Auxiliary Model-Based Multi-Innovation Fractional Stochastic Gradient Algorithm for Hammerstein Output-Error Systems
Abstract
:1. Introduction
2. The System Description
3. The AM-MISG Algorithm
4. The AM-MIFSG Algorithm
- Choose p, and initialize: let , , , , and set , and for , , and give the base function .
- Increase k by 1, go to step 2.
5. Convergence Analysis
6. Examples
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wang, L.J.; Guo, J.; Xu, C.; Wu, T.Z.; Lin, H.P. Hybrid model predictive control strategy of supercapacitor energy storage system based on double active bridge. Energies 2019, 12, 2134. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Yan, Z.; Zhou, C.C.; Wu, T.Z.; Wang, Y.Y. Capacity allocation of HESS in micro-grid based on ABC algorithm. Int. J. Low-Carbon Technol. 2020, 15, 496–505. [Google Scholar] [CrossRef]
- Chen, H.T.; Jiang, B.; Chen, W.; Yi, H. Data-driven detection and diagnosis of incipient faults in electrical drives of high-speed trains. IEEE Trans. Ind. Electron. 2019, 66, 4716–4725. [Google Scholar] [CrossRef]
- Chen, H.T.; Jiang, B.; Ding, S.X.; Huang, B. Data-driven fault diagnosis for traction systems in high-speed trains: A survey, challenges, and perspectives. IEEE Trans. Intell. Transp. Syst. 2020. [Google Scholar] [CrossRef]
- Ding, F.; Zhang, X.; Xu, L. The innovation algorithms for multivariable state-space models. Int. J. Adapt. Control Signal Process. 2019, 33, 1601–1608. [Google Scholar] [CrossRef]
- Ding, F.; Liu, Y.J.; Bao, B. Gradient based and least squares based iterative estimation algorithms for multi-input multi-output systems. Proc. Inst. Mech. Eng. Part I J. Syst. Control Eng. 2012, 226, 43–55. [Google Scholar] [CrossRef]
- Xu, L.; Song, G.L. A recursive parameter estimation algorithm for modeling signals with multi-frequencies. Circuits Syst. Signal Process. 2020, 39, 4198–4224. [Google Scholar] [CrossRef]
- Xu, L.; Xiong, W.L.; Alsaedi, A.; Hayat, T. Hierarchical parameter estimation for the frequency response based on the dynamical window data. Int. J. Control Autom. Syst. 2018, 16, 1756–1764. [Google Scholar] [CrossRef]
- Zhang, X.; Yang, E.F. Highly computationally efficient state filter based on the delta operator. Int. J. Adapt. Control Signal Process. 2019, 33, 875–889. [Google Scholar] [CrossRef]
- Cuevas, E.; Díaz, P.; Avalos, O.; Zaldivar, D.; Pérez-Cisneros, M. Nonlinear system identification based on ANFIS-Hammerstein model using Gravitational search algorithm. Appl. Intell. 2018, 48, 182–203. [Google Scholar] [CrossRef]
- Mukhopadhyay, S.; Mukherjee, A. ImdLMS: An imputation based LMS algorithm for linear system identification with missing input data. IEEE Trans. Signal Process. 2020, 68, 2370–2385. [Google Scholar] [CrossRef]
- Sepulveda, N.E.; Sinha, J. Mathematical validation of experimentally optimised parameters used in a vibration-based machine-learning model for fault diagnosis in rotating machines. Machines 2021, 9, 155. [Google Scholar] [CrossRef]
- Zhao, S.Y.; Yuriy, S.; Ahn, C.; Zhao, C.H. Probabilistic monitoring of correlated sensors for nonlinear processes in state space. IEEE Trans. Ind. Electron. 2020, 67, 2294–2303. [Google Scholar] [CrossRef]
- Du, J.; Zhang, L.; Chen, J.; Li, J.; Jiang, X.; Zhu, C. Self-adjusted decomposition for multi-model predictive control of Hammerstein systems based on included angle. ISA Trans. 2020, 103, 19–27. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.T.; Jiang, B. A review of fault detection and diagnosis for the traction system in high-speed trains. IEEE Trans. Intell. Transp. Syst. 2020, 21, 450–465. [Google Scholar] [CrossRef]
- Yang, M.; Wang, J.; Zhang, Y. Fault detection and diagnosis for plasticizing process of single-base gun propellant using mutual information weighted MPCA under limited batch samples modelling. Machines 2021, 9, 166. [Google Scholar] [CrossRef]
- Chandra, S.; Hayashibe, M.; Thondiyath, A. Muscle fatigue induced hand tremor clustering in dynamic laparoscopic manipulation. IEEE Trans. Syst. Man Cybern. -Syst. 2020, 50, 5420–5431. [Google Scholar] [CrossRef]
- Jalaleddini, K.; Kearney, R.E. Subspace identification of SISO Hammerstein systems: Application to stretch reflex identification. IEEE Trans. Biomed. Eng. 2013, 60, 2725–2734. [Google Scholar] [CrossRef]
- Ding, F.; Chen, H.; Xu, L.; Dai, J.; Li, Q.; Hayat, T. A hierarchical least squares identification algorithm for Hammerstein nonlinear systems using the key term separation. J. Frankl. Inst. 2018, 355, 3737–3752. [Google Scholar] [CrossRef]
- Ding, J.; Cao, Z.; Chen, J.; Jiang, G. Weighted parameter estimation for Hammerstein nonlinear ARX systems. Circuits Syst. Signal Process. 2020, 39, 2178–2192. [Google Scholar] [CrossRef]
- Kazemi, M.; Arefi, M.M. A fast iterative recursive least squares algorithm for Wiener model identification of highly nonlinear systems. ISA Trans. 2017, 67, 382–388. [Google Scholar] [CrossRef]
- Hou, J.; Liu, T.; Wang, Q.G. Subspace identification of Hammerstein-type nonlinear systems subject to unknown periodic disturbance. Int. J. Control 2021, 94, 849–859. [Google Scholar] [CrossRef]
- Wang, L.; Ji, Y.; Wan, L.; Bu, N. Hierarchical recursive generalized extended least squares estimation algorithms for a class of nonlinear stochastic systems with colored noise. J. Frankl. Inst. 2019, 356, 10102–10122. [Google Scholar] [CrossRef]
- Wan, L.; Ding, F. Decomposition-and gradient-based iterative identification algorithms for multivariable systems using the multi-innovation theory. Circuits Syst. Signal Process. 2019, 38, 2971–2991. [Google Scholar] [CrossRef]
- Loizou, N.; Richtárik, P. Momentum and stochastic momentum for stochastic gradient, newton, proximal point and subspace descent methods. Comput. Optim. Appl. 2020, 77, 653–710. [Google Scholar] [CrossRef]
- Pan, J.; Jiang, X.; Wan, X.; Ding, W. A filtering based multi-innovation extended stochastic gradient algorithm for multivariable control systems. Int. J. Control Autom. Syst. 2017, 15, 1189–1197. [Google Scholar] [CrossRef]
- Ma, H.; Pan, J.; Lv, L. Recursive algorithms for multivariable output-error-like ARMA systems. Mathematics 2019, 7, 558. [Google Scholar] [CrossRef] [Green Version]
- Pan, J.; Ma, H.; Zhang, X. Recursive coupled projection algorithms for multivariable output-error-like systems with coloured noises. IET Signal Process. 2020, 14, 455–466. [Google Scholar] [CrossRef]
- Ma, H.; Zhang, X.; Liu, Q.Y.; Hayat, T. Partially-coupled gradient-based iterative algorithms for multivariable output-error-like systems with autoregressive moving average noises. IET Contr. Theory Appl. 2020, 14, 2613–2627. [Google Scholar] [CrossRef]
- Khan, S.; Ahmad, J.; Naseem, I.; Moinuddin, M. A novel fractional gradient-based learning algorithm for recurrent neural networks. Circuits Syst. Signal Process. 2018, 37, 593–612. [Google Scholar] [CrossRef]
- Ding, F.; Chen, T. Performance analysis of multi-innovation gradient type identification methods. Automatica 2007, 43, 1–14. [Google Scholar] [CrossRef]
- Chaudhary, N.I.; Raja, M.A.Z. Identification of Hammerstein nonlinear ARMAX systems using nonlinear adaptive algorithms. Nonlinear Dyn. 2015, 79, 1385–1397. [Google Scholar] [CrossRef]
- Chaudhary, N.I.; Raja, M.A.Z. Design of fractional adaptive strategy for input nonlinear Box-Jenkins systems. Signal Process. 2015, 116, 141–151. [Google Scholar] [CrossRef]
- Wang, Y.; Li, M.; Chen, Z. Experimental study of fractional-order models for lithium-ion battery and ultra-capacitor: Modeling, system identification, and validation. Appl. Energy 2020, 278, 115736. [Google Scholar] [CrossRef]
- Aslam, M.S.; Chaudhary, N.I.; Raja, M.A.Z. A sliding-window approximation-based fractional adaptive strategy for Hammerstein nonlinear ARMAX systems. Nonlinear Dyn. 2017, 87, 519–533. [Google Scholar] [CrossRef]
- Chaudhary, N.I.; Raja, M.A.Z.; Khan, A.U.R. Design of modified fractional adaptive strategies for Hammerstein nonlinear control autoregressive systems. Nonlinear Dyn. 2015, 82, 1811–1830. [Google Scholar] [CrossRef]
- Cheng, S.; Wei, Y.; Sheng, D.; Chen, Y.; Wang, Y. Identification for Hammerstein nonlinear ARMAX systems based on multi-innovation fractional order stochastic gradient. Signal Process. 2018, 142, 1–10. [Google Scholar] [CrossRef]
- Chaudhary, N.I.; Raja, M.A.Z.; He, Y.; Khan, Z.A.; Machado, J.T. Design of multi innovation fractional LMS algorithm for parameter estimation of input nonlinear control autoregressive systems. Appl. Math. Model. 2021, 93, 412–425. [Google Scholar] [CrossRef]
- Ding, F.; Shi, Y.; Chen, T. Auxiliary model-based least-squares identification methods for Hammerstein output-error systems. Syst. Control Lett. 2007, 56, 373–380. [Google Scholar] [CrossRef]
- Zhang, Q. Nonlinear system identification with output error model through stabilized simulation. IFAC Proc. Vol. 2004, 37, 501–506. [Google Scholar] [CrossRef]
- Vörös, J. Parameter identification of discontinuous Hammerstein systems. Automatica 1997, 33, 1141–1146. [Google Scholar] [CrossRef]
- Vörös, J. Recursive identification of Hammerstein systems with discontinuous nonlinearities containing dead-zones. IEEE Trans. Autom. Control 2003, 48, 2203–2206. [Google Scholar] [CrossRef]
- Vörös, J. Identification of nonlinear cascade systems with output hysteresis based on the key term separation principle. Appl. Math. Model. 2015, 39, 5531–5539. [Google Scholar] [CrossRef]
- Mao, Y.; Ding, F.; Yang, E. Adaptive filtering based multi-innovation gradient algorithm for input nonlinear systems with autoregressive noise. Int. J. Adapt. Control Signal Process. 2017, 31, 1388–1400. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.; Yu, L.; Ding, F. Multi-innovation extended stochastic gradient algorithm and its performance analysis. Circuits Syst. Signal Process. 2010, 29, 649–667. [Google Scholar] [CrossRef]
- Shah, S.M. Riemann-Liouville operator-based fractional normalised least mean square algorithm with application to decision feedback equalisation of multipath channels. IET Signal Process. 2016, 10, 575–582. [Google Scholar] [CrossRef]
- Li, C.; Qian, D.; Chen, Y. On Riemann-Liouville and caputo derivatives. In Discrete Dynamics in Nature and Society; Hindawi Limited: London, UK, 2011. [Google Scholar]
- Li, M.H.; Liu, X.M. Maximum likelihood least squares based iterative estimation for a class of bilinear systems using the data filtering technique. Int. J. Control Autom. Syst. 2020, 18, 1581–1592. [Google Scholar] [CrossRef]
- Ding, F.; Xu, L.; Meng, D.D. Gradient estimation algorithms for the parameter identification of bilinear systems using the auxiliary model. J. Comput. Appl. Math. 2020, 369, 112575. [Google Scholar] [CrossRef]
- Li, M.H.; Liu, X.M. Maximum likelihood hierarchical least squares-based iterative identification for dual-rate stochastic systems. Int. J. Adapt. Control Signal Process. 2021, 35, 240–261. [Google Scholar] [CrossRef]
- Xu, L.; Chen, F.Y.; Hayat, T. Hierarchical recursive signal modeling for multi-frequency signals based on discrete measured data. Int. J. Adapt. Control Signal Process. 2021, 35, 676–693. [Google Scholar] [CrossRef]
- Ji, Y.; Kang, Z.; Zhang, C. Two-stage gradient-based recursive estimation for nonlinear models by using the data filtering. Int. J. Control Autom. Syst. 2021, 19, 2706–2715. [Google Scholar] [CrossRef]
- Xu, L.; Yang, E.F. Auxiliary model multiinnovation stochastic gradient parameter estimation methods for nonlinear sandwich systems. Int. J. Robust Nonlinear Control 2021, 31, 148–165. [Google Scholar] [CrossRef]
- Wang, J.W.; Ji, Y.; Zhang, C. Iterative parameter and order identification for fractional-order nonlinear finite impulse response systems using the key term separation. Int. J. Adapt. Control Signal Process. 2021, 35, 1562–1577. [Google Scholar] [CrossRef]
- Zhang, X. Adaptive parameter estimation for a general dynamical system with unknown states. Int. J. Robust Nonlinear Control 2020, 30, 1351–1372. [Google Scholar] [CrossRef]
- Zhang, X. Recursive parameter estimation methods and convergence analysis for a special class of nonlinear systems. Int. J. Robust Nonlinear Control 2020, 30, 1373–1393. [Google Scholar] [CrossRef]
- Mao, Y.W.; Liu, S.; Liu, J.F. Robust economic model predictive control of nonlinear networked control systems with communication delays. Int. J. Adapt. Control Signal Process. 2020, 34, 614–637. [Google Scholar] [CrossRef]
- Ding, F. State filtering and parameter estimation for state space systems with scarce measurements. Signal Process. 2014, 104, 369–380. [Google Scholar] [CrossRef]
- Ding, F. Combined state and least squares parameter estimation algorithms for dynamic systems. Appl. Math. Modell. 2014, 38, 403–412. [Google Scholar] [CrossRef]
- Li, M.H.; Liu, X.M. Iterative identification methods for a class of bilinear systems by using the particle filtering technique. Int. J. Adapt. Control Signal Process. 2021, 35, 2056–2074. [Google Scholar] [CrossRef]
- Zhao, S.Y.; Huang, B.; Liu, F. Linear optimal unbiased filter for time-variant systems without apriori information on initial conditions. IEEE Trans. Autom. Control 2017, 62, 882–887. [Google Scholar] [CrossRef]
- Liu, Y.J.; Shi, Y. An efficient hierarchical identification method for general dual-rate sampled-data systems. Automatica 2014, 50, 962–970. [Google Scholar] [CrossRef]
- Ding, F.; Qiu, L.; Chen, T. Reconstruction of continuous-time systems from their non-uniformly sampled discrete-time systems. Automatica 2009, 45, 324–332. [Google Scholar] [CrossRef]
- Zhao, S.Y.; Yuriy, S.; Ahn, C.; Liu, F. Adaptive-horizon iterative UFIR filtering algorithm with applications. IEEE Trans. Ind. Electron. 2018, 65, 6393–6402. [Google Scholar] [CrossRef]
- Zhao, S.Y.; Huang, B. Trial-and-error or avoiding a guess? Initialization of the Kalman filter. Automatica 2020, 121, 109184. [Google Scholar] [CrossRef]
- Ding, F.; Liu, G.; Liu, X.P. Parameter estimation with scarce measurements. Automatica 2011, 47, 1646–1655. [Google Scholar] [CrossRef]
p | k | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
1 | 100 | 0.03695 | 0.23553 | −0.03327 | −0.20875 | 0.27338 | 0.03195 | 0.49278 | −0.31825 | 61.82507 |
200 | 0.07113 | 0.34613 | −0.03653 | −0.29482 | 0.32261 | 0.07100 | 0.59507 | −0.37276 | 52.41770 | |
500 | 0.10951 | 0.42150 | −0.04098 | −0.34040 | 0.35083 | 0.10812 | 0.64790 | −0.39006 | 46.76773 | |
1000 | 0.13632 | 0.46020 | −0.03759 | −0.36082 | 0.36386 | 0.12852 | 0.67688 | −0.39765 | 43.71611 | |
2000 | 0.16601 | 0.49396 | −0.03164 | −0.38052 | 0.37629 | 0.14894 | 0.70178 | −0.40765 | 40.77833 | |
3000 | 0.18127 | 0.50703 | −0.02857 | −0.38630 | 0.38212 | 0.15952 | 0.71245 | −0.41028 | 39.42179 | |
2 | 100 | 0.08718 | 0.45055 | −0.02857 | −0.34926 | 0.38250 | 0.12367 | 0.64113 | −0.44165 | 45.20563 |
200 | 0.21252 | 0.53700 | −0.00743 | −0.40687 | 0.43140 | 0.19230 | 0.74170 | −0.46339 | 34.63613 | |
500 | 0.27602 | 0.53381 | 0.01178 | −0.39497 | 0.44676 | 0.23408 | 0.76740 | −0.46163 | 29.78555 | |
1000 | 0.29539 | 0.53658 | 0.03287 | −0.38875 | 0.45350 | 0.26006 | 0.78181 | −0.45922 | 27.12588 | |
2000 | 0.31601 | 0.54589 | 0.05191 | −0.39039 | 0.45935 | 0.28327 | 0.79322 | −0.46058 | 24.67852 | |
3000 | 0.32385 | 0.54810 | 0.06104 | −0.38751 | 0.46189 | 0.29484 | 0.79696 | −0.46005 | 23.55543 | |
4 | 100 | 0.27486 | 0.60968 | 0.03978 | −0.39097 | 0.50049 | 0.23079 | 0.79164 | −0.50729 | 28.18166 |
200 | 0.37933 | 0.57741 | 0.09918 | −0.37644 | 0.52086 | 0.30714 | 0.83586 | −0.48517 | 19.67676 | |
500 | 0.38912 | 0.54069 | 0.13209 | −0.34877 | 0.51837 | 0.35074 | 0.82239 | −0.48274 | 16.01070 | |
1000 | 0.38933 | 0.54894 | 0.15511 | −0.34580 | 0.51921 | 0.37894 | 0.82425 | −0.48325 | 13.73325 | |
2000 | 0.40081 | 0.55745 | 0.17376 | −0.34949 | 0.51943 | 0.40309 | 0.82417 | −0.48612 | 11.58755 | |
3000 | 0.40202 | 0.55950 | 0.18102 | −0.34717 | 0.51845 | 0.41433 | 0.82086 | −0.48675 | 10.74226 | |
6 | 100 | 0.35169 | 0.61755 | 0.08824 | −0.35474 | 0.53581 | 0.30223 | 0.83886 | −0.52654 | 20.81443 |
200 | 0.40866 | 0.59002 | 0.16182 | −0.34923 | 0.53654 | 0.37953 | 0.84693 | −0.50426 | 13.13328 | |
500 | 0.42035 | 0.54952 | 0.18298 | −0.32811 | 0.52821 | 0.42093 | 0.81930 | −0.50377 | 9.82957 | |
1000 | 0.41823 | 0.56425 | 0.20204 | −0.33346 | 0.53010 | 0.44667 | 0.82367 | −0.50609 | 7.80786 | |
2000 | 0.42981 | 0.56613 | 0.21766 | −0.34005 | 0.52962 | 0.46847 | 0.82213 | −0.50962 | 5.89007 | |
3000 | 0.42678 | 0.56730 | 0.22265 | −0.33911 | 0.52764 | 0.47733 | 0.81677 | −0.51053 | 5.32836 | |
True values | 0.45000 | 0.56000 | 0.25000 | −0.35000 | 0.52000 | 0.54000 | 0.82000 | −0.54000 |
p | k | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
1 | 100 | 0.15708 | 0.59506 | −0.10818 | −0.36395 | 0.38627 | 0.08191 | 0.73420 | −0.36577 | 46.47154 |
200 | 0.27641 | 0.58549 | −0.07338 | −0.37468 | 0.42517 | 0.13842 | 0.81526 | −0.37310 | 38.73219 | |
500 | 0.29432 | 0.55031 | −0.03625 | −0.35604 | 0.43184 | 0.17816 | 0.82178 | −0.37342 | 34.99604 | |
1000 | 0.29755 | 0.54549 | −0.01005 | −0.35097 | 0.43470 | 0.20499 | 0.82736 | −0.37378 | 32.70875 | |
2000 | 0.30878 | 0.55280 | 0.01095 | −0.35501 | 0.43788 | 0.22916 | 0.83306 | −0.37827 | 30.47638 | |
3000 | 0.31387 | 0.55453 | 0.02109 | −0.35366 | 0.43918 | 0.24158 | 0.83382 | −0.37952 | 29.40027 | |
2 | 100 | 0.35829 | 0.62744 | 0.15273 | −0.37663 | 0.55109 | 0.23357 | 0.78715 | −0.59971 | 23.46638 |
200 | 0.42746 | 0.58770 | 0.19005 | −0.36598 | 0.56024 | 0.31456 | 0.81037 | −0.55565 | 16.12428 | |
500 | 0.43121 | 0.55375 | 0.20459 | −0.34652 | 0.55703 | 0.35970 | 0.79703 | −0.54665 | 12.87485 | |
1000 | 0.42642 | 0.56004 | 0.21858 | −0.34550 | 0.55880 | 0.38789 | 0.80138 | −0.54408 | 10.92266 | |
2000 | 0.43305 | 0.56476 | 0.22928 | −0.34967 | 0.55890 | 0.41208 | 0.80204 | −0.54336 | 9.22414 | |
3000 | 0.43194 | 0.56535 | 0.23216 | −0.34777 | 0.55770 | 0.42315 | 0.79911 | −0.54236 | 8.52773 | |
4 | 100 | 0.37614 | 0.62528 | 0.15435 | −0.35937 | 0.56108 | 0.31419 | 0.83373 | −0.62653 | 18.87062 |
200 | 0.43032 | 0.60035 | 0.22302 | −0.36272 | 0.55406 | 0.42250 | 0.82836 | −0.56139 | 9.08948 | |
500 | 0.44845 | 0.55152 | 0.22616 | −0.33881 | 0.54491 | 0.46286 | 0.79775 | −0.55411 | 6.00591 | |
1000 | 0.44218 | 0.56900 | 0.23948 | −0.34615 | 0.55133 | 0.48607 | 0.81308 | −0.55361 | 4.43982 | |
2000 | 0.44975 | 0.56313 | 0.24931 | −0.35057 | 0.55048 | 0.50632 | 0.81111 | −0.55405 | 3.24848 | |
3000 | 0.44202 | 0.56473 | 0.25018 | −0.34923 | 0.54786 | 0.51266 | 0.80477 | −0.55341 | 3.01322 | |
6 | 100 | 0.37154 | 0.63684 | 0.14344 | −0.33325 | 0.54734 | 0.38404 | 0.84946 | −0.62029 | 15.86854 |
200 | 0.43128 | 0.61835 | 0.23888 | −0.36493 | 0.53142 | 0.48850 | 0.83328 | −0.55888 | 5.77068 | |
500 | 0.45536 | 0.55467 | 0.23160 | −0.34012 | 0.52315 | 0.50947 | 0.79826 | −0.55434 | 3.08071 | |
1000 | 0.44922 | 0.57123 | 0.24453 | −0.35088 | 0.53625 | 0.52484 | 0.82763 | −0.55500 | 2.04837 | |
2000 | 0.45296 | 0.55918 | 0.25378 | −0.35400 | 0.53417 | 0.53985 | 0.82120 | −0.55601 | 1.49579 | |
3000 | 0.44123 | 0.56369 | 0.25237 | −0.35328 | 0.53073 | 0.54151 | 0.81199 | −0.55532 | 1.53252 | |
True values | 0.45000 | 0.56000 | 0.25000 | −0.35000 | 0.52000 | 0.54000 | 0.82000 | −0.54000 |
k | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|
0.80 | 100 | 0.23581 | 0.59985 | 0.09673 | −0.40126 | 0.35249 | 0.17777 | 0.82055 | −0.48512 | 32.54342 |
200 | 0.43614 | 0.59824 | 0.19561 | −0.40423 | 0.39862 | 0.34638 | 0.91657 | −0.45204 | 18.57503 | |
500 | 0.44156 | 0.53689 | 0.21507 | −0.35179 | 0.39149 | 0.42275 | 0.86423 | −0.46396 | 13.37312 | |
1000 | 0.43930 | 0.56210 | 0.23408 | −0.35731 | 0.40462 | 0.46695 | 0.88603 | −0.47323 | 11.19137 | |
2000 | 0.44866 | 0.55624 | 0.24854 | −0.35742 | 0.40774 | 0.49743 | 0.88189 | −0.48368 | 9.82294 | |
3000 | 0.43832 | 0.56284 | 0.25029 | −0.35452 | 0.40630 | 0.50670 | 0.87138 | −0.48769 | 9.37582 | |
0.90 | 100 | 0.25965 | 0.58762 | 0.16306 | −0.43464 | 0.41011 | 0.32565 | 0.75782 | −0.62289 | 23.25864 |
200 | 0.43757 | 0.58825 | 0.25570 | −0.43466 | 0.45124 | 0.46639 | 0.85201 | −0.55254 | 9.35233 | |
500 | 0.46161 | 0.53207 | 0.24689 | −0.37626 | 0.45338 | 0.49568 | 0.83323 | −0.55019 | 6.10290 | |
1000 | 0.45443 | 0.55626 | 0.25376 | −0.37420 | 0.46646 | 0.51604 | 0.85868 | −0.55042 | 5.04977 | |
2000 | 0.45629 | 0.55114 | 0.25927 | −0.36918 | 0.46731 | 0.53246 | 0.85369 | −0.55163 | 4.58180 | |
3000 | 0.44425 | 0.55646 | 0.25785 | −0.36480 | 0.46517 | 0.53551 | 0.84496 | −0.55137 | 4.29344 | |
0.92 | 100 | 0.36347 | 0.63518 | 0.16075 | −0.38255 | 0.49377 | 0.31352 | 0.84459 | −0.60486 | 18.82927 |
200 | 0.44017 | 0.60438 | 0.24641 | −0.38609 | 0.49205 | 0.43973 | 0.85042 | −0.53959 | 8.24557 | |
500 | 0.45824 | 0.54625 | 0.24047 | −0.35090 | 0.48640 | 0.47823 | 0.81880 | −0.53739 | 4.87871 | |
1000 | 0.45085 | 0.56619 | 0.25046 | −0.35726 | 0.49783 | 0.50209 | 0.84203 | −0.53918 | 3.35483 | |
2000 | 0.45508 | 0.55783 | 0.25789 | −0.35824 | 0.49792 | 0.52152 | 0.83812 | −0.54161 | 2.43473 | |
3000 | 0.44406 | 0.56191 | 0.25685 | −0.35603 | 0.49533 | 0.52624 | 0.82969 | −0.54185 | 2.13756 | |
True values | 0.45000 | 0.56000 | 0.25000 | −0.35000 | 0.52000 | 0.54000 | 0.82000 | −0.54000 |
k | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|
0.80 | 100 | 0.26215 | 0.64436 | 0.06610 | −0.35700 | 0.41270 | 0.26270 | 0.84456 | −0.55007 | 27.25073 |
200 | 0.42892 | 0.61731 | 0.19706 | −0.36999 | 0.43708 | 0.42526 | 0.90034 | −0.50010 | 12.53946 | |
500 | 0.44308 | 0.55154 | 0.21290 | −0.33527 | 0.42696 | 0.47865 | 0.84239 | −0.50720 | 8.39876 | |
1000 | 0.44126 | 0.56985 | 0.23379 | −0.34728 | 0.44327 | 0.50887 | 0.87299 | −0.51449 | 6.95024 | |
2000 | 0.44893 | 0.55908 | 0.24812 | −0.35102 | 0.44420 | 0.53026 | 0.86479 | −0.52163 | 6.06418 | |
3000 | 0.43731 | 0.56558 | 0.24875 | −0.35051 | 0.44213 | 0.53393 | 0.85338 | −0.52364 | 5.87107 | |
0.90 | 100 | 0.32475 | 0.62263 | 0.16067 | −0.40949 | 0.45832 | 0.35530 | 0.80222 | −0.63261 | 18.70725 |
200 | 0.44220 | 0.60427 | 0.26639 | −0.41415 | 0.47360 | 0.48866 | 0.84739 | −0.55477 | 7.38987 | |
500 | 0.46480 | 0.54124 | 0.24811 | −0.36447 | 0.47263 | 0.50941 | 0.82077 | −0.55289 | 4.30671 | |
1000 | 0.45622 | 0.56250 | 0.25474 | −0.36674 | 0.48814 | 0.52662 | 0.85226 | −0.55350 | 3.52333 | |
2000 | 0.45641 | 0.55356 | 0.25988 | −0.36364 | 0.48753 | 0.54148 | 0.84452 | −0.55464 | 3.17023 | |
3000 | 0.44318 | 0.55972 | 0.25723 | −0.36073 | 0.48473 | 0.54283 | 0.83450 | −0.55411 | 2.90188 | |
0.92 | 100 | 0.38062 | 0.64556 | 0.16445 | −0.36053 | 0.51634 | 0.33828 | 0.85954 | −0.61558 | 17.41472 |
200 | 0.44313 | 0.61605 | 0.25735 | −0.38049 | 0.50254 | 0.46548 | 0.84460 | −0.54615 | 6.92261 | |
500 | 0.46199 | 0.55073 | 0.24347 | −0.34802 | 0.49615 | 0.49609 | 0.80967 | −0.54393 | 3.60595 | |
1000 | 0.45377 | 0.56875 | 0.25282 | −0.35650 | 0.51054 | 0.51672 | 0.83983 | −0.54582 | 2.32078 | |
2000 | 0.45586 | 0.55746 | 0.25944 | −0.35758 | 0.50944 | 0.53419 | 0.83334 | −0.54795 | 1.60509 | |
3000 | 0.44334 | 0.56272 | 0.25702 | −0.35604 | 0.50628 | 0.53692 | 0.82365 | −0.54786 | 1.35745 | |
True values | 0.45000 | 0.56000 | 0.25000 | −0.35000 | 0.52000 | 0.54000 | 0.82000 | −0.54000 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, C.; Mao, Y. Auxiliary Model-Based Multi-Innovation Fractional Stochastic Gradient Algorithm for Hammerstein Output-Error Systems. Machines 2021, 9, 247. https://doi.org/10.3390/machines9110247
Xu C, Mao Y. Auxiliary Model-Based Multi-Innovation Fractional Stochastic Gradient Algorithm for Hammerstein Output-Error Systems. Machines. 2021; 9(11):247. https://doi.org/10.3390/machines9110247
Chicago/Turabian StyleXu, Chen, and Yawen Mao. 2021. "Auxiliary Model-Based Multi-Innovation Fractional Stochastic Gradient Algorithm for Hammerstein Output-Error Systems" Machines 9, no. 11: 247. https://doi.org/10.3390/machines9110247
APA StyleXu, C., & Mao, Y. (2021). Auxiliary Model-Based Multi-Innovation Fractional Stochastic Gradient Algorithm for Hammerstein Output-Error Systems. Machines, 9(11), 247. https://doi.org/10.3390/machines9110247