A Systematic Review of Product Design for Space Instrument Innovation, Reliability, and Manufacturing
Abstract
:1. Introduction
2. Literature Review
2.1. Space Instrument
2.2. Product Development Process
2.2.1. Product Innovation
2.2.2. Disruptive Technologies in the Space Industry
2.2.3. Product Design
2.2.4. Reliability
3. Methodology
3.1. Research Design
3.2. Exclusion and Inclusion Criteria
3.3. Sources of Information and Relevant Studies
4. Results
4.1. Research Focuses
4.2. Key Consideration Factors on Instrument Design
4.3. Product Innovation and Design
4.4. Product Innovation and Manufacturing
4.5. Product Design and Reliability
5. Conclusions
Funding
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gold, R.E.; Jenkins, R.E. Advanced space instruments. Johns Hopkins APL Tech. Dig. 1999, 20, 611–619. [Google Scholar]
- García-Pérez, A.; Sorribes-Palmer, F.; Alonso, G.; Ravanbakhsh, A. Overview and application of FEM methods for shock analysis in space instruments. Aerosp. Sci. Technol. 2018, 80, 572–586. [Google Scholar] [CrossRef]
- Tam, W. The Space Debris Environment and Satellite Manufacturing. Ph.D. Thesis, Walden University, Minnesota, MN, USA, 2015. [Google Scholar]
- Chau, K.-Y.; Tang, Y.M.; Liu, X.; Ip, Y.-K.; Tao, Y. Investigation of critical success factors for improving supply chain quality management in manufacturing. Enterp. Inf. Syst. 2021, 1–20. [Google Scholar] [CrossRef]
- Calleja-Ochoa, A.; Gonzalez-Barrio, H.; de Lacalle, N.L.; Martínez, S.; Albizuri, J.; Lamikiz, A. A New Approach in the Design of Microstructured Ultralight Components to Achieve Maximum Functional Performance. Materials 2021, 14, 1588. [Google Scholar] [CrossRef]
- Tang, Y.; Au, K.; Leung, Y. Comprehending products with mixed reality: Geometric relationships and creativity. Int. J. Eng. Bus. Manag. 2018, 10, 1847979018809599. [Google Scholar] [CrossRef] [Green Version]
- Yung, K.L.; Ho, G.T.S.; Tang, Y.M.; Ip, W.H. Inventory classification system in space mission component replenishment using multi-attribute fuzzy ABC classification. Ind. Manag. Data Syst. 2021, 121, 637–656. [Google Scholar] [CrossRef]
- Van Der Veen, E.J.; Giannoulas, D.A.; Guglielmi, M.; Uunk, T.; Schubert, D. Disruptive Space Technologies. Int. J. Space Technol. Manag. Innov. 2012, 2, 24–39. [Google Scholar] [CrossRef]
- Popa, I.L.; Preda, G.; Boldea, M. A theoretical approach of the concept of innovation. Managerial Challenges of the Contemporary Society. Proceedings 2010, 1, 151–156. [Google Scholar]
- Ho, G.; Tang, Y.M.; Tsang, K.Y.; Tang, V.; Chau, K.Y. A blockchain-based system to enhance aircraft parts traceability and trackability for inventory management. Expert Syst. Appl. 2021, 179, 115101. [Google Scholar] [CrossRef]
- Tkatchova, S. Space-Based Technologies and Commercialized Development; IGI Global: Hershey, PA, USA, 2011. [Google Scholar]
- Courtland, R. Space Elevator Trips Could be Agonizingly Slow. NewScientist. 2008. Available online: https://www.newscientist.com/article/dn16223-space-elevator-trips-could-be-agonisingly-slow/#:~:text=Space%20elevators%20have%20been%20proposed,a%20counter%2Dweight%20in%20space (accessed on 6 June 2020).
- Ren, W. The Relations between Products Design and the Space Environment. Asian Soc. Sci. 2009, 4, 165. [Google Scholar] [CrossRef] [Green Version]
- Khadke, K. Engineering Design Methodology for Planned Product Innovation. Ph.D. Thesis, Michigan Technological University, Michigan, MI, USA, 2007. [Google Scholar]
- Meller, R. SpaceInstrument Instrument Development. 2010. Available online: https://www.mps.mpg.de/phd/space-instrument-development (accessed on 12 June 2020).
- Souza, A.C.D.; Alexandre, N.M.C.; Guirardello, E.D.B. Psychometric properties in instruments evaluation of reliability and validity. Epidemiol. Serviços Saúde 2017, 26, 649–659. [Google Scholar] [CrossRef]
- Haidich, A.B. Meta-analysis in medical research. Hippokratia 2010, 14, 29–37. [Google Scholar] [PubMed]
- Labaree, R.V. Research Guides: Organizing Your Social Sciences Research Paper: Types of Research Designs. Retrieved 10 November 2020. Available online: https://libguides.usc.edu/writingguide/quantitative (accessed on 2 October 2021).
- Meline, T. Selecting studies for systemic review: Inclusion and exclusion criteria. Contemp. Issues Commun. Sci. Disord. 2006, 33, 21–27. [Google Scholar] [CrossRef]
- Moher, D.; Liberati, A.; Tetzlaff, J.; Altman, D.G. The PRISMA Group. Preferred Reporting Items for Systematic Reviews and Meta-Analyses: The PRISMA Statement. PLoS Med. 2009, 6, e1000097. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Barker, M.K.; Sun, X.; Mao, D.; Mazarico, E.; Neumann, G.A.; Zuber, M.T.; Smith, D.E.; McGarry, J.F.; Hoffman, E.D. In-flight characterization of the lunar orbiter laser altimeter instrument pointing and far-field pattern. Appl. Opt. 2018, 57, 7702–7713. [Google Scholar] [CrossRef] [PubMed]
- Biasotti, M.; Boragno, C.; Barusso, L.F.; Gatti, F.; Grosso, D.; Rigano, M.; Siri, B.; Macculi, C.; D’Andrea, M.; Piro, L. The Phonon-Mediated TES Cosmic Ray Detector for Focal Plane of ATHENA X-ray Telescope. J. Low Temp. Phys. 2020, 199, 225–230. [Google Scholar] [CrossRef]
- Borgarelli, L.; Im, E.; Johnson, W.T.K.; Scialanga, L. The microwave sensing in the Cassini Mission: The radar. Planet. Space Sci. 1998, 46, 1245–1256. [Google Scholar] [CrossRef]
- Bunce, E.J.; Martindale, A.; Lindsay, S.; Muinonen, K.; Rothery, D.A.; Pearson, J.; McDonnell, I.; Thomas, C.; Thornhill, J.; Tikkanen, T.; et al. The BepiColombo Mercury Imaging X-ray Spectrometer: Science Goals, Instrument Performance and Operations. Space Sci. Rev. 2020, 216, 1–38. [Google Scholar] [CrossRef]
- Cavanaugh, J.F.; Smith, J.C.; Sun, X.; Bartels, A.E.; Ramos-Izquierdo, L.; Krebs, D.J.; McGarry, J.F.; Trunzo, R.; Novo-Gradac, A.M.; Britt, J.L.; et al. The Mercury Laser Altimeter Instrument for the MESSENGER Mission. Space Sci. Rev. 2007, 131, 451–479. [Google Scholar] [CrossRef] [Green Version]
- Clark, G.; Cohen, I.; Westlake, J.; Andrews, G.B.; Brandt, P.; Gold, R.E.; Gkioulidou, M.; Hacala, R.; Haggerty, D.; Hill, M.E.; et al. The “Puck” energetic charged particle detector: Design, heritage, and advancements. J. Geophys. Res. Space Phys. 2016, 121, 7900–7913. [Google Scholar] [CrossRef]
- Cress, R.; Maldonado, C.A.; Coulter, M.; Haak, K.; Balthazor, R.L.; McHarg, M.G.; Barton, D.; Greene, K.; Lindstrom, C.D. Calibration of the Falcon Solid-state Energetic Electron Detector (SEED). Space Weather 2020, 18, e2019SW002345. [Google Scholar] [CrossRef]
- Delkowski, M.; Smith, C.T.; Anguita, J.V.; Silva, S.R.P. Increasing the robustness and crack resistivity of high-performance carbon fiber composites for space applications. iScience 2021, 24, 102692. [Google Scholar] [CrossRef]
- Dichter, B.K.; McGarity, J.O.; Oberhardt, M.R.; Jordanov, V.T.; Sperry, D.J.; Huber, A.C.; Pantazis, J.A.; Mullen, E.G.; Ginet, G.; Gussenhoven, M.S. Compact Environmental Anomaly Sensor (CEASE): A novel spacecraft in-strument for in situ measurements of environmental conditions. IEEE Trans. Nucl. Sci. 1998, 45, 2758–2764. [Google Scholar] [CrossRef]
- Dichter, B.K.; Galica, G.E.; McGarity, J.O.; Tsui, S.; Golightly, M.J.; Lopate, C.; Connell, J.J. Specification, Design, and Calibration of the Space Weather Suite of Instruments on the NOAA GOES-R Program Spacecraft. IEEE Trans. Nucl. Sci. 2015, 62, 2776–2783. [Google Scholar] [CrossRef]
- Dickie, R.; Christie, S.; Cahill, R.; Baine, P.; Fusco, V.; Parow-Souchon, K.; Henry, M.; Huggard, P.G.; Donnan, R.S.; Sushko, O.; et al. Low-Pass FSS for 50–230 GHz Quasi-Optical Demultiplexing for the MetOp Second-Generation Microwave Sounder Instrument. IEEE Trans. Antennas Propag. 2017, 65, 5312–5321. [Google Scholar] [CrossRef]
- Dou, Y.; Jamieson, D.N.; Liu, J.; Lv, K.; Li, L. The design of the 300 MeV proton microprobe system in Harbin. Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. Atoms 2017, 404, 9–14. [Google Scholar] [CrossRef]
- Gilbert, J.A.; Lundgren, R.A.; Panning, M.H.; Rogacki, S.; Zurbuchen, T.H. An optimized three-dimensional linear-electric-field time-of-flight analyzer. Rev. Sci. Instrum. 2010, 81, 53302. [Google Scholar] [CrossRef] [PubMed]
- Godet, O.; Sizun, P.; Barret, D.; Mandrou, P.; Cordier, B.; Schanne, S.; Remoue, N. Monte-Carlo simulations of the background of the coded-mask camera for X- and Gamma-rays on-board the Chinese–French GRB mission SVOM. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrometers Detect. Assoc. Equip. 2009, 603, 365–371. [Google Scholar] [CrossRef] [Green Version]
- Goldsten, J.O.; Rhodes, E.A.; Boynton, W.V.; Feldman, W.C.; Lawrence, D.J.; Trombka, J.I.; Smith, D.M.; Evans, L.G.; White, J.; Madden, N.W.; et al. The MESSENGER Gamma-Ray and Neutron Spectrometer. Space Sci. Rev. 2007, 131, 339–391. [Google Scholar] [CrossRef]
- Hall, D.J.; Skottfelt, J.; Soman, M.R.; Bush, N.; Holland, A. Improving radiation hardness in space-based Charge-Coupled Devices through the narrowing of the charge transfer channel. J. Instrum. 2017, 12, C12021. [Google Scholar] [CrossRef] [Green Version]
- Han, F.; Liu, T.; Li, L.; Wu, Q. Design and Fabrication of a Differential Electrostatic Accelerometer for Space-Station Testing of the Equivalence Principle. Sensors 2016, 16, 1262. [Google Scholar] [CrossRef] [Green Version]
- Hsiao, C.N.; Chen, H.P.; Chiu, P.K.; Cho, W.H.; Lin, Y.W.; Chen, F.Z.; Tsai, D.P. Design and fabrication of optical thin films for remote sensing instruments. J. Vac. Sci. Technol. A Vac. Surf. Films 2010, 28, 867–872. [Google Scholar] [CrossRef]
- Hu, G.; Ai, Y.; Zhang, Y.; Zhang, H.; Liu, J. First scanning Fabry–Perot interferometer developed in China. Chin. Sci. Bull. 2014, 59, 563–570. [Google Scholar] [CrossRef]
- Hudson, D.; Chhun, R.; Touboul, P. Development status of the differential accelerometer for the MICROSCOPE mission. Adv. Space Res. 2005, 39, 307–314. [Google Scholar] [CrossRef]
- Koehn, P.L.; Zurbuchen, T.H.; Gloeckler, G.; Lundgren, R.A.; Fisk, L.A. Measuring the plasma environment at Mercury: The fast imaging plasma spectrometer. Meteorit. Planet. Sci. 2002, 37, 1173–1189. [Google Scholar] [CrossRef]
- Koga, K.; Goka, T.; Matsumoto, H.; Muraki, Y.; Masuda, K.; Matsubara, Y. Development of the fiber neutron monitor for the energy range 15-100 MeV on the International Space Station (ISS). Radiat. Meas. 2001, 33, 287–291. [Google Scholar] [CrossRef]
- Krebs, D.J.; Novo-Gradac, A.-M.; Li, S.X.; Lindauer, S.J.; Afzal, R.S.; Yu, A.W. Compact, passively Q-switched Nd:YAG laser for the MESSENGER mission to Mercury. Appl. Opt. 2005, 44, 1715–1718. [Google Scholar] [CrossRef]
- Lepri, S.T.; Raines, J.M.; Gilbert, J.A.; Cutler, J.; Panning, M.; Zurbuchen, T.H. Detecting negative ions on board small satellites. J. Geophys. Res. Space Phys. 2017, 122, 3961–3971. [Google Scholar] [CrossRef]
- Peyvan, K.; Karouia, F.; Cooper, J.J.; Chamberlain, J.; Suciu, D.; Slota, M.; Pohorille, A. Gene Expression Measurement Module (GEMM) for space application: Design and validation. Life Sci. Space Res. 2019, 22, 55–67. [Google Scholar] [CrossRef]
- Lindstrom, C.D.; Aarestad, J.; Ballenthin, J.O.; Barton, D.A.; Coombs, J.M.; Ignazio, J.; Johnston, W.R.; Kratochvil, S.; Love, J.; McIntire, D.; et al. The Compact Environmental Anomaly Sensor Risk Reduction: A Pathfinder for Operational Energetic Charged Particle Sensors. IEEE Trans. Nucl. Sci. 2017, 65, 439–447. [Google Scholar] [CrossRef]
- MingchunLing; MaoxinSong; JinHong; FeiTao; PengZou; ZhenSun Design and Validation of Space Adaptability for Particulate Observing Scanning Polarization. Chin. J. Lasers 2019, 46, 0704002. [CrossRef]
- Liu, X.; Dong, Q.; Wang, P.; Chen, H. Review of Electron Beam Welding Technology in Space Environment. Optik 2021, 225, 165720. [Google Scholar] [CrossRef]
- Lopes, A.G.; Irita, R.T.; Berni, L.A.; Vilela, W.A.; Savonov, G.D.S.; Carlesso, F.; Vieira, L.E.A.; de Miranda, E.L. Simplified Thermal Model for Absolute Radiometer Simulation. J. Sol. Energy Eng. 2021, 143, 1–22. [Google Scholar] [CrossRef]
- Macdonald, E.; Thomsen, M.; Funsten, H. Background in channel electron multiplier detectors due to penetrating radiation in space. IEEE Trans. Nucl. Sci. 2006, 53, 1593–1598. [Google Scholar] [CrossRef]
- Magnes, W.; Hillenmaier, O.; Auster, H.-U.; Brown, P.; Kraft, S.; Seon, J.; Delva, M.; Valavanoglou, A.; Leitner, S.; Fischer, D.; et al. Space Weather Magnetometer Aboard GEO-KOMPSAT-2A. Space Sci. Rev. 2020, 216. [Google Scholar] [CrossRef]
- Mauk, B.H.; Haggerty, D.K.; Jaskulek, S.E.; Schlemm, C.E.; Brown, L.E.; Cooper, S.A.; Gurnee, R.S.; Hammock, C.M.; Hayes, J.R.; Ho, G.; et al. The Jupiter Energetic Particle Detector Instrument (JEDI) Investigation for the Juno Mission. Space Sci. Rev. 2013, 213, 289–346. [Google Scholar] [CrossRef]
- Moretti, P.F.; Berrilli, F.; Bigazzi, A.; Jefferies, S.M.; Murphy, N.; Roselli, L.; Di Mauro, M.P.; Mauro, M.P. Future instrumentation for solar physics: A double channel MOF imager on board ASI Space Mission ADAHELI. Astrophys. Space Sci. 2010, 328, 313–318. [Google Scholar] [CrossRef]
- Østgaard, N.; Balling, J.E.; Bjørnsen, T.; Brauer, P.; Budtz-Jørgensen, C.; Bujwan, W.; Carlson, B.; Christiansen, F.; Connell, P.; Eyles, C.; et al. The Modular X- and Gamma-Ray Sensor (MXGS) of the ASIM Payload on the International Space Station. Space Sci. Rev. 2019, 215, 23. [Google Scholar] [CrossRef] [Green Version]
- Rothkaehl, H.; Morawski, M.; Puccio, W.; Bergman, J.; Klimov, S.I. Diagnostics of Space Plasma on Board International Space Station—ISS. Contrib. Plasma Phys. 2011, 51, 158–164. [Google Scholar] [CrossRef]
- Sadrozinski, H.F.W. Radiation issues in the Gamma-ray Large Area Space Telescope GLAST. Nucl. Instrum. Methods Phys. Res. Sect. A 2002, 476, 722–728. [Google Scholar] [CrossRef]
- Schlemm, C.E.; Starr, R.D.; Ho, G.; Bechtold, K.E.; Hamilton, S.A.; Boldt, J.D.; Boynton, W.V.; Bradley, W.; Fraeman, M.E.; Gold, R.E.; et al. The X-ray Spectrometer on the MESSENGER Spacecraft. Space Sci. Rev. 2007, 131, 393–415. [Google Scholar] [CrossRef]
- Soli, G.; Blaes, B.; Buehler, M.; Jones, P.; Ratliff, J.M.; Garrett, H. Clementine dosimetry. J. Spacecr. Rocket. 1995, 32, 1065–1070. [Google Scholar] [CrossRef]
- Swinyard, B.; Clegg, P.; Leeks, S.; Griffin, M.; Lim, T.; Burgdorf, M. Space Operation and Performance of Doped Germanium Photo-Conducting Detectors in the Far Infrared: Experience from the ISO LWS. Exp. Astron. 2000, 10, 157–176. [Google Scholar] [CrossRef]
- Thuillier, G.; Alunni, J.-M.; Roland, J.-J.; Brun, J.-F. Frequency-stabilized He-Ne laser for WINDII interferometer calibration on board the UARS-NASA satellite. Opt. Eng. 1992, 31, 567–573. [Google Scholar] [CrossRef]
- Warren, T.; Bowles, N.E.; Hanna, K.D.; Thomas, I.R. The Oxford space environment goniometer: A new experimental setup for making directional emissivity measurements under a simulated space environment. Rev. Sci. Instrum. 2017, 88, 124502. [Google Scholar] [CrossRef] [PubMed]
- Wei, F.; Wang, S.-J.; Liang, J.-B.; Wang, Y.; Zhang, S.-Y.; Jing, T.; Zhang, H.-X.; Zhang, B.-Q.; Leng, S. Next generation Space Environment Monitor (SEM) for FY-2 satellite series. Chin. J. Geophys. Ics Chin. Ed. 2013, 56, 1–11. [Google Scholar] [CrossRef]
- Wesolek, D.M.; Hererro, F.A.; Osiander, R.; Darrin, M.A.G. Design, fabrication, and performance of a mi-cromachined plasma spectrometer. J. Micro 2005, 4, 041403. [Google Scholar]
- Wise, S.A.; Amundsen, R.M.; Hopson, P.; High, J.W.; Kruse NM, H.; Kist, E.H.; Hooker, M.W. Design and testing of the midas spaceflight instrument. IEEE Trans. Appl. Supercond. 1995, 5, 1545–1548. [Google Scholar] [CrossRef]
- Wright, R.; Lucey, P.; Crites, S.; Horton, K.; Wood, M.; Garbeil, H. BBM/EM design of the thermal hyperspectral imager: An instrument for remote sensing of earth’s surface, atmosphere and ocean, from a microsatellite platform. Acta Astronaut. 2013, 87, 182–192. [Google Scholar] [CrossRef]
- Xiong, X.; Angal, A.; Twedt, K.; Chen, H.; Link, D.; Geng, X.; Aldoretta, E.; Mu, Q. MODIS Reflective Solar Bands On-Orbit Calibration and Performance. IEEE Trans. Geosci. Remote. Sens. 2019, 57, 6355–6371. [Google Scholar] [CrossRef]
- Zanoni, A.P.; Burkhardt, J.; Johann, U.; Aspelmeyer, M.; Kaltenbaek, R.; Hechenblaikner, G. Thermal performance of a radiatively cooled system for quantum optomechanical experiments in space. Appl. Therm. Eng. 2016, 107, 689–699. [Google Scholar] [CrossRef]
- Zurbuchen, T.H.; Gershman, D.J. Innovations in plasma sensors. J. Geophys. Res. Space Phys. 2016, 121, 2891–2901. [Google Scholar] [CrossRef] [Green Version]
- Jiao, Z.; Jiang, L.; Sun, J.; Huang, J.; Zhu, Y. Outgassing Environment of Spacecraft: An Overview. IOP Conf. Series: Mater. Sci. Eng. 2019, 611, 012071. [Google Scholar] [CrossRef] [Green Version]
- Conscience, C.; Meftah, M.; Chevalier, A.; Dewitte, S. The space instrument SOVAP of the PI-CARD mission. In Proceedings of the SPIE Optical Engineering + Applications, San Diego, CA, USA, 21–25 August 2011. [Google Scholar]
- Malandraki, O.E.; Crosby, N.B. The HESPERIA HORIZON 2020 Project and Book on Solar Particle Radiation Storms Forecasting and Analysis. Space Weather 2018, 16, 591–592. [Google Scholar] [CrossRef]
- Jiggens, P.; Chavy-Macdonald, M.A.; Santin, G.; Menicucci, A.; Evans, H.; Hilgers, A. The magnitude and effects of extreme solar particle events. J. Space Weather Space Clim. 2014, 4, A20. [Google Scholar] [CrossRef] [Green Version]
- Yung, K.L.; Lam, C.W.; Ko, S.M.; Foster, J.A. The Phobos-Grunt microgravity soil preparation system. Acta Astronaut. 2017, 141, 22–29. [Google Scholar] [CrossRef]
Inclusion | Exclusion |
---|---|
Studies discussed space instruments and other topics relating to space exploration | Studies that did not discuss space instruments and other topics relating to space exploration |
Studies that researched the space environment and the current trends in space exploration | Studies that failed to research the space environment and the current trends in space exploration |
Journal articles that focus on the product designs or manufacturing of the space instruments | Journal articles that did not focus on the product designs or manufacturing of the space instruments |
Journal articles published in the English language | Articles not published in the English language |
Peer-reviewed articles | Articles that were not peer-reviewed |
Authors | Year | Ref. | Instrument | Environment | Research Focus | |||
---|---|---|---|---|---|---|---|---|
Performance | Product Design | Innovation | Manufacturing | |||||
Barker | 2018 | [21] | Thermal Infrared | Lunar, Mercury | ✓ | ✓ | ||
Biasotti | 2020 | [22] | Lunar Orbiter Laser Altimeter | Lunar | ✓ | ✓ | ✓ | |
Borgarelli | 1998 | [23] | Cassini Radar | Spacecraft | ✓ | |||
Bunce | 2020 | [24] | Imaging X-ray Spectrometer | Orbit | ✓ | ✓ | ||
Cavanaugh | 2007 | [25] | Mercury Laser Altimeter | Mercury | ✓ | ✓ | ||
Clark | 2016 | [26] | Energetic Charged Particle Detectors | Space | ✓ | ✓ | ✓ | |
Cress | 2020 | [27] | Falcon Solid-State Energetic Electron Detector | Orbit | ✓ | ✓ | ||
Delkowski | 2021 | [28] | Optical and Radar Instrument | Space | ✓ | ✓ | ||
Dichter | 1998 | [29] | Compact Environmental Anomaly Sensor | Spacecraft | ✓ | |||
Dichter | 2015 | [30] | Gene Expression Measurement Module | Space | ✓ | ✓ | ✓ | |
Dickie | 2017 | [31] | Micromachined Plasma Spectrometer | Satellites | ✓ | ✓ | ✓ | |
Dou | 2017 | [32] | Proton Microprobe | Space | ✓ | |||
Gilbert | 2010 | [33] | X-rays Space Telescopes | Space Telescope | ✓ | ✓ | ||
Godet | 2009 | [34] | X- and Gamma-Ray Sensor | Space | ✓ | |||
Goldsten | 2007 | [35] | Gamma-Ray and Neutron Spectrometer | Spacecraft | ✓ | |||
Hall | 2017 | [36] | Charge-Coupled Device | Space | ✓ | ✓ | ||
Han | 2016 | [37] | Differential Electrostatic Space Accelerometer | ✓ | ✓ | ✓ | ||
Hsiao | 2010 | [38] | Radiatively Cooled Instrument | Space | ✓ | ✓ | ||
Hu | 2014 | [39] | Scanning Fabry-Perot Interferometer | Space Station | ✓ | |||
Hudson | 2007 | [40] | Differential Electrostatic Accelerometer | Orbit | ✓ | ✓ | ||
Koehn | 2002 | [41] | Fast Imaging Plasma Spectrometer | Mercury | ✓ | ✓ | ||
Koga | 3002 | [42] | Neutron Monitor | Space Station | ✓ | ✓ | ||
Krebs | 2005 | [43] | Mercury Laser Altimeter | Mercury | ✓ | |||
Lepri | 2017 | [44] | Fast Imaging Plasma Spectrometer | Mercury | ✓ | |||
LIFE | 2019 | [45] | Charged Particle Instruments | Orbit | ✓ | ✓ | ✓ | |
Lindstrom | 2018 | [46] | Environmental Anomaly Sensor | Space | ✓ | |||
Ling | 2019 | [47] | Space Welding Technology | Space | ✓ | ✓ | ||
Liu | 2021 | [48] | Mass Spectrometers | Space | ✓ | |||
Lopes | 2021 | [49] | Radiometers | Space | ✓ | ✓ | ||
MacDonald | 2006 | [50] | Magnetospheric Plasma Analyzer | Satellites | ✓ | |||
Magnes | 2020 | [51] | Space Weather Magnetometer | Orbit | ✓ | |||
Mauk | 2017 | [52] | Energetic Particle Detector Instruments | Jupiter | ✓ | ✓ | ||
Moretti | 2010 | [53] | Magneto-Optical Filter-based system | Space | ✓ | |||
Ostgaard | 2019 | [54] | X- and Gamma-Ray Sensor | Space Station | ✓ | ✓ | ||
Rothkaehl | 2011 | [55] | Plasma-Wave Complex | Space Station | ✓ | ✓ | ||
Sadrozinski | 2002 | [56] | Gamma-ray Large Area Space Telescope | Space | ✓ | |||
Schlemm | 2007 | [57] | X-ray Spectrometer | Mercury | ✓ | |||
Soli | 1995 | [58] | Proton-spectrometer | Spacecraft, Satellite | ✓ | |||
Swinyard | 2000 | [59] | Moderate-Resolution Imaging Spectroradiometer (MODIS) Instrument | Orbit | ✓ | ✓ | ||
Thuillier | 1992 | [60] | Michelson Interferometer | Satellites | ✓ | ✓ | ||
Warren | 2017 | [61] | Differential Electrostatic Space Accelerometer | Space Station | ✓ | ✓ | ||
Wei | 2013 | [62] | X-ray Detector and Energetic Particle Detectors | Space | ✓ | |||
Wesolek | 2005 | [63] | Microwave Sounder Instrument | Space | ✓ | ✓ | ✓ | |
Wise | 1995 | [64] | Materials in Devices as Superconductors | Spaceflight | ✓ | ✓ | ✓ | |
Wright | 2013 | [65] | Thermal Hyperspectral Imager | Space | ✓ | |||
Xiong | 2019 | [66] | Optical Thin Films | Space | ✓ | ✓ | ||
Zanoni | 2016 | [67] | Doped Germanium Photoconducting Detectors | Space | ✓ | |||
Zurbuchen | 2016 | [68] | Plasma sensors | Space | ✓ |
Author | Ref. | Aims and Objectives | The Key Considerations in Space |
---|---|---|---|
Barker | [21] | Measured changes in the laser characteristics and obtain data to understand the laser behavior and refine the instrument pointing model | Long-term laser behavior |
Biasotti | [22] | Describe the design, with the preliminary phonon dynamics simulation, the fabrication, of first demonstration model | Sensitivity |
Borgarelli | [23] | Development of a passive mode, implemented to measure Titan’s surface emissivity | Reduced mass, low available room, low power consumption, severe environmental conditions, specific thermal control and on-ground test accessibility |
Bunce | [24] | The design, performance, scientific goals and operations plans of the mercury imaging X-ray spectrometer | Design, material, size |
Cavanaugh | [25] | Describes the instrument design, prelaunch testing, calibration, and results of postlaunch testing. | Performance |
Clark | [26] | Review the Puck Energetic Particle Detector (EPD) design, its heritage, unexpected results from these past missions and future advancements | Review paper |
Cress | [27] | Describes the design, development, and calibration of the Falcon Solid-state Energetic Electron Detector (FalconSEED) | Geosynchronous environment |
Delkowski | [28] | Develop manufacturing methods for next generation of advanced composites for space instrument | Materials (composites) |
Dichter | [29] | Designed an instrument to measure the local space radiation environment. | Small, lightweight, and low power |
Dichter | [30] | Describe the design and novel features of the instruments and discuss their calibration program | Accurate measurements |
Dickie | [31] | Design, manufacture, and characterization of a new frequency selective surface (FSS) structure | Performance |
Dou | [32] | A systematic investigation of the ion beam optics to optimize the design for the Harbin system | Design optimization |
Gilbert | [33] | Demonstrate an optimized design of a linear-electric-field time-of-flight technology that can be used to obtain a high signal to noise | Signal to noise, size or complexity |
Godet | [34] | Study the instrument background and sensitivity of the coded-mask camera | Optimise the performances |
Goldsten | [35] | Overview the gamma-ray and neutron spectrometer and describes its science and measurement objectives, the design and operation of the instrument, the ground calibration effort, and early in-flight data. | Thermal behavior, performance |
Hall | [36] | Optimise the device design to suffer minimum impact from radiation damage effects | Radiation |
Han | [37] | Describe the design and capability of the differential accelerometer to test weak space acceleration | Electrostatic suspension, electrostatic motor |
Hsiao | [38] | Design and fabrication of optical thin films for remote sensing instruments | Optical stability |
Hu | [39] | Investigate the instrument design to measure the mesospheric and thermospheric wind velocities | Mesospheric and thermospheric wind velocities |
Hudson | [40] | This paper presents the current design of the accelerometer, specifically the critical areas for the instrument design, integration, and final performance requirements. | Accurate measurements |
Koehn | [41] | Discuss the design and prototype tests of the fast-imaging plasma spectrometer (FIPS) deflection system | Lightweight, fast, and have a very large field of view |
Koga | [42] | Discuss the results of the engineering model (EM) and its properties | Particle and plasma |
Krebs | [43] | Develop the mercury laser altimeter | Space-flight environmental tests |
Lepri | [44] | Discuss an adaptation of the fast-imaging plasma spectrometer (FIPS) for the measurement of negatively charged particles. | Design modification |
LIFE | [45] | Developed an automated, miniaturized, integrated fluidic system for in-situ measurements of gene expression in microbial samples | Biological validation |
Lindstrom | [46] | Design a new sensor compact environmental anomaly sensor risk reduction (CEASE-RR) for anomaly attribution | Calibration and planned flight experiment, radiation environment |
Ling | [47] | Carry out the environmental adaptability design and analysis | Mechanical property and the thermal environment |
Liu | [48] | Research on the effects of the space environment on the welding technology | Microgravity, vacuum conditions, and temperature differences |
Lopes | [49] | Understand how each component interferes with sensitivity and response time of the instrument depending on its design, material, volume, and thermal contact. | Thermal behavior, design, material, size, performance effect |
MacDonald | [50] | Extrapolate the background response to the inner magnetosphere, a highly relevant instrument design parameter for future missions to this region. | Response to the inner magnetosphere |
Magnes | [51] | Describes the magnetometer instrument design, discusses the ground calibration methods and results. | Avoiding strict magnetic cleanliness requirements, dynamic stray fields |
Mauk | [52] | Describe the science objectives of the Jupiter Energetic Particle Detector Instruments (JEDI), the science and measurement requirements, the challenges that the JEDI team had in meeting these requirements, the design and operation of the JEDI instruments, their calibrated performances, the JEDI inflight and ground operations, and the initial measurements of the JEDI instruments in interplanetary space | Performances |
Moretti | [53] | Present a low-cost, low-weight instrument, thus particularly fit to space applications, capable of providing stability and sensitivity of signals on long-term observations. | Stability and sensitivity of signals on long-term observations |
Ostgaard | [54] | Describe the scientific objectives, design, performance, imaging capabilities and operational modes of the modular X- and gamma-ray sensor (MXGS) instrument. | Instrument performance, imaging capabilities |
Rothkaehl | [55] | Design of the instrument for monitoring the electromagnetic ecosystem for space weather purpose | Ionospheric plasma property and artificial noises |
Sadrozinski | [56] | The Gamma-ray Large Area Space Telescope (GLAST) instrument designed for high sensitivity, high precision gamma-ray detection in space. | High sensitivity, high precision gamma-ray detection |
Schlemm | [57] | Summarizes XRS’s science objectives, technical design, calibration, and mission observation strategy. | X-ray |
Soli | [58] | Presents radiation dosimetry results from the radiation and reliability assurance experiments on the Clementine Spacecraft and Interstage Adapter Satellite. | Performance |
Swinyard | [59] | Discuss the performance of the ten doped germanium photoconducting detectors on the infrared space observatory long wavelength spectrometer | Performance |
Thuillier | [60] | Performances of the WINDII, a Michelson interferometer used to observe wind and temperature in the upper mesosphere and thermosphere are shown and analyzed. | Performance |
Warren | [61] | Describes the design, build, calibration, and initial measurements from a new laboratory instrument | Performance |
Wei | [62] | Presents the special technologies applied, for the solar X-ray spectrometer, and the first pre-flight calibration results | Solar X-ray and energetic charged particles |
Wesolek | [63] | Design, fabrication, simulation, and testing of the instrument front end that consists of a collimator, parallel plate energy analyzer, and energy selector mask | Small-scale, energy analysis |
Wise | [64] | Describes the design, fabrication, and testing of the primary subsystems of the instrument. | Critical superconductive properties |
Wright | [65] | Describe the rationale for the project, the instrument design, and the quality of the data | Mass, volume, and power constraints |
Xiong | [66] | Overview the calibration algorithms, operational activities, on-orbit performance, remaining challenges, and potential improvements. | Performance |
Zanoni | [67] | Investigate the performance of a radiatively cooled instrument | Performance, thermal behavior |
Zurbuchen | [68] | Review the innovation triggers in the context of the design literature and with the help of two case studies | Review |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yung, K.-L.; Tang, Y.-M.; Ip, W.-H.; Kuo, W.-T. A Systematic Review of Product Design for Space Instrument Innovation, Reliability, and Manufacturing. Machines 2021, 9, 244. https://doi.org/10.3390/machines9100244
Yung K-L, Tang Y-M, Ip W-H, Kuo W-T. A Systematic Review of Product Design for Space Instrument Innovation, Reliability, and Manufacturing. Machines. 2021; 9(10):244. https://doi.org/10.3390/machines9100244
Chicago/Turabian StyleYung, Kai-Leung, Yuk-Ming Tang, Wai-Hung Ip, and Wei-Ting Kuo. 2021. "A Systematic Review of Product Design for Space Instrument Innovation, Reliability, and Manufacturing" Machines 9, no. 10: 244. https://doi.org/10.3390/machines9100244
APA StyleYung, K. -L., Tang, Y. -M., Ip, W. -H., & Kuo, W. -T. (2021). A Systematic Review of Product Design for Space Instrument Innovation, Reliability, and Manufacturing. Machines, 9(10), 244. https://doi.org/10.3390/machines9100244