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Abstract: With its standardized and unified interface, the quick-change fixture is an important part
for maintaining high efficiency without compensation of precision in the metal-turning process
because it can conveniently realize high-precision repeated clamping and multi-station conversion
without complex positioning and adjustment steps. However, the existing quick-change fixture
products and related research cannot fully meet the needs of repeatability and applicability raised
from ultra-precision, single-point diamond turning with ultra-high accuracy and ultra-small depth
of cut. In this paper, we develop a quick-change fixture for ultra-precision diamond turning, in
which the end-toothed disc acts as the positioning element. Specifically, the main parameters of
two key components of the end-toothed disc and slotted disc spring are calculated analytically to
ensure the positioning accuracy of the designed fixture used in the rotation condition, which is
further ensured by controlling the machining tolerance of the tooth profile of the end-toothed disc.
Additionally, finite element simulations are performed to investigate the static and modal states
of the quick-change fixture, which demonstrate a maximum deformation of about 0.9 µm and a
minimum natural frequency of 5655.9 Hz for the designed fixture. Two high-precision sensors are
used to detect the radial jump and end run-out values after repeated clamping actions, which are
employed to verify the repetitive positioning accuracy of the fixture. Subsequent finite-element
simulation of the clamping of small-diameter copper bar, as well as the diamond turning experiment,
jointly demonstrate that the designed fixture can achieve a precision of 1 µm. Current work provides
an effective quick-change fixture to reduce the deformation of a weak-stiffness workpiece caused by
clamping deformation in ultra-precision diamond cutting.

Keywords: ultra-precision diamond cutting; quick-change fixture; end-toothed disc; repetitive
positioning accuracy

1. Introduction

Precision is one of the most important aspects of manufacturing, and high-precision
manufacturing is one of the characteristics of the extreme manufacturing era [1,2]. While
the workpiece, machine tool, and cutting tool are closely connected with each other in
the metal-turning process, the quick-change fixture has become an indispensable and
important part that strongly affects the achievable accuracy of the turning process [3,4].
The fixture design for micro/nano machining is also greatly needed due to the increasing
demand for precision machining of micro/nano parts, which has dramatic differences
from conventional machining in terms of material removal depth, utilized cutting tool, and
processing techniques [5].

There are inevitable requirements of repeated clamping and transposition in the
mass production of parts by turning operation, and the errors introduced by the repeated
clamping cannot be ignored in ultra-precision machining [6]. To solve this problem, the
quick-change fixture provides a feasible solution [7]. The basic composition of the quick-
change fixture can be described as a female interface fixedly connected with the machine
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tool or working platform and a male interface connected with the workpiece to move with
the workpiece at the same time. The male and female interfaces are matched with each
other’s standardized positioning benchmark, and the clamping of the male and female
interfaces is ensured through an integrated or independent structure. The quick-change
fixture provides a unified and standardized positioning “zero point” for the workpiece
through the standardized interface, which makes the design, processing, and inspection of
datums unified. Furthermore, the realization of the rapid changing through convenient
uncoupling and locking provides an important guarantee for reducing the clamping error
and shortening the clamping time.

The quick-change fixture was first introduced by The Swedish Company System 3R
in the early 1970s and played a prominent role in the turning processes [8–10]. Since
then, similar products have also been developed, most of which have a repeat position-
ing accuracy of 2–5 µm. Kartik et al. [11,12] proposed a dual-purpose positioning fixture
based on three high-precision steel balls to achieve high positioning accuracy with good
repeatability and high stiffness stability. Olivari et al. [13] compared the main quick-change
fixture systems and briefly described their working principles and applications. Ayato-
lahi et al. [14] developed a demonstrator for an intelligent clamping tower based on a
quick-change fixture, which was equipped with temperature sensors. Sitzberger et al. [15]
found that the hydraulic-expansion-holder-based quick-change fixture provides a refer-
ence for the application of the quick-change fixture in optical precision parts processing.
Sulz et al. [16] carried out relevant research work on detecting and compensating for the
thermal deformation of the quick-change fixture system, aiming for solving the problem
of temperature-change-induced deterioration of machining accuracy. Denkena et al. [17]
proposed a design and integration method of a strain sensor applied to a quick-change
fixture system that can monitor the process and state of the fixture, and demonstrated that
this method has the potential of automatic long-term detection of device fatigue failure.
Based on an end-toothed disc, Zhao et al. [18] proposed a novel positioner fixture with
high repeated positioning accuracy and high stiffness. However, the experiment was
completed in a static environment, which is not sufficient to simulate the real situation of
the metal-cutting state.

The quick-change fixture has also been widely used in flexible manufacturing sys-
tems (FMSs), in which the use of quick-change fixtures provides a guarantee for rapid
reconfiguration and convenient assembly of pallets without halting the system [19,20]. In
particular, the quick-change fixture has the ability to connect machine tools with different
parts, which is helpful to realize the joint evolution of products, processes, and produc-
tion systems [21,22]. Although the quick-change fixture has been developed for about
50 years, most of the previous work mainly focuses on the product’s introduction and
application, and the work on its principle analysis, design, and manufacturing is limitedly
reported. In particular, there is little research work reported on quick-change fixtures for
ultra-precision diamond cutting. Since the material-removal depth of workpiece material
in diamond cutting is in the range of some micrometers, even submicron, the accuracy of a
quick-change fixture has a more pronounced impact on the machining accuracy than that
in conventional machining.

Therefore, aiming at solving the problem of introducing errors in repeated clamping
in ultra-precision, single-point diamond turning and detection of complex micro parts, in
this work, we develop a high-precision quick-change fixture based on an end-toothed disc,
which possesses the advantages of high positioning accuracy, good positioning rigidity, and
large bearing capacity. Additionally, the effectiveness of the as-developed quick-change
fixture is validated by both finite-element (FE) simulation of clamping and experiment of
diamond turning of a small-diameter copper bar.
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2. Structural Design and Simulation Analysis of the Quick-Change Fixture
2.1. The Structural Design of the Quick-Change Fixture

The whole structure of the quick-change fixture designed in this paper is divided into
three parts as follows: component, fixed component, and locking mechanism, respectively.
The schematic diagram of each part in two states of locking and unlocking after assembly
is shown in Figure 1. The workpiece and other fixtures are connected with the following
components. Fixed components are installed on the working plane (such as the lathe
spindle). The following components and the fixed components are positioned through the
end-toothed disc and locked by the locking mechanism. The internal structure diagram
and design details of the fixture are shown in Figure 2. The locking mechanism adopts
the method of steel ball and cone, and the locking force is provided by the slotted disc
spring. The disc spring is used for its high stiffness and strong shock-absorption capacity.
The axial space required by the disc spring is smaller than that of the ordinary cylindrical
spiral spring, which reduces the impact caused by the centripetal force when rotating at
high-speed.
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The quick-change fixture designed in this work adopts the mechanical locking mode,
which makes it reliably work without the introduction of lines of oil, gas, electricity,
etc. At the same time, the whole fixture is designed with rotary symmetry structure,
and the circumferential evenly distributed screw holes are reserved for adjusting the
dynamic balance. The above characteristics show that the designed quick-change fixture
can work not only in the static state but also in the working condition of a high-speed
rotating spindle.
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2.2. Parameter Design of Key Components of the Quick-Change Fixture
2.2.1. Tooth Profile Parameter Design and Tolerance Formulation of the End-Toothed Disc

The working accuracy of the end-toothed disc is closely related to the contact accuracy
of the tooth surface. Additionally, the design of the tooth profile parameters directly affects
the machining difficulty and machining precision of the end-toothed disc. The tooth profile
parameters of the end-toothed disc are mainly designed with reference to Chinese standard
JB/T 4316.1-2011 and relevant manuals. The final design results of the main parameters
are listed in Table 1, and other parameters can be calculated by relevant formulas.

Table 1. The design results of the main parameters of the end-toothed disc.

Parameters Cardinal Principle Results

Diameter
(D)

Determined according to the size of the space,
and the size should be moderate 50 mm

Number of teeth
(Z)

The greater the number of teeth, the better the
effect of error equalization, but too many teeth

will increase the difficulty of machining
18

Tooth profile angle
(Φ)

The smaller the value is, the better the
self-locking performance. However, if the
value is too small, the tooth will become
thinner and deeper, which will affect the

stiffness and error. The common values are 40◦,
60◦, and 90◦

60◦

Dip angle of groove bottom
(α)

Calculation by accurate tooth profile formula
α = arctan tan(90◦/Z)

tan(ϕ/2)
8◦37′

Tooth length
(F) Generally based on experience 6 mm

Working tooth height
(h′)

Refer to the size of the theoretical tooth height
to determine 2 mm

The meshing height error ∆Hi of the end-toothed disc, which is caused by the cumula-
tive error of tooth pitch ∆ti, the tooth trace error ∆βi, and the tooth profile half-angle error
∆Φi, is expressed in Equation (1):

∆Hi = ∆Hti + ∆Hβi + ∆HΦi =
1
2

cot
Φ
2
·δti +

1
2

Fcot
Φ
2
·δβi +

h′

sin Φ
·δΦi (1)

where ∆Hti, ∆Hβi, ∆HΦi are the meshing height errors caused by three-tooth-profile ma-
chining errors, F is the tooth length, h′ is the working tooth height, and Φ is the tooth profile
angle. The allowable meshing height error of the end-toothed disc is set as δH . The limit
tolerance of the cumulative error of tooth pitch, the tooth trace error, and the tooth profile
half-angle error is set as Tt = ±T1, Tβ = ±T2, TΦ = ±T3, respectively. According to Equa-
tion (1), the qualifying condition of the end-toothed disc is ∆Hti + ∆Hβi + ∆HΦi ≤ δH . The
error value assigned by the meshing height error δH to the three-tooth-profile machining
error is, respectively, marked as δH1, δH2, δH3, where δH1 + δH2 + δH3 = δH . Then, the error
values can be expressed by Equation (2):

1
2 cot Φ

2 ·δti ≤ 1
2 cot Φ

2 ·2T1 ≤ δH1
1
2 Fcot Φ

2 ·δβi ≤ 1
2 Fcot Φ

2 ·2T2 ≤ δH2
h′

sin Φ ·δΦi ≤ h′
sin Φ ·4T3 ≤ δH3

(2)
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So, the maximum allowable errors can be expressed by Equation (3):
T1 ≤ tan Φ

2 ·δH1
T2 ≤ 1

F tan Φ
2 ·δH2

T3 ≤ sin Φ
4h′ ·δH3

(3)

Since this paper focuses on the repeatable positioning accuracy rather than the posi-
tioning accuracy, and considering the time and economic cost of the processing, the initial
design of the meshing height error of the end-toothed disc is chosen as 5 µm. According
to the above analysis, the meshing height error assigned to the cumulative pitch error,
tooth direction error, and tooth profile half-angle error is δH1 = 4 µm, δH2 = δH3 = 0.5 µm,
respectively. Then, the maximum allowable errors can be obtained from Equation (4):

T1 ≤ tan Φ
2 ·δH1 = tan 30◦ × 4 ≈ 2.31 µm

T2 ≤ 1
F tan Φ

2 ·δH2 = 1
6 × tan 30◦ × 0.5 ≈ 2.89′

T3 ≤ sin Φ
4h′ ·δH3 = sin 60◦

4×2 × 0.5 ≈ 3.25′
(4)

According to the above calculation results, the limit tolerance of the cumulative error
of the tooth pitch in preliminary design is ±2 µm, the limit tolerance of tooth direction
error is ±2.5′, and the limit tolerance of the tooth profile half-angle error is ±3′. The final
machined end-toothed disc is shown in Figure 3. To minimize the impact of eccentricity
on the accuracy of the fixture, the designed end-toothed disc itself has a characteristic of
self-centering. Furthermore, since the tooth profile of the designed end-toothed disc is a
standard Hess tooth and its parameters are calculated by an accurate tooth profile formula,
the end-toothed disc can be matched not only with a pair of upper and lower-gear discs
but also with two upper-gear discs or two lower-gear discs. Additionally, the tooth profile
parameters of the end-toothed disc are calculated by the accurate tooth profile formula,
which can ensure that the tooth thickness of any concentric circle on the pitch plane is equal
to the tooth groove width so as to ensure that the upper-gear disc and the lower-gear disc
can match well. Thus, the end-toothed disc designed in this work has a good centrality.
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2.2.2. Parameter Design of the Slotted Disc Spring

The mechanical locking method of the designed quick-change fixture is realized by the
spring. The design of the spring is related to the mechanical locking effect, which directly
affects the realization of the pneumatic unlocking function. Referring to the relevant
mechanical design manual and considering comprehensively, it is necessary to adopt the
method of combining two slotted disc springs so that the force of the slotted disc spring
remains unchanged, and the stroke of each slotted disc spring can be shortened by half.
The final design parameters are listed in Table 2.
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Table 2. Design results of main parameters of the slotted disc spring.

Parameters Results

Outside diameter (D) 70 mm

Inside diameter (d) 29 mm

Slotting diameter (Dm) 47 mm

Thickness (t) 1.25 mm

Free height (L0) 5 mm

Small end width (B1) 3 mm

The characteristic curve of the slotted disc spring is shown in Figure 4. The load is
341.887 N and 894.33 N when the compression distance is 0.5 mm and 3 mm, respectively.
The material of the slotted disc spring is thermally treated 60Si2MnA spring steel. The
allowable stress is between 1400 MPa and 1600 Mpa, which means the designed slotted
disc spring meets the requirements of allowable stress. The picture of the finally obtained
slotted disc spring is shown in Figure 5.
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2.3. Static and Modal Analysis of the Quick-Change Fixture

FE simulation of the quick-change fixture is also performed based on NX Nastran,
which is a rigorously verified FEA solver that has been in widespread use for decades [23].
The CAE system by Siemens PLM Software is used for computerized engineering analysis
of designed parts, which enables the calculation of both static and dynamic linear and
nonlinear problems of engineering analysis [24]. Figure 6 shows the FE simulation result of
meshing of the idealized parts of the designed fixture, in which chamfering and dynamic
balance screw holes in the base are removed. The mesh adopts a 3D tetrahedron type, and
the mesh size is further refined to obtain improved simulation results. The material of
the end-toothed disc is set as 40Cr steel, and the mesh size is 0.8 mm. For other parts, the
material is selected as 7075 aluminum alloy, and the mesh size is 1 mm.
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Figure 6. Mesh generation results of the idealized model.

Four loading conditions, including locking force, gravity, rotation (1000 rpm), and
torque (500), are simulated to explore the force of the designed quick-change fixture.
Additionally, a pressure of 400 N (greater than 341 N) is applied to the locking slider when
the locking force is applied. Only the rotation freedom of the base bottom in the z-direction
is released, and the other five freedoms are restricted so that only freedoms of movement in
the z-direction and rotation of the locking slider are allowed. At the same time, other parts
are connected by surface adhesion according to the assembly relationship. The deformation
contour of the model under the coupling action of the four loading conditions above is
shown in Figure 7, in which the maximum deformation occurs at the center screw hole of
the upper-gear disc, and the maximum deformation is about 0.9 µm. From the point of view
of clamping-force-induced deformation, the introduction of the designed quick-change
fixture has a trivial impact on the machining accuracy of the parts.
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The modal analysis of the designed fixture by FE simulation is also performed. Load-
free conditions are imposed on the model, and fixed constraints are imposed on the bottom
surface of the base. Other parts are connected by surface adhesion according to the assembly
relationship. After the solution is submitted, the first six modes of the fixture are obtained,
in which the deformation is magnified for observation, as shown in Figure 8.

It can be seen from Figure 8 that the deformation forms of mode 1 and mode 2 are the
same, and the frequencies of the two modes are very similar, but the deformation directions
are different in the X and Y directions. It can be judged that there are two different vibration
forms of the same vibration mode of the fixture, and the corresponding frequency is the
first-order resonance frequency. The case of modes 5 and 6 is similar to the above. The
deformation of mode 3 and mode 4 are axial rotation and axial tension, respectively, and
the modal frequencies are also different, so they are two different vibration modes. In the
simulation results, the minimum frequency is relatively high as 5655.9 Hz, which indicates
that the overall stiffness of the fixture is also high.
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3. Verification of Repetitive-Positioning Accuracy of the Quick-Change Fixture

All the verification experiments in this work are carried out on the four-axis ultra-
precision lathe developed by the Center for Precision Engineering, Harbin Institute of Tech-
nology, China. The picture of the designed fixture after assembly is shown in Figure 9a,b.
The parts with a large radius can be directly connected with the upper-gear disc in the
following component by screws. At the same time, in order to facilitate the installation of
cylindrical parts with small diameters, a special fixture is designed based on ER Chuck.
The final installation of the fixture is shown in Figure 9c.

3.1. Experimental Scheme and Preparation Work

In order to detect the repeated accuracy of the designed fixture, two high-precision
sensors are used to simultaneously detect the radial jump and end jump of the upper-
gear disc. The circular jump is detected by the Swiss TESA GT31 (Renens, Switzerland)
lever displacement sensor and analog quantity measuring instrument TOP400AS with a
resolution of 0.01 µm, as shown in Figure 10a. We note that the TESA probe is not used
in the measurement of run-out, as it may scratch the surface and affect the measurement
accuracy. Additionally, the detection of end jump adopts the French STIL spectral confocal
sensor CCS Prima controller and CL1-MG140 optical pen with a minimum resolution of
distance mode of 5 nm, as shown in Figure 10b. The detection data of the above two
sensors can be directly displayed and stored in the industrial computer of the machine
tool, and the stored data are further processed and analyzed with the help of powerful
and diverse library functions in Python. The static measurement results of the spectral
confocal sensor show that the data fluctuation range is about 0.2 mm in the measurement
time of 70 s, which may be affected by temperature, stress release of the clamp holding the
sensor, and signal line interference. The jump values of the upper-gear disc after repeated
clamping actions are compared, which show that the smaller the variation ranges, the
higher the repetitive positioning accuracy of the fixture. Because the run-out value is a
relative value rather than an absolute value, and the detection time is relatively short, it
can reduce the influence of machine tool motion accuracy, external environment, sensor
repetition accuracy, and other factors.
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In the experiment, the radial jump and end jump of the lower-gear disc are ensured to
be within 5 µm at the same time. These errors can be regarded as installation errors that do
not affect the detection of repetitive positioning accuracy. Since there are high-frequency
noise and outliers in the measured data, the original data are smoothed by using the
Savitzky–Golay filter-smoothing function of the SciPy library in Python.

After the lower-gear disc is installed, the upper-gear disc can be installed and formally
tested. The position of the sensor is shown in Figure 11. The detection process is to take
the zero point of the C-axis of the machine tool as the initial point, with the sampling time
interval of the sensor as 25 ms. In the run-out measurement, the C-axis rotates 1080◦ in 54 s
under the speed of 20◦/s. After the measurement, the current machine tool coordinates are
recorded, and then the machine tool is moved to keep the fixture away from the sensor. In
the following repeated clamping actions, the fixture is returned to the recorded machine
tool coordinates to test again according to the above steps.

3.2. Experimental Process and Analysis

The end-toothed disc used in this paper has 18 teeth, so there are 18 meshing positions
when a pair of end-toothed discs are matched. In order to facilitate the study of repetitive
positioning accuracy at different meshing positions, the 18 teeth of the lower-gear disc are,
respectively, marked 1–18 with a marker, while only a groove of the upper tooth disc is
marked, as shown in Figure 11.
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Figure 11. Configuration of the detection process.

The group 1 experiment used the same pair of end-toothed discs (upper-gear disc
1 and lower-gear disc 1) to cooperate with each other. Firstly, the repetitive positioning
accuracy of the two toothed discs in the same meshing position (hereinafter referred to as
repeated clamping after non-rotating) is tested. The marked tooth groove of the upper-gear
tooth disc 1 is randomly selected to match with the tooth marked 4 of the lower-gear disc
1, and the toothed disc is matched in this position every time for repeated clamping. The
results after 15 repeated clamping actions and tests are shown in Figure 12. It is seen from
Figure 12 that when the same pair of gear disks are matched and the meshing position is
relatively unchanged, the variation range of the clamp’s radial jump value and end jump
value of the fixture is less than 1 µm after repeated clamping. Then, the run-out of the
upper-gear disc is tested when there is relative rotation at the meshing position of the two
gear plates (hereinafter referred to as repeated clamping after rotating).
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Figure 12. Test results of experimental group 1 without rotating teeth.

The measurement process is to first fit the marked tooth groove of the upper-gear
disc 1 with the tooth marked 1 of the lower-gear plate 1, and then fit the marked tooth
groove of the upper-gear disc 1 with the teeth marked from 2 to 18 of the lower-gear plate
1 through repeated clamping, which forms a completed measurement cycle. Three cycles
are carried out, and the final measurement results and statistical results are shown in
Figures 13 and 14, respectively.
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In the group 2 experiment, the upper-gear disc 1 and the lower-gear plate 2 are
matched, and the experimental process is the same as that in the group 1 experiment.
The results of repeated clamping after non-rotating detection are shown in Figure 15,
which indicates that the variations of radial jump and end jump are both less than 1 µm.
The test results of repeated clamping after rotation are shown in Figures 16 and 17. The
experimental results show that only the end jump change at tooth 16 is slightly more
than 1 µm.
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The results shown in Figures 12 and 15 demonstrate that the repetitive positioning ac-
curacy of the designed quick-change fixture can reach 1 µm. The results of Figures 14 and 17
can also support the same conclusion. In particular, the different values of run-out at dif-
ferent matching positions reflect the positioning accuracy of the end-toothed disc under
the influence of machining errors rather than repetitive positioning accuracy, and the
positioning accuracy is consistent with the control precision designed in Section 2.2.1 of
this work when formulating tolerances, which also shows the effectiveness of the tolerance
design method adopted in this work.
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4. Clamping Simulation and Cylindrical-Cutting Experiment of a Small-Diameter
Copper Bar

The stiffness of the workpiece with a small size is usually weak. In order to evaluate
the influence of the use of the quick-change fixture on the machining of weak-stiffness
parts, the clamping simulation and cylindrical-cutting experiments of T2 copper bar with a
diameter of 4 mm are carried out.

4.1. Clamping Simulation of a Small-Diameter Copper Bar

In order to simplify the simulation conditions, a simple hole-shaft matching method
is adopted to simulate ER collet clamping copper rod. The length of the copper rod
is set as 40 mm, and the interference mode is used to simulate a clamping length of
20 mm and an interference amount of 10 µm. The deformation cloud atlases of the model
obtained under the three states of interference—clamping force only, locking force only,
and both interference clamping force and locking force—are shown in Figure 18. It can
be seen from Figure 18 that the maximum deformation of a workpiece–fixture system for
the interference clamping force only, locking force only, and interference clamping force
and locking force is 9.381 µm, 0.594 µm, and 9.292 µm, respectively. Additionally, the
maximum deformation of a workpiece for the interference clamping force only, locking
force only, and interference clamping force and locking force is 5.943 µm, 0.444 µm, and
6.132 µm, respectively. Therefore, Figure 18 indicates that the maximum deformation of
the whole workpiece–fixture system that occurs in the inner hole surface of the simulated
fixture in the three cases is close to the set interference value of 10 µm. The maximum
deformation under both interference clamping force and locking force is less than that
under interference clamping force only, which is caused by the deformation in opposite
directions under the two loads. From the perspective of workpiece deformation only,
the maximum deformation occurs at the non-free end of the copper bar, which is mainly
caused by interference clamping deformation. The deformation caused by the interference
clamping force is much larger than that caused by fast-traveling clamping, either for
the whole workpiece–fixture system or only for the workpiece. The simulation results
show that the use of a quick-change fixture, rather than directly clamping the workpiece
repeatedly, is helpful to reduce the deformation error of weak-stiffness parts caused by
repeated clamping.

4.2. Cylindrical Cutting Experiment of a Small-Diameter Copper Rod

The use of a quick-change fixture adds a link to the whole machining system. From
the perspective of the dynamic model, it can be considered that one or even more groups
of mass and damping are added. Moreover, the quick-change fixture is affected by the
coupling force fields such as locking force, gravity, centrifugal force, etc. Therefore, the
influence of the above factors on the processing of the workpiece is also evaluated. In
this section, the ultra-precision diamond turning of T2 copper rod cylindrical surface
with a diameter of 4 mm is carried out by using the designed fixture and the four-axis
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ultra-precision lathe. The experimental configuration of the turning process is shown
in Figure 19. The polycrystalline diamond (PCD) tool VCGW110302 (Beijing Worldia
Diamond Tools Co., Ltd., Beijing, China) is used. Cutting experiments are performed under
a spindle speed n = 900 rpm, a cutting depth ap = 10 µm, a feed f = 10 µm per revolution,
and a cutting stroke of 10 mm.
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Figure 19. Cutting experiment of cylindrical copper bar with a diameter of 4 mm.

The final machined part is shown in Figure 20a. The machined surface quality of the
copper bar is detected by a Zygo white light interferometer, and the results are shown
in Figure 20b, which indicates a surface roughness of 130 nm. The knife marks in the
figure are clear and stable, and no obvious vibration marks are found. There is no obvious
negative impact when using the designed quick-change fixture in the turning process.
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5. Conclusions

In this work, the design, simulation analysis, and experimental testing of the quick-
change fixture developed for ultra-precision diamond cutting are carried out, which pro-
vide a technical approach to solve the problems of high-precision repetitive clamping and
transposition encountered in diamond cutting. The main conclusions of this work are
drawn as follows:

(1) A quick-change fixture based on the positioning of the end-toothed disc is developed.
The main parameters of two key components of the end-toothed disc and slotted disc
spring are designed and calculated. Through the tolerance control of the three-tooth-
profile machining errors of the end-toothed disc and the rotation symmetry of the
overall structure, the positioning accuracy of the designed fixture is guaranteed and
can adapt to the rotation condition.

(2) The static analysis and modal analysis of the quick-change fixture are carried out
by FE simulation. The results show that the maximum deformation of the designed
fixture is about 0.9 µm with a minimum natural frequency of 5655.9 Hz, which has
good static and dynamic characteristics.

(3) The high-precision detection experiments of multiple groups of quick-change follow
fixtures are carried out. The experimental results show that the designed fixture
can achieve a precision of 1 µm. The FE simulation of clamping of a small-diameter
copper bar and diamond-turning experiment of the cylindrical surface show that
the designed quick-change fixture is helpful to reduce the deformation of a weak-
stiffness workpiece caused by clamping deformation without a negative effect on
workpiece processing.
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