness
gauge, software for a sound level meter, cooling nozzle, measuring instruments—a diaphragm gauge,
and computers enabling simultaneous observation of changes of data for individual instruments could
enable the automation of honing process and the reduction of manufacturing time.

When changing the machining parameters and when switching the honing process on and off,
individual devices had to be turned on, set, turned off, and properly turned on and off for collecting
data in a dedicated software. After setting up the tooling, it was necessary to upload the appropriate
program to the CNC machine, turn on individual devices and their dedicated software.

A very advantageous solution would be to create a honing cell with all listed elements implemented
in honing machine and used simultaneously during honing.

The automatic honing cell could monitor on-line the temperature of the honed workpiece,
the pressure of the whetstones obtained during machining, the sound level of honing process,
and depending on the honing process conditions, it could automatically, using the CCR module,
create an abrasive grain path shape with an appropriate radius of curve curvature to improve machining
conditions. An important conclusion is the possibility of about a 20-fold increase in the efficiency of
serial production of honing thin-walled objects

6. Conclusions

Performing a simulation of machining before the honing process enables the selection of machining
parameters before the process begins, it would be particularly valuable to program the shape of the
grain trajectory with a specific value of the curve radius adjusted to the honed workpieces.

The measurement of the sound intensity in the honing process is a valuable source of information
because the value of the sound level is directly related to the processing conditions, which is easily
noticeable in the way that the lower sound level corresponds to the lower cutting forces occurring at a
given processing time.

The temperature increase of the honed workpieces can be monitored during the honing process,
the advantage of the HSV method is the fact that we analyze the temperature distribution over the
entire smoothed surface, and not only collect information about the maximum temperature obtained,
this method has many advantages, mainly that it can control the temperature distribution in such a
way that the honing process heats the workpiece uniformly.

Supervision and control of the honing process enables about twenty-fold reduction of the time
needed to perform honing machining of thin-walled objects and of variable thicknesses of workpieces,
because of the elimination of the need to divide the processing into several stages, followed by cooling
to the ambient temperature, in which diameter of the honed hole can be measured.

The analysis of the surface texture obtained during honing process, with the use of the neural
networks, allows for quick verification whether the obtained surface has a uniform texture shape of the
obtained oil channels or whether additional corrective machining passes of honing head are required.
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