Measurement of Film Structure Using Time-Frequency-Domain Fitting and White-Light Scanning Interferometry
Abstract
:1. Introduction
2. System Setup and Measurement Principle
2.1. System Structure
2.2. VSI Modeling for Film Samples
2.3. Time- and Frequency-Domain Fitting
2.3.1. Principle of the Frequency-Domain Fitting
2.3.2. Principle of the Time-Domain Fitting
3. Experiments and Discussion
3.1. System Structure
3.2. Thickness Measurement
3.3. Surface Topography Reconstruction
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kim, M.G.; Kim, J.Y. Measurement of two-dimensional thickness of micro-patterned thin film based on image restoration in a spectroscopic imaging reflectometer. Appl. Opt. 2018, 57, 3423–3428. [Google Scholar] [CrossRef] [PubMed]
- Kim, M.G. Improvement of spectral resolution in spectroscopic imaging reflectometer using rotating-type filter and tunable aperture. Meas. Sci. Technol. 2018, 10, 105001. [Google Scholar] [CrossRef]
- Choi, G.; Lee, Y.; Lee, S.W.; Cho, Y.; Pahk, H.J. Simple method for volumetric thickness measurement using a color camera. Appl. Opt. 2018, 57, 7550–7558. [Google Scholar] [CrossRef]
- Kajihara, Y.; Fukuzawa, K.; Itoh, S.; Watanabe, R.; Zhang, H. Theoretical and experimental study on two-stage-imaging microscopy using ellipsometric contrast for real-time visualization of molecularly thin films. Rev. Sci. Instrum. 2013, 84, 053704. [Google Scholar] [CrossRef] [PubMed]
- Aspnes, D.E. Studies of surface, thin film and interface properties by automatic spectroscopic ellipsometry. J. Vac. Sci. Technol. 1981, 18, 289–295. [Google Scholar] [CrossRef]
- Lee, S.W.; Choi, G.; Lee, S.Y.; Cho, Y.; Pahk, H.J. Coaxial spectroscopic imaging ellipsometry for volumetric thickness measurement. Appl. Opt. 2021, 60, 67–74. [Google Scholar] [CrossRef] [PubMed]
- Ohlídal, I.; Vohánka, J.; Buršíková, V.; Franta, D.; Čermák, M. Spectroscopic ellipsometry of inhomogeneous thin films exhibiting thickness non-uniformity and transition layers. Opt. Express 2020, 28, 160–174. [Google Scholar] [CrossRef] [PubMed]
- Ghim, Y.S.; Rhee, H.G.; Yang, H.S.; Lee, Y.W. Thin-film thickness profile measurement using a Mirau-type low-coherence interferometer. Meas. Sci. Technol. 2013, 24, 075002. [Google Scholar] [CrossRef]
- Guo, T.; Chen, Z.; Li, M.; Wu, J.; Fu, X.; Hu, X. Film thickness measurement based on nonlinear phase analysis using a Linnik microscopic white-light spectral interferometer. Appl. Opt. 2018, 57, 2955–2961. [Google Scholar] [CrossRef] [PubMed]
- Guo, T.; Zhao, G.; Tang, D.; Weng, Q.; Sun, C.; Gao, F.; Jiang, X. High-accuracy simultaneous measurement of surface profile and film thickness using line-field white-light dispersive interferometer. Opt. Laser Eng. 2021, 137, 106388. [Google Scholar] [CrossRef]
- Lee, B.S.; Strand, T.C. Profilometry with a coherence scanning microscope. Appl. Opt. 1990, 29, 3784–3788. [Google Scholar] [CrossRef] [PubMed]
- Dresel, T.; Häusler, G.; Venzke, H. Three-dimensional sensing of rough surfaces by coherence radar. Appl. Opt. 1992, 31, 919–925. [Google Scholar] [CrossRef]
- De Groot, P.; Deck, L. Three-dimensional imaging by sub-Nyquist sampling of white-light interferograms. Opt. Lett. 1993, 18, 1462–1464. [Google Scholar] [CrossRef] [Green Version]
- Ma, L.; Guo, T.; Yuan, F.; Zhao, J.; Fu, X.; Hu, X. Thick film geometric parameters measurement by white light interferometry. In Proceedings of the SPIE Asia Communications and Photonics, Shanghai, China, 19 October 2009. [Google Scholar] [CrossRef]
- Kim, S.W.; Kim, G.H. Thickness-profile measurement of transparent thin-film layers by white-light scanning interferometry. Appl. Opt. 1999, 38, 5968–5973. [Google Scholar] [CrossRef] [PubMed]
- Chen, K.; Lei, F.; Itoh, M. Efficient phase matching algorithm for measurements of ultrathin indium tin oxide film thickness in white light interferometry. Opt. Rev. 2017, 24, 121–127. [Google Scholar] [CrossRef]
- De Groot, P.; de Lega, X.C. Signal modeling for low-coherence height-scanning interference microscopy. Appl. Opt. 2004, 43, 4821–4830. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.Y.; Kim, S.; Kim, M.G.; Pahk, H.J. Generating a True Color Image with Data from Scanning White-Light Interferometry by Using a Fourier Transform. Curr. Opt. Photon. 2019, 3, 408–414. [Google Scholar]
- Daniel, M. The distorted helix: Thin film extraction from scanning white light interferometry. In Proceedings of the SPIE Integrated Optics, Silicon Photonics, and Photonic Integrated Circuits, Strasbourg, France, 3–7 April 2006. [Google Scholar] [CrossRef]
- Maniscalco, B.; Kaminski, P.M.; Walls, J.M. Thin film thickness measurements using Scanning White Light Interferometry. Thin Solid Films 2014, 550, 10–16. [Google Scholar] [CrossRef] [Green Version]
- Claveau, R.; Montgomery, P.; Flury, M. Coherence scanning interferometry allows accurate characterization of micrometric spherical particles contained in complex media. Ultramicroscopy 2020, 208, 112859. [Google Scholar] [CrossRef] [PubMed]
- Claveau, R.; Montgomery, P.C.; Flury, M.; Montaner, D. Local reflectance spectra measurements of surfaces using coherence scanning interferometry. In Proceedings of the SPIE Photonics Europe, Brussels, Belgium, 4–7 April 2016. [Google Scholar] [CrossRef]
- Marbach, S.; Claveau, R.; Wang, F.; Schiffler, J.; Montgomery, P.; Flury, M. Wide-field parallel mapping of local spectral and topographic information with white light interference microscopy. Opt. Lett. 2021, 46, 809–812. [Google Scholar] [CrossRef] [PubMed]
- Li, M.; Wan, D.; Lee, C. Application of white-light scanning interferometer on transparent thin-film measurement. Appl. Opt. 2012, 51, 8579–8586. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.; Kim, K.; Pahk, H.J. Thickness measurement of a transparent thin film using phase change in white-light phase-shift interferometry. Curr. Opt. Photonics 2017, 1, 505–513. [Google Scholar]
Simulation Thickness (nm) | 1 nm | 5 nm | ||
---|---|---|---|---|
Mean Value (nm) | Standard Deviation (nm) | Mean Value (nm) | Standard Deviation (nm) | |
1000 | 1000.0 | 0.4 | 999.8 | 0.9 |
300 | 300.0 | 0.2 | 300.2 | 1.4 |
100 | 99.7 | 0.4 | 100.8 | 1.8 |
80 | 78.3 | 1.5 | 76.7 | 7.1 |
50 | 50.1 | 4.3 | 54.6 | 8.3 |
SNR (dB) | Mean Value (μm) | Standard Deviation (μm) |
---|---|---|
35 | −6.0000 | 0.0004 |
30 | −6.0000 | 0.0010 |
25 | −5.9999 | 0.0013 |
Area Number | Calibration Thickness (nm) | Mean Value (nm) | Standard Deviation (nm) |
---|---|---|---|
1 | 500.9 | 499.6 | 1.9 |
2 | 396.3 | 395.0 | 1.5 |
3 | 298.7 | 296.7 | 2.1 |
4 | 203.7 | 207.1 | 3.8 |
5 | 108.4 | 108.4 | 1.9 |
Reference Thickness (nm) 1 | Normalized Amplitude Fitting | CPD Algorithm | ||
---|---|---|---|---|
Mean Value (nm) | Standard Deviation (nm) | Mean Value (nm) | Standard Deviation (nm) | |
1881.00 | 1880.7 | 2.2 | 1884.7 | 3.2 |
4992.10 | 4999.2 | 1.8 | 5002.4 | 1.3 |
Reference Thickness (nm) 1 | Without Calibration | With Calibration | |
---|---|---|---|
Mean Value (nm) | Mean Value (nm) | Standard Deviation (nm) | |
24.29 | 91.7 | 21.6 | 1.6 |
47.96 | 83.5 | 51.2 | 2.0 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guo, X.; Guo, T.; Yuan, L. Measurement of Film Structure Using Time-Frequency-Domain Fitting and White-Light Scanning Interferometry. Machines 2021, 9, 336. https://doi.org/10.3390/machines9120336
Guo X, Guo T, Yuan L. Measurement of Film Structure Using Time-Frequency-Domain Fitting and White-Light Scanning Interferometry. Machines. 2021; 9(12):336. https://doi.org/10.3390/machines9120336
Chicago/Turabian StyleGuo, Xinyuan, Tong Guo, and Lin Yuan. 2021. "Measurement of Film Structure Using Time-Frequency-Domain Fitting and White-Light Scanning Interferometry" Machines 9, no. 12: 336. https://doi.org/10.3390/machines9120336
APA StyleGuo, X., Guo, T., & Yuan, L. (2021). Measurement of Film Structure Using Time-Frequency-Domain Fitting and White-Light Scanning Interferometry. Machines, 9(12), 336. https://doi.org/10.3390/machines9120336