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Abstract: The optimization process of compressors is usually regarded as a ‘black-box’ problem,
in which the mathematical form underlying the relationship between design parameters and the
design objective is impractical and costly to be obtained. To solve the ‘black-box’ problem, Bayesian
optimization has been proven as an accurate and efficient method. However, the application of such
a method in the design of compressors is rarely discussed, particularly no work has been reported
in terms of the positive displacement type compressor. Therefore, this paper aims to introduce the
Bayesian optimization to the design of positive displacement compressors through the optimization
process of the novel limaçon compressor. In this paper, a two-stage optimization process is presented,
in which the first stage optimizes the geometric parameters as per design requirements and the
second stage focuses on revealing an optimum setting of port geometries that improves machine
performance. A numerical illustration is offered to prove the validity of the presented approach.

Keywords: positive displacement; limaçon of Pascal; rotary compressor; optimization; Bayesian opti-
mization

1. Introduction

In compressor design, information solely obtained from the simulation of the mathe-
matical model is usually insufficient to reflect the thorough relationship between the design
parameters and design objective in terms of performance. As such, designers often need to
rely on optimization strategies to reveal the optimum design scenario before reaching the
final decision on the prototype.

The published literature shows that various optimization techniques have been ap-
plied to the design optimization of the positive displacement machine and compressor in
particular. Ooi [1] applied the direct-search method to seek a set of six machine dimensions
and seven design constraints, which can minimize the mechanical losses of the rolling
piston compressor. The author reported that a predicted 50% reduction in mechanical
loss, which increases 14% of the coefficient of performance, can be achieved with a proper
combination of design dimensions. Liu et al. [2] employed the gradient search method
to determine optimum dimensions of bearing components that can reduce the frictional
loss occurring in the scroll compressor. Based on the optimization result, the author found
that the frictional loss can be reduced in the range of 14.1% to 18.1%. Sultan and Kalim [3]
adopted the simultaneous perturbation stochastic approximation (SPSA) method to find
the best piston trajectory of the reciprocating compressor, and the authors also employed
the gradient-based optimization to determine the machine dimensions which can real-
ize such a trajectory. Recently, the SPSA approach has also been utilized in the work of
Phung and Sultan [4] to design a new embodiment of the limaçon machine referred to
as the limaçon-to-circular machine. Like other limaçon machine embodiments, this new
design can be used as expanders, compressors, and potentially pumps. Cavazzini et al. [5]
adopted topology optimization, which combines the particle swarm method with the
computational fluid dynamics, to determine the geometric parameters that can maximize
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the machine efficiency of the scroll compressor. The authors discovered that the compressor
performance is more sensitive to the variation of three parameters, which are the size
of the discharge port, the number of coils, and the radius of orbiting scroll. Silva and
Dutra [6] used the genetic optimization algorithm to find an optimum piston trajectory
that maximizes the performance of the reciprocating compressor. The authors reported
that the optimum piston trajectory reduces the losses from the heat transfer and leakage,
increasing the thermodynamic efficiency from 88.3% to 92.1% and the volumetric efficiency
from 70.9% to 72%. In their latest work, Aw and Ooi [7] presented a comprehensive review
of the previous investigation conducted on sliding-vane and rolling piston compressors.
The authors discussed various aspects of these two types of compressors and pointed out
the importance of the optimization process with respect to the development and design
evolution of rotary type compressors.

It is worth mentioning that the process executed by the compressor is rather intricate,
and the mathematical expression underlying such a process is impractical to be obtained,
leading to the optimization of the compressor becomes a ‘black-box’ problem. For this kind
of optimization problem, iterative methods such as direct-search or gradient-search are
generally time-consuming and costly. One preferable alternative is the surrogate-based
technique such as Bayesian optimization. In fact, many studies have proven that Bayesian
optimization is an efficient and accurate tool for problems in which the evaluation of
objective function is computationally expensive [8–10]. In the past decade, this method has
become popular in many areas of science and engineering, including integrated system
design [11], chemical engineering [12], policy optimization [13], and rail network [14].
Despite the successful application in various disciplines, the utilization of Bayesian opti-
mization in the design of compressors is rarely discussed, particularly no work has been
reported in terms of the positive displacement type compressor. Therefore, this paper
attempts to introduce the concept of Bayesian optimization to the field of positive displace-
ment compressors by way of presenting the optimization process of the novel limaçon
compressor. The proposed optimization process will be implemented through a two-stage
process, in which the first stage optimizes the geometric parameters that determine the
overall size of the machine as per design requirements. Based on the result of the first
stage, the second stage is intended to reveal the parameters of the port geometry, which
contains the angular location, angular width, and the length of the port, that can maximize
the machine performance, such as the isentropic efficiency and the volumetric efficiency.

2. Geometric Characteristics of the Limaçon Compressor

One feature distinguishing the limaçon compressor from other types of rotary com-
pressors is that the profiles of the housing and rotor are developed from a mathematical
curve named the limaçon of Pascal. In fact, the use of the limaçon technology in fluid
machinery can be traced back to the 1800s, but none of those early designs received enough
attention from either industrial or academic communities owing to the limitation of manu-
facturing methods and the lack of mathematical understanding. Over the last two decades,
the work of Sultan [15–18] offered good insights into the limaçon technology, and some
studies on the application of the limaçon technology in the gas expander have been re-
ported recently [19–21]. However, the investigation of this technology in the compressor
is still rarely reported in the available literature. This section is intended to present the
geometric characteristics of the limaçon compressor.

Analogous to other types of rotary compressors, the limaçon compressor has ad-
vantages such as being compact in size and light in weight. Additionally, the limaçon
compressor possesses better sealing performance as the rotor apices are in constant contact
with the housing during the operation, and the two-lobe design of the rotor also implies the
double-acting nature of the machine. Most distinctively, a larger capacity can be realized
by adjusting the limaçon aspect ratio without changing the machine size, thereby allowing
for a higher power-to-weight ratio.
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Figure 1 below shows a typical limaçon compressor and its working process. As
shown in the Figure 1a, the rotor chord, p1 p2, performs sliding and rotational motion about
the limaçon pole, o, during its operation. As the rotor moves, the midpoint of the chord, m,
is kinematically connected to the circumference of the housing base circle whose radius is
r; the profile of the limaçon housing can be obtained by tracing the path of the chord apex,
p1 or p2. To readily describe the parametric coordinates of the chord apices, two Cartesian
frames, XoYo and XmYm, are respectively introduced at o and m. The housing profile in the
XoYo coordinate can be expressed as:{

xh = r sin 2θ + L cos θ
yh = r− r cos 2θ + L sin θ

(1)

where L is half rotor chord length and θ is the angular displacement swept by the chord
from the Xo- to the Xm-axis. It is worthy of mentioning here that the shape of the housing
profile is dependent on a geometric factor which is referred to as the limaçon aspect ratio,
β = r

L . For a limaçon curve that is applicable to fluid machinery, the limaçon aspect ratio
needs to be less than 0.25 so that the housing profile can be produced as single-looped and
dimple-free.

The lenticular profile of the rotor can be developed by mirroring the lower portion
of the limaçon housing (i.e., θ ∈ [π, 2π]) about the chord. However, this could lead to
undesirable housing-rotor interference at the lower portion of the housing as the limaçon
curves that are respectively used for the housing and rotor profiles share the same base
circle. To avoid this interference, it is necessary to shorten the half rotor chord length, L,
by a distance Lc; the parametric expression of the rotor with respect to the moving frame,
XmYm, can then be obtained as follows:{

xr = rr sin θr + (L− Lc) cos θr
yr = rr − rr cos 2θr + (L− Lc) sin θr

(2)

where rr is the radius of the rotor base circle which is identical to r in this design, and
θr ∈ [π, 2π] is the angle measured from the Xm-axis to any point on the rotor profile.
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Of important note is that the value of Lc needs to be carefully regulated in order
to ensure the clearance, ∆, between the housing and the rotor would not fall below a
minimum allowable value, ∆min, assigned to the design. The expression of ∆ has been
proposed by Sultan [16] as follows:

∆ =
−2βL3 sin(θ − ϕ)− L2

3
L√

L2
3

L2 + 4β sin θ
(

β sin θ + L3
L cos ϕ

) + L (3)

where ϕ is the angle measured from the Xm-axis to the radial line L3 connecting m to a
point p3 on the rotor profile as shown in Figure 2. L3 has the expression as follows:

L3 = 2rr sin(ϕ + π) + (L− Lc) (4)
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To obtain an appropriate value for Lc which can produce ∆ that meets the design
requirements, the following conditions must be simultaneously satisfied:

∂∆
∂θ = 0
∂∆
∂ϕ = 0

∆− ∆min ≥ 0
(5)

The two angles, θ and ϕ, obtained from Equation (5) are to locate the angular position
of the minimum clearance, making sure that Equation (3) using these angles will always
yield the lowest value of Lc in terms of the proposed ∆min.

As shown in Figure 1, the working chamber of the limaçon compressor is separated
by the rotor into the upper and the lower portions. Such a configuration implies the fact
that the limaçon compressor is a double-acting machine by nature, i.e., the suction process
correspondingly occurs in the lower chamber when the discharge process is being con-
ducted in the upper chamber. As such, the limaçon compressor is capable of compressing
the working fluid twice per revolution of the crankshaft, and the net volume available for
each compression charge can be expressed as a function of θ as follows:

Vc = HL2
[

π

(
β2 − r2

r
L2 +

Lc

L

(
1− Lc

2L

))
− 4β cos θ + 4

rr

L

(
1− Lc

L

)]
(6)

where H is the axial length of the rotor measured perpendicular to the page.
Equation (6) shows that the variation of chamber volume follows a sinusoidal manner

where the maximum and the minimum values are at θ = π and θ = 0, respectively.
Generally, the minimum volume, provided that the rotor-housing clearance condition is
satisfied, should be kept as small as practical so that the volumetric performance and
machine capacity would not significantly deteriorate. To determine whether the limaçon
compressor can present a satisfactory performance, a volumetric ratio, R, is employed.
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This volumetric ratio, R, is defined as the minimum volume to the maximum volume of
the working chamber as follows:

R =
π
(

β2 − r2
r

L2 +
Lc
L −

L2
c

2L2

)
− 4
(

rr Lc
L2 + β− rr

L

)
π
(

β2 − r2
r

L2 +
Lc
L −

L2
c

2L2

)
− 4
(

rr Lc
L2 − β− rr

L

) (7)

In addition, the volume of the working fluid, Vi, induced into the chamber by each
suction stroke can be used to indicate the machine capacity and which is calculated as:

Vi = Vc|θ=θcut
− µ Vc|θ=0 (8)

where θcut ∈ (0, π] indicates the end of the suction process. The clearance volume factor, µ,
is assigned by the designer to include the effect of residual fluid in the minimum chamber
on the suction process. The expression for this factor is shown below:

µ =
ρo

ρi
(9)

where ρi and ρo are the densities of the fluid flowing in and out of the compressor, respec-
tively. By combining Equations (6) and (8), Vi can be expressed in a detailed fashion as
follows:

Vi = HL2(1− µ)

[
π

(
β2 − r2

r
L2 +

Lc

L

(
1− Lc

2L

))
+ 4

rr

L

(
1− Lc

L

)]
− 4βHL2 cos(θcut − µ) (10)

3. Mathematical Model
3.1. Mass Flow Rate through the Inlet Port

The mass flow rate through the inlet port can be expressed as:

.
mi = ρi Aiui (11)

where ρi, ui, and Ai are the density, velocity of the fluid, and the instantaneous area of the
inlet port at the downstream side, respectively. The computation process of ui and Ai can
be based on the work of Sultan and Schaller [19].

3.2. Mass Flow Rate through the Discharge Valve

The limaçon compressor is designed with a discharge valve to control the fluid flowing
out of the chamber and to prevent backflow from the outlet manifold. The mass flow rate
through the discharge valve can be expressed as:

.
mv = ρv Avuv (12)

where ρv and uv are the density and the velocity of the fluid at the downstream side of the
valve, and Av is the effective flow area of the valve obtained from the expression suggested
by Tuymer and Machu [22]:

Av =
1√(

1
0.85πDvp(z−zmin)

)2
+
(

1
Avp

)2
(13)

where Dvp and Avp are the effective diameter and area of the valve plate, respectively. The
terms z and zmin are, respectively, the instantaneous and the minimum displacement of the
valve plate; the instantaneous displacement, z, can be obtained from the dynamic model of
the discharge valve shown below:

mvp
d2z
dθ2 =

F− Fr

ω2 (14)
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In Equation (14), F is the force due to the pressure difference between the two sides of
the valve, which is expressed as:

F = Cd Avp(Pvc − Pot) (15)

where Cd is the drag coefficient, Pvc and Pot are the pressure in the valve chamber and
outlet storage tank, respectively. The resistance force, Fr, provided by the spring-damper
system (including springs and dampers of the valve, valve seat, and stopper) is calculated
in accordance with the valve instantaneous displacement, z, as follows:

Fr =


ω(Cv + Cse)

dz
dθ + (kv + kse)z− ksezmin, i f z < zmin

ωCv
dz
dθ + kvz, i f zmin < z < zmax

ω(Cv + Cst)
dz
dθ + (kv + kst)z− kstzmax, i f z < zmax

(16)

where C, k, and zmax are the damping coefficient, the spring stiffness, and the maximum
allowable displacement of the valve, respectively; the subscripts v, se, and st represent the
valve, the seat, and the stopper, respectively.

3.3. Side and Apex Leakage

For the limaçon compressor, most leakage occurs at the side clearance, the gap between
the rotor and the front and back plates of the machine, and apex clearance due to the
pressure difference between working chambers. Hence, the total leakage mass flow rate,
.

ml , is the sum of the side leakage,
.

ms, and the apex leakage,
.

ma,

.
ml =

.
ms +

.
ma (17)

where the side leakage
.

ms is calculated using the same approach as
.

mi (Equation (11)) as
shown below:

.
ms = ρs Asus (18)

where ρs is the downstream density, As is the side leakage flow area which is calculated
from the half rotor chord length, L, and the side clearance, Ls,

As = 4LsL (19)

The apex leakage
.

ma is formulated by assuming that the leakage through the apex is
isentropic flow similar to that of the convergent-divergent nozzle. Apex leakage calculation
can be shown as follows:

.
ma =


C f AaPau

√√√√ 2γρau
(γ−1)Pau

[(
Pad
Pau

) 2
γ −

(
Pad
Pau

) γ+1
γ

]
, i f Pad

Pau
>
(

2
γ+1

) γ
γ−1

C f AaPau

√
ρau
Pau

(
2

γ+1

) γ+1
γ−1 , i f Pad

Pau
<
(

2
γ+1

) γ
γ−1

(20)

where C f is the flow coefficient, Pau and Pad are the pressure at the upstream and the
downstream of the leakage path, respectively, ρau is the upstream density at the throat, γ is
the specific heat ratio, Aa is the leakage flow area at the apex clearance, which is calculated
as:

Aa = 2LcH (21)

To reduce the effect of the apex leakage on machine performance, a sealing scheme
can be applied to the machine apices. The mathematical model of apex seal and the seal
dynamic behavior is detailed in the work of Phung and Sultan [21].
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3.4. Thermodynamic Model

By assuming the compressor is working adiabatically, the variation of properties of
the working fluid inside each working chamber (i.e., the upper and lower chamber) can be
obtained, based on the first law of thermodynamics as well as the conservation of mass,
as follows:

dρc

dθ
=

1
Vcω

( .
mi −

.
mo −

.
ml − 4ρcωβL2H sin θ

)
(22)

dsc

dθ
=

1
ρcVcTcω

( .
mi(hi − hc)−

.
mo(ho − hc)−

.
ml(hl − hc)− 4ρcωβL2H sin θ

)
(23)

In Equations (22) and (23), ρc, sc and Tc denote density, entropy, and temperature
inside the working chamber, respectively, h represents the enthalpy, and the subscripts
i, o, and l indicate the inlet port, outlet tank, and leakage, respectively. A more detailed
modelling process of the thermodynamic model of the limaçon machine can be found in
the work of Sultan [20]. To simulate the behavior of the compressor in one cycle, the above
set of differential equations is solved iteratively where the values of various variables
are compared at the start and the end of each cycle to signify the cyclical nature of the
compressor operation. The comparison is performed with the help of the error function, σ,
shown below:

σ =
√

σ1 + σ2 + σ3 + σ4 (24)

where σ1, σ2, σ3 and σ4 are obtained as follows:

σ1 =

(
2
(

PA
c (θli + π)− PB

c (θ)
)

PA
c (θli + π) + PB

c (θ)

)2

(25)

σ2 =

(
2
(

PB
c (θli + π)− PA

c (θ)
)

PB
c (θli + π) + PA

c (θ)

)2

(26)

σ3 =

(
2
(
ρA

c (θli + π)− ρB
c (θ)

)
ρA

c (θli + π) + ρB
c (θ)

)2

(27)

σ4 =

(
2
(
ρB

c (θli + π)− ρA
c (θ)

)
ρB

c (θli + π) + ρA
c (θ)

)2

(28)

where superscripts A and B represent the upper chamber and the lower chamber, respec-
tively. If the error function is not small enough, the parameters at the end of the cycle are
employed as initial conditions in the following iteration.

3.5. Simulation of the Limaçon Compressor

In this section, a simulation of the limaçon compressor is presented based on the
mathematical models above. Air is selected as the working fluid and the assumption of
geometric parameters used in the simulation is listed in Table 1. The ambient tempera-
ture is assumed at 20 ◦C and the inlet and outlet pressure are set as Pi = 100 kPa and
Po = 300 kPa, respectively. The operating speed of the crankshaft is assumed at 1400 rpm
in the simulation. The simulation is conducted for one working cycle and Figure 3 depicts
the variation of some properties, including the pressure and temperature of fluid, the
volume of the working chamber, and the torque.
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Table 1. Geometric parameters used in the simulation.

Geometric Parameters Values

Half-length of the rotor-chord, L 0.0517 m

Axial length of the rotor, H 0.0672 m

Rotor clearance, Lc 1 mm

Side clearance, Ls 0.01 mm

Aspect ratio, β 0.1

Leading edge of inlet port, θli −7.5◦

Leading edge of outlet port, θlo 175◦

Angular width of inlet port, ∆θi 11◦

Angular width of outlet port, ∆θo 10◦

Length of inlet port, Lpi 0.0336 m

Length of outlet port, Lpo 0.0222 m
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3.6. Performance Indices

The performance of a rotary compressor is usually described by a series of indices. In
the present study, the performance of the limaçon compressor is indicated by two of the
most used performance indices, which are the isentropic efficiency, ηis, and the volumetric
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efficiency, ηvol . The isentropic efficiency is defined in this paper as the ratio of the ideal work
to the actual work, which can be written in terms of enthalpies, as shown in Equation (29):

ηis =
(ho − hi)

(ho,actual − hi)
(29)

where ho, actual is the actual enthalpy at the discharge manifold.
Another performance index used in the current study is the volumetric efficiency,

which is the ratio of the actual suction mass of fluid to the amount of fluid, mid, ideally
drawn into the chamber, as shown in Equation (30):

ηvol =
mi
mid

(30)

The ideal mass of fluid processed per working cycle is given as:

mid = 2ρiVs (31)

where Vs is the swept volume and it is calculated as:

Vs = Vc(π)−Vc(0) (32)

For each working cycle, the total mass of the fluid flowing into the chamber can be
calculated as per Equation (33) below:

mi = 2δθ


N

∑
n=1
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.
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i
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n
−
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−
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i

)
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 (33)

where δθ is the size of the angular interval, n is the successive point, and N is the total
number of intervals. It is worth mentioning here that the multiplication of a factor of
2 appears in Equations (31) and (33) due to the double-acting nature of the machine.

4. Optimization Process
4.1. Bayesian Optimization Method

Bayesian optimization is a class of surrogate-based global optimization targeting to
find the minima (or maxima) of an output y over an input x in a domain
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where ߪ is the standard deviation, ܫ is the identity matrix, ݓ is a vector of weights, and ܭ௫ is the covariance matrix that has the form 

y (34)

where the mathematical expression underlying the relationship between x and y cannot
readily be explicitly defined. In practice, Bayesian optimization starts with building a prior
distribution based on observations to express assumptions about the black box objective
function. It is necessary to point out that the actual value of the function generally differs
from the observed one as errors occurring in aspects, such as recording or measuring,
are not avoidable. Therefore, the optimization procedure will be more realistic if the
observation used to develop the prior distribution is added up with a noise factor, ε, such
that those errors can be considered into the process, and the actual function value y is then
calculated as

y = f + ε (35)

where f is the observed function value.
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Suppose that there are n sets of observation have been made, Bayesian optimization
employs statistical methods, particularly Gaussian Process (GP), to sample the observations,
which is associated with the input x as follows [23],

f =
(

Kx + σ2 I
)

w (36)

where σ is the standard deviation, I is the identity matrix, w is a vector of weights, and Kx
is the covariance matrix that has the form

Kx =


k(x1, x1) k(x2, x1) . . . . . . k(xn, x1)
k(x1, x2) . . . . . . . . . . . .

. . . . . . . . . . . . . . .

. . . . . . . . . . . . . . .
k(x1, xn) . . . . . . . . . k(xn, xn)

 (37)

In Equation (37), each element in the matrix is a covariance function that describes the
relationship between points xi and xj (i, j = 1, 2, . . . , n). For the optimization of the limaçon
compressor, the Matern 5/2 covariance function is used, which has the form

k
(

xi, xj
)
= c1

(
1 +

√
5l2
(
xi, xj

)
+

5
3

l2(xi, xj
))

exp
(
−
√

5l2
(

xi, xj
))

(38)

where l2(xi, xj
)
= ∑

n

(xi−xj)
2

c2
2

is the radial basis function, and c1 and c2 are the hyperpa-

rameters.
Given that one seeks to predict the function value at a new point x∗, one can set up

the relation between x∗ and observed points as follows,

K∗x =
[

k(x∗, x1) k(x∗, x2) . . . k(x∗, xn)
]

(39)

The predicted function value at the point x∗ can then be computed as

f ∗ = [K∗x ]
T
(

Kx + σ2 I
)−1

f (40)

In Bayesian optimization, Equation (40) is referred to as the surrogate model of the
objective function, and the variance σ∗2 that describes the uncertainty on the prediction
can be calculated as

σ∗2 = k(x∗, x∗)− [K∗x ]
T
(

Kx + σ2 I
)−1

K∗x (41)

Based on the above equations, the objective function can be evaluated at any input
point, and the obtained function value can be verified by using the selected input in the
real process. From the optimization point of view, however, it would be time-consuming
and wasteful if the evaluation is conducted on any point that is arbitrarily selected in the
searching domain. As such, Bayesian optimization employs the acquisition function to
guide the search of the next query point. The mechanism of the acquisition function for
selecting the next query point is based on the prediction ( f ∗) and the uncertainty (σ∗2) of
the candidate point. In fact, the acquisition function can be regarded as the examiner of a
scoring process. With low prediction (for minimization problems) and high uncertainty,
the candidate point obtains a high score from the acquisition function, and the candidate
point with the highest score will be selected as the next query point.

Currently, there are many available acquisition functions, e.g., Probability of Im-
provement (PI) and the Expected Improvement (EI). For the optimization of the limaçon
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compressor, the scaled expected-improvement acquisition function (ScaledEI) is used [24],
which has the following form

ScaledEI(x∗) =
EI(x∗)√
VI(x∗)

(42)

In Equation (42), EI is the normal expected-improvement acquisition function that
takes the form:

EI(x∗) =
{

( fmin − f ∗)Φ(Z) + φ(Z)σ∗, i f σ∗ > 0
0, i f σ∗ = 0

(43)

where fmin is the minimum function value that is observed, Φ and φ denote the probability
density function and cumulative density function, respectively, and Z is expressed as:

Z =
fmin − f ∗

σ∗
(44)

The term VI in Equation (42) is the variance of the improvement quantifier, which has
the form:

VI(x∗) = σ∗2
(

Z2 + 1
)

Φ(Z) + (Z)φ(Z)− EI(x∗)2 (45)

A comprehensive explanation of ScaledEI can be sought in the work by Noè and
Husmeier [24].

Subsequently, the selected query point and its corresponding function value of the
real process will be used to update the GP and the process will be repeated till the termi-
nating criteria are satisfied. This also reveals another feature of the Bayesian optimization
technique, that is the knowledge of the surrogate function is kept updating along the
optimization process, thereby refining the surrogate model.

4.2. Two-Stage Optimization

The optimization of the limaçon compressor in this paper employs the Bayesian opti-
mization presented in the above section. Due to the fact that that the thermodynamic model
is complex and computationally intensive, the optimization procedure is implemented by
a two-stage process to reduce the computation cost of the overall optimization process.
The first stage is to optimize the geometric parameters, including the half chord length,
L, the limaçon aspect ratio, β, and the rotor clearance, Lc, to meet the specified design
requirements. The obtained outcome is evaluated in terms of an evaluation function shown
below:

Eo1 =
√

w1F1 + w2F2 + w3F3 (46)

where w1, w2, and w3 are weighting factors assigned by the designer to highlight the
significance of the corresponding term in the evaluation; F1, F2, and F3 are evaluation
functions of design requirements associated with ∆, R and Vi, which are respectively
expressed as follows: 

F1 = R− Rreq
F2 = Vi −Vreq
F3 = ∆− ∆req

(47)

where the subscript req denotes the design requirement. One should note that ∆ used in
F3 is the lowest value of the rotor-housing clearance in terms of the proposed outcome.
Therefore, conditions in Equation (5) must be satisfied on top of Equation (47), and the
input vector of design variables for the first stage, xo1, is then given as:

xo1 =
[

L β Lc
]T (48)

In the first stage, 10 sets of xo1 will be randomly generated and the corresponding Eo1
will be calculated by using the geometric model proposed in Section 2. These pre-collected
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data will be regarded as observations that are employed by GP to build the surrogate model.
Subsequently, 1500 sets of new input points, x∗o1, will be sampled from the search domain
and feed to the acquisition function to determine the next query point. The determined
query point will be then used to calculate the corresponding E∗o1, which will be saved
and used to update the GP till the terminating criteria are reached. When the terminating
criteria are satisfied, the machine size will be determined based on the x∗o1 that achieves the
lowest value of the recorded E∗o1, and the second stage optimization will be implemented
on top of these geometric parameters to improve the machine performance by modifying
the setting of the inlet and outlet ports by utilizing the thermodynamic model presented in
Section 3.4. The design variables of this stage, xo2, is given as follows:

xo2 =
[

θli θlo ∆θi ∆θo Lpi Lpo
]T (49)

where θl , ∆θ, and Lp are the angular location of the port leading edge measured from the
Xo-axis, the port angular width, and the port length, respectively; the subscript i and o
represent the inlet port and the outlet port, respectively. The evaluation function of this
stage is given by incorporating the performance indices (i.e., isentropic efficiency, ηis, and
volumetric efficiency, ηvol) obtained from the mathematical model:

Eo2 =

√
w4(1− ηis)

2 + w5(1− ηvol)
2 (50)

where w4 and w5 are weighting factors assigned by the designer. The steps of the second
stage are similar to that of the first stage, except that 20 sets of x∗o2 and the corresponding
E∗o2 will be collected before initiating the optimization process. It should be mentioned
here that it is relatively impractical to extract the exact combination of design variables
that can produce the global optimum of E∗o1 and E∗o2 due to the high complexity of the
relationship between design variables and design objectives. Instead, a more feasible way
is that the optimum outcome is reflected by a set of results obtained from the optimization
procedure. Figure 4 illustrates the process of the two-stage optimization employed in the
current study.
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5. Numerical Illustration

In this section, a numerical illustration is presented, and assumptions of the opti-
mization process, such as operating conditions and weighting factors, are listed in Table 2.
Mathematically, the searching domain of design variables can be simply set according to
the corresponding geometric constraints, e.g., L ∈ [0,+∞]. For a real compressor, however,
it is unrealistic for L to be zero or a very large value. Hence, by considering the actual
design situation, the searching domain of each design variable is selected, as shown in
Table 3.
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Table 2. Assumptions of the optimization process.

Parameters Value

Speed of the crankshaft 1400 rpm

Temperature at inlet port, Ti 20 ◦C

Pressure at inlet port, Pi 100 kPa

Pressure at outlet port, Po 300 kPa

Clearance volume factor, µ 5

Cut-off angle of the suction process, θcut π

Weighting factors

w1 1

w2 1000

w3 100

w4 1

w5 1

Table 3. The searching domain of each design variable.

Design Variable Lower Limit Upper Limit

Half chord length, L 0.04 m 0.15 m

Aspect ratio, β 0.04 0.22

Rotor clearance, Lc 0.5 mm 1.5 mm

Leading edge of inlet port, θli −7.5◦ 3◦

Leading edge of outlet port, θlo 175◦ 200◦

Angular width of inlet port, ∆θi 4◦ 16◦

gular width of outlet port, ∆θo 4◦ 16◦

Length of inlet port, Lpi 0.02 m 0.09 m

Length of outlet port, Lpo 0.02 m 0.09 m

Figure 5a depicts a histogram that shows the distribution of Eo1 based on results
obtained from the first stage. It is clear that the majority of the result is concentrated
in the low-value region (i.e., the first cluster in the figure), indicating that the proposed
optimization tends to produce promising outcomes. Figure 5b–d present the distribution
of each design variable that yields the result of the first cluster of Figure 5a, which provides
useful information to guide the setting of design variables in order to obtain an optimum
outcome. The combination of design variables that achieve the minimum Eo1 is used to
calculate objective parameters, which are compared with the design requirements as shown
in Table 4. With the selected design variables, the limaçon compressor is designed with a
volumetric displacement of 720 cm3 per revolution of the crankshaft.
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Table 4. Comparison of obtained result and required result.

Objective Parameters Required Value Obtained Value

Volume ratio, R 0.02 0.0193

Induced volume per suction process, Vi 3× 10−4 m3 3.316× 10−4 m3

Rotor-housing clearance, ∆ 5× 10−4 m 5.9× 10−4 m

Figure 6 depicts the distribution of Eo2, which exhibits a similar pattern to that of Eo1.
The distribution of design variables of the second stage is presented in Figure 7. Based
on the first cluster of Figure 6, the optimization yields an average isentropic efficiency of
93.81%, peaking at 97.05% and an average volumetric efficiency of 83.62% with the highest
of 86.99%.
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Based on the results, the designer will obtain a range for every design parameter from
which an acceptable design can be manufactured. However, it should be pointed out that
the optimization is conducted by assuming the compressor is working under a constant
operating speed and pressure ratio, making the optimum design only valid for the given
working condition. In actual applications, the machine is generally required to handle
various tasks while maintains acceptable performance; therefore, it is necessary to evaluate
the design under different working conditions. In the current work, the result whose
design variables achieve the minimum Eo1 and Eo2 is considered as the optimum design.
Figure 8 shows the performance of the proposed optimum design with respect to different
speeds of the crankshaft. It is found that the optimum design can exhibit relatively stable
performance when the speed varies within a small percentage around that used in the
optimization. Figure 9 depicts the machine performance under different outlet pressure. It
is obvious that the isentropic efficiency is not sensitive to the changes occurring in the outlet
pressure, as reflected by the nearly flat curve in Figure 9. For the volumetric efficiency, it
decreases as the outlet pressure increases, but the reduction is not significant when the
outlet pressure fluctuates around the value used in the optimization, thus suggesting a
reasonable level of robustness. Based on Figures 8 and 9, the best performance is found
to be 99.09% for isentropic efficiency and 86.25% for volumetric efficiency, and they are
compared with the reported performance of other types of rotary compressors to highlight
the significant potential of the limaçon compressor, as shown in Table 5.
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Figure 8. Performance of the optimized compressor under different speeds (at Po = 300 kPa).
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Table 5. Performance comparison of other types of rotary compressors.

Type
Volumetric

Displacement per
Revolution

Working
Fluid

Reported Maximum
Performance

Limaçon 720 cm3 Air 86.25% (Volumetric),
99.09% (isentropic)

Hermetic scroll [25] - R134A 72% (Isentropic)

Swing-vane [26] 10.49 cm3 R410A 91% (Volumetric),
79% (Isentropic)

Coupled-vane [27] 44 cm3 Air 79% (Volumetric)

Asymmetrical sliding vane [28] 1.79 cm3 Air 73.27% (Volumetric)
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6. Conclusions

In this paper, the Bayesian optimization technique is applied in a two-stage optimiza-
tion process of the limaçon compressor, where the first stage determines the size of the
compressor as per design requirements and the second stage aims to optimize the setting of
the port to improve machine performance. The results of the numerical illustration prove
the validity of the proposed method for the given design tasks with obtaining satisfactory
machine performance. Additionally, a discussion is presented on the effects of operating
parameters (pressure ratio and speed) on the performance of the optimized design. It is
found that the optimized design exhibits relatively stable isentropic efficiency over the
tested range of the speed and the outlet pressure, whereas volumetric efficiency can be
maintained within an acceptable range when the operating condition is around that used in
the optimization. This provides the designer useful information on the suitable operating
conditions for the optimized design in real applications, and more importantly, it highlights
the importance of the optimization process before the prototype is produced for a specific
application.
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