Performance Comparison of Recent Population-Based Metaheuristic Optimisation Algorithms in Mechanical Design Problems of Machinery Components
Abstract
:1. Introduction
2. Optimisation Algorithms
2.1. African Vultures Optimisation Algorithm (AVOA)
2.2. Crystal Structure Algorithm (CryStAl)
2.3. Human Behavior-Based Optimisation Algorithm (HBBO)
2.4. Gradient-Based Optimiser (GBO)
2.5. Gorilla Troops Optimiser (GTO)
2.6. Runge–Kutta Optimisation (RUN)
2.7. Social Network Search (SNS)
2.8. Sparrow Search Algorithm (SSA)
3. Computer Experiments
3.1. Parameter Settings
3.2. Tension/Compression Spring Design
3.3. Crane Hook Design
3.4. Reduction Gear Design
3.5. Cylindrical Pressure Vessel Design
3.6. Hydrostatic Thrust Bearing Design
4. Discussion
4.1. Observations from the Benchmark Study
4.2. A Comparison with Traditional Optimisation Techniques
4.3. Limitations and Future Work
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
AVOA | African Vultures Optimisation Algorithm |
CryStAl | Cyrstal Structure Algorithm |
FE | Function Evolution |
HBBO | Human-Behaviour Based Optimisation |
GA | Genetic Algorithm |
GBO | Gradient Based Optimiser |
GP | Genetic Programming |
GTO | Gorilla Troops Optimiser |
NP | The population size |
PSO | Particle Swarm Optimisation |
RUN | RUNge Kutta Optimiser |
SNS | Social Network Search |
SSA | Sparrow Search Algorithm |
Appendix A
Appendix A.1. Tension/Compression Spring Design Problem
Appendix A.2. Crane Hook Design Problem
Appendix A.3. Reduction Gear Design Problem
Appendix A.4. Pressure Vessel Design Problem
Appendix A.5. Hydrostatic Thrust Bearing Design Problem
References
- Ahmad, M.; Ahmad, B.; Harrison, R.; Alkan, B.; Vera, D.; Meredith, J.; Bindel, A. A framework for automatically realizing assembly sequence changes in a virtual manufacturing environment. Procedia CIRP 2016, 50, 129–134. [Google Scholar] [CrossRef] [Green Version]
- Alkan, B.; Vera, D.; Ahmad, B.; Harrison, R. A method to assess assembly complexity of industrial products in early design phase. IEEE Access 2017, 6, 989–999. [Google Scholar] [CrossRef]
- Wang, L.; Ng, A.H.; Deb, K. Multi-Objective Evolutionary Optimisation for Product Design and Manufacturing; Springer: Berlin/Heidelberg, Germany, 2011. [Google Scholar]
- Gandomi, A.H.; Yang, X.S.; Talatahari, S.; Alavi, A.H. Metaheuristic algorithms in modeling and optimization. In Metaheuristic Applications in Structures and Infrastructures; Elsevier: London, UK, 2013. [Google Scholar]
- Mirjalili, S.; Lewis, A. The whale optimization algorithm. Adv. Eng. Softw. 2016, 95, 51–67. [Google Scholar] [CrossRef]
- Goldberg, D.E.; Holland, J.H. Genetic Algorithms and Machine Learning; Springer: Berlin/Heidelberg, Germany, 1988. [Google Scholar]
- Price, K.; Storn, R.M.; Lampinen, J.A. Differential Evolution: A Practical Approach to Global Optimization; Springer Science & Business Media: Berlin, Germany, 2006. [Google Scholar]
- Storn, R. On the usage of differential evolution for function optimization. In Proceedings of the North American Fuzzy Information Processing, Berkeley, CA, USA, 19–22 June 1996; pp. 519–523. [Google Scholar]
- Koza, J.R.; Koza, J.R. Genetic Programming: On the Programming of Computers by Means of Natural Selection; MIT Press: Cambridge, MA, USA, 1992; Volume 1. [Google Scholar]
- Simon, D. Biogeography-based optimization. IEEE Trans. Evol. Comput. 2008, 12, 702–713. [Google Scholar] [CrossRef] [Green Version]
- Rechenberg, I. Evolutionsstrategien. In Simulationsmethoden in der Medizin und Biologie; Springer: Berlin/Heidelberg, Germany, 1978; pp. 83–114. [Google Scholar]
- Van Laarhoven, P.J.; Aarts, E.H. Simulated annealing. In Simulated Annealing: Theory and Applications; Springer: Berlin/Heidelberg, Germany, 1987; pp. 7–15. [Google Scholar]
- Hashim, F.A.; Houssein, E.H.; Mabrouk, M.S.; Al-Atabany, W.; Mirjalili, S. Henry gas solubility optimization: A novel physics-based algorithm. Future Gener. Comput. Syst. 2019, 101, 646–667. [Google Scholar] [CrossRef]
- Zhao, W.; Wang, L.; Zhang, Z. Atom search optimization and its application to solve a hydrogeologic parameter estimation problem. Knowl.-Based Syst. 2019, 163, 283–304. [Google Scholar] [CrossRef]
- Hatamlou, A. Black hole: A new heuristic optimization approach for data clustering. Inf. Sci. 2013, 222, 175–184. [Google Scholar] [CrossRef]
- Kaveh, A.; Mahdavi, V.R. Colliding bodies optimization: A novel meta-heuristic method. Comput. Struct. 2014, 139, 18–27. [Google Scholar] [CrossRef]
- Yang, X.S. Flower pollination algorithm for global optimization. In Proceedings of the International Conference on Unconventional Computing and Natural Computation, Orléans, France, 3–7 September 2012; pp. 240–249. [Google Scholar]
- Mehrabian, A.R.; Lucas, C. A novel numerical optimization algorithm inspired from weed colonization. Ecol. Inform. 2006, 1, 355–366. [Google Scholar] [CrossRef]
- Eberhart, R.; Kennedy, J. A new optimizer using particle swarm theory. In Proceedings of the MHS’95. Sixth International Symposium on Micro Machine and Human Science, Nagoya, Japan, 4–6 October 1995; pp. 39–43. [Google Scholar]
- Colorni, A.; Dorigo, M.; Maniezzo, V. Distributed optimization by ant colonies. In Proceedings of the First European Conference on Artificial Life, Paris, France, 11–13 December 1991; Volume 142, pp. 134–142. [Google Scholar]
- Kaur, S.; Awasthi, L.K.; Sangal, A.; Dhiman, G. Tunicate Swarm Algorithm: A new bio-inspired based metaheuristic paradigm for global optimization. Eng. Appl. Artif. Intell. 2020, 90, 103541. [Google Scholar] [CrossRef]
- Zhao, W.; Zhang, Z.; Wang, L. Manta ray foraging optimization: An effective bio-inspired optimizer for engineering applications. Eng. Appl. Artif. Intell. 2020, 87, 103300. [Google Scholar] [CrossRef]
- Shadravan, S.; Naji, H.; Bardsiri, V.K. The Sailfish Optimizer: A novel nature-inspired metaheuristic algorithm for solving constrained engineering optimization problems. Eng. Appl. Artif. Intell. 2019, 80, 20–34. [Google Scholar] [CrossRef]
- Sulaiman, M.H.; Mustaffa, Z.; Saari, M.M.; Daniyal, H. Barnacles mating optimizer: A new bio-inspired algorithm for solving engineering optimization problems. Eng. Appl. Artif. Intell. 2020, 87, 103330. [Google Scholar] [CrossRef]
- Yang, X.S. Engineering Optimization: An Introduction with Metaheuristic Applications; John Wiley & Sons: Hoboken, NJ, USA, 2010. [Google Scholar]
- Karaboga, D.; Basturk, B. A powerful and efficient algorithm for numerical function optimization: Artificial bee colony (ABC) algorithm. J. Glob. Optim. 2007, 39, 459–471. [Google Scholar] [CrossRef]
- Kaveh, A.; Farhoudi, N. A new optimization method: Dolphin echolocation. Adv. Eng. Softw. 2013, 59, 53–70. [Google Scholar] [CrossRef]
- Mirjalili, S.; Gandomi, A.H.; Mirjalili, S.Z.; Saremi, S.; Faris, H.; Mirjalili, S.M. Salp Swarm Algorithm: A bio-inspired optimizer for engineering design problems. Adv. Eng. Softw. 2017, 114, 163–191. [Google Scholar] [CrossRef]
- Yang, X.S.; Deb, S. Cuckoo search via Lévy flights. In Proceedings of the 2009 World Congress on Nature & Biologically Inspired Computing (NaBIC), Coimbatore, India, 9–11 December 2009; pp. 210–214. [Google Scholar]
- Zhang, J.; Xiao, M.; Gao, L.; Pan, Q. Queuing search algorithm: A novel metaheuristic algorithm for solving engineering optimization problems. Appl. Math. Model. 2018, 63, 464–490. [Google Scholar] [CrossRef]
- Jaddi, N.S.; Alvankarian, J.; Abdullah, S. Kidney-inspired algorithm for optimization problems. Commun. Nonlinear Sci. Numer. Simul. 2017, 42, 358–369. [Google Scholar] [CrossRef]
- Kaveh, A. Advances in Metaheuristic Algorithms for Optimal Design of Structures; Springer: Berlin/Heidelberg, Germany, 2014. [Google Scholar]
- Abdollahzadeh, B.; Gharehchopogh, F.S.; Mirjalili, S. African vultures optimization algorithm: A new nature-inspired metaheuristic algorithm for global optimization problems. Comput. Ind. Eng. 2021, 158, 107408. [Google Scholar] [CrossRef]
- Talatahari, S.; Azizi, M.; Tolouei, M.; Talatahari, B.; Sareh, P. Crystal Structure Algorithm (CryStAl): A Metaheuristic Optimization Method. IEEE Access 2021, 9, 71244–71261. [Google Scholar] [CrossRef]
- Ahmadi, S.A. Human behavior-based optimization: A novel metaheuristic approach to solve complex optimization problems. Neural Comput. Appl. 2017, 28, 233–244. [Google Scholar] [CrossRef]
- Ahmadianfar, I.; Bozorg-Haddad, O.; Chu, X. Gradient-based optimizer: A new metaheuristic optimization algorithm. Inf. Sci. 2020, 540, 131–159. [Google Scholar] [CrossRef]
- Abdollahzadeh, B.; Soleimanian Gharehchopogh, F.; Mirjalili, S. Artificial gorilla troops optimizer: A new nature-inspired metaheuristic algorithm for global optimization problems. Int. J. Intell. Syst. 2021, 36, 5887–5958. [Google Scholar] [CrossRef]
- Ahmadianfar, I.; Heidari, A.A.; Gandomi, A.H.; Chu, X.; Chen, H. RUN beyond the metaphor: An efficient optimization algorithm based on Runge Kutta method. Expert Syst. Appl. 2021, 181, 115079. [Google Scholar] [CrossRef]
- Talatahari, S.; Bayzidi, H.; Saraee, M. Social Network Search for Global Optimization. IEEE Access 2021, 9, 92815–92863. [Google Scholar] [CrossRef]
- Xue, J.; Shen, B. A novel swarm intelligence optimization approach: Sparrow search algorithm. Syst. Sci. Control. Eng. 2020, 8, 22–34. [Google Scholar] [CrossRef]
- Soto, R.; Crawford, B.; González, F.; Vega, E.; Castro, C.; Paredes, F. Solving the manufacturing cell design problem using human behavior-based algorithm supported by autonomous search. IEEE Access 2019, 7, 132228–132239. [Google Scholar] [CrossRef]
- Soto, R.; Crawford, B.; González, F.; Olivares, R. Human behaviour based optimization supported with self-organizing maps for solving the S-box design Problem. IEEE Access 2021, 9, 84605–84618. [Google Scholar] [CrossRef]
- Deb, S.; Abdelminaam, D.S.; Said, M.; Houssein, E.H. Recent methodology-based gradient-based optimizer for economic load dispatch problem. IEEE Access 2021, 9, 44322–44338. [Google Scholar] [CrossRef]
- Ismaeel, A.A.; Houssein, E.H.; Oliva, D.; Said, M. Gradient-based optimizer for parameter extraction in photovoltaic models. IEEE Access 2021, 9, 13403–13416. [Google Scholar] [CrossRef]
- Jiang, Y.; Luo, Q.; Wei, Y.; Abualigah, L.; Zhou, Y. An efficient binary Gradient-based optimizer for feature selection. Math. Biosci. Eng. MBE 2021, 18, 3813–3854. [Google Scholar] [CrossRef]
- Zhu, Y.; Yousefi, N. Optimal parameter identification of PEMFC stacks using Adaptive Sparrow Search Algorithm. Int. J. Hydrog. Energy 2021, 46, 9541–9552. [Google Scholar] [CrossRef]
- Liu, T.; Yuan, Z.; Wu, L.; Badami, B. An optimal brain tumor detection by convolutional neural network and Enhanced Sparrow Search Algorithm. Proc. Inst. Mech. Eng. Part H J. Eng. Med. 2021, 235, 459–469. [Google Scholar] [CrossRef]
- Zhang, J.; Xia, K.; He, Z.; Yin, Z.; Wang, S. Semi-Supervised Ensemble Classifier with Improved Sparrow Search Algorithm and Its Application in Pulmonary Nodule Detection. Math. Probl. Eng. 2021, 2021. [Google Scholar] [CrossRef]
- Zhou, J.; Chen, D. Carbon Price Forecasting Based on Improved CEEMDAN and Extreme Learning Machine Optimized by Sparrow Search Algorithm. Sustainability 2021, 13, 4896. [Google Scholar] [CrossRef]
- Liu, G.; Shu, C.; Liang, Z.; Peng, B.; Cheng, L. A modified sparrow search algorithm with application in 3d route planning for UAV. Sensors 2021, 21, 1224. [Google Scholar] [CrossRef]
- Golinski, J. Optimal synthesis problems solved by means of nonlinear programming and random methods. J. Mech. 1970, 5, 287–309. [Google Scholar] [CrossRef]
- Kannan, B.; Kramer, S.N. An augmented Lagrange multiplier based method for mixed integer discrete continuous optimization and its applications to mechanical design. J. Mech. Des. 1994, 116, 405–411. [Google Scholar] [CrossRef]
- Siddall, J.N. Optimal Engineering Design: Principles and Applications; CRC Press: Boca Raton, FL, USA, 1982. [Google Scholar]
Algorithm | Parameter Settings |
---|---|
AVOA | = 0.6, = 0.4, = 0.6, = 0.8, = 0.2, |
w = 2.5, | |
CryStAl | Global parameters (FEs and NP) |
HBBO | = 30, = 0, = 2.5, = 0.2 |
GBO | = 0.2, = 1.2, = 0.5 |
GTO | p = 0.03, = 3, w = 0.8 |
RUN | Global parameters (FEs and NP) |
SNS | Global parameters (FEs and NP) |
SSA | = 20%, = 10%, = 0.8 |
Problem | NP | FEs | |
---|---|---|---|
Tension/compression spring design | 35 | 500 | 17,500 |
Crane hook design | 35 | 850 | 29,750 |
Reduction gear design | 50 | 1250 | 62,500 |
Pressure vessel design | 50 | 1000 | 50,000 |
Hydrostatic thrust bearing design | 100 | 2000 | 200,000 |
Var. | Algorithm | |||||||
---|---|---|---|---|---|---|---|---|
AVOA | CryStAl | HBBO | GBO | GTO | RUN | SNS | SSA | |
0.012669 | 0.012718 | 0.012665 | 0.012665 | 0.012665 | 0.012665 | 0.012665 | 0.012666 | |
0.052157 | 0.050431 | 0.051688 | 0.051617 | 0.051673 | 0.051789 | 0.051699 | 0.051454 | |
0.368082 | 0.327152 | 0.356695 | 0.354992 | 0.356338 | 0.359122 | 0.356956 | 0.351091 | |
10.652547 | 13.285471 | 11.290315 | 11.390874 | 11.311287 | 11.149446 | 11.275058 | 11.626627 |
Algorithm | Best | Mean | Worst | Std | CPU Time (s) |
---|---|---|---|---|---|
AVOA | 0.012669196719 | 0.013560633588 | 0.015508926159 | 0.000828257932 | 0.00298611 |
CryStAl | 0.012718059192 | 0.012857705948 | 0.013166450230 | 0.000099876120 | 0.0427 |
HBBO | 0.012665232805 | 0.012983204879 | 0.015342442232 | 0.000546532591 | 0.03068571 |
GBO | 0.012665327053 | 0.012725601218 | 0.013046308894 | 0.000082488889 | 0.00758664 |
GTO | 0.012665237347 | 0.012736771587 | 0.013274672049 | 0.000114193785 | 0.00583106 |
RUN | 0.012665468642 | 0.013161559938 | 0.017773399457 | 0.001091488094 | 0.01252020 |
SNS | 0.012665308324 | 0.012700310221 | 0.012908393770 | 0.000053324273 | 0.00449754 |
SSA | 0.01266624413 | 0.013359346602 | 0.017773159421 | 0.001336305394 | 0.00506082 |
Var. | Algorithm | |||||||
---|---|---|---|---|---|---|---|---|
AVOA | CryStAl | HBBO | GBO | GTO | RUN | SNS | SSA | |
37.501763 | 37.505239 | 37.502003 | 37.501763 | 37.501764 | 37.501770 | 37.501765 | 37.501763 | |
3.389569 | 3.393468 | 3.380692 | 3.389197 | 3.389747 | 3.390378 | 3.389217 | 3.389350 | |
1.500000 | 1.500000 | 1.500000 | 1.500000 | 1.500000 | 1.500000 | 1.500000 | 1.500000 | |
1.292017 | 1.288449 | 1.300485 | 1.292370 | 1.291849 | 1.291252 | 1.292352 | 1.292226 |
Algorithm | Best | Mean | Worst | Std | CPU Time (s) |
---|---|---|---|---|---|
AVOA | 37.501768304530 | 37.509521006356 | 37.567143974448 | 0.012437419152 | 0.00475095 |
CryStAl | 37.502652718785 | 37.528776144364 | 37.614401549196 | 0.021833637274 | 0.02640220 |
HBBO | 37.501773097093 | 37.573060310021 | 37.976041870924 | 0.122369512361 | 0.03530030 |
GBO | 37.501763283040 | 37.501857914596 | 37.504126932995 | 0.000349234645 | 0.01275198 |
GTO | 37.501763262652 | 37.503112132524 | 37.509524542183 | 0.001892413110 | 0.00894737 |
RUN | 37.501775668620 | 37.508273179197 | 37.546955429412 | 0.010504431267 | 0.02143182 |
SNS | 37.501763577814 | 37.501955818081 | 37.502840983287 | 0.000297921175 | 0.00738974 |
SSA | 37.501763937287 | 37.502795252003 | 37.509275937416 | 0.001709946677 | 0.00797318 |
Var. | Algorithm | |||||||
---|---|---|---|---|---|---|---|---|
AVOA | CryStAl | HBBO | GBO | GTO | RUN | SNS | SSA | |
2994.355035 | 2999.199820 | 2994.355026 | 2994.355026 | 2994.355026 | 2994.360057 | 2994.355026 | 2994.355026 | |
3.500000 | 3.502645 | 3.500000 | 3.500000 | 3.500000 | 3.500004 | 3.500000 | 3.500000 | |
0.700000 | 0.700000 | 0.700000 | 0.700000 | 0.700000 | 0.700000 | 0.700000 | 0.700000 | |
17.000000 | 17.000000 | 17.000000 | 17.000000 | 17.000000 | 17.000000 | 17.000000 | 17.000000 | |
7.300000 | 7.300000 | 7.300000 | 7.300000 | 7.300000 | 7.300001 | 7.300000 | 7.300000 | |
7.715320 | 7.776127 | 7.715320 | 7.715320 | 7.715320 | 7.715415 | 7.715320 | 7.715320 | |
3.350215 | 3.355539 | 3.350215 | 3.350215 | 3.350215 | 3.350216 | 3.350215 | 3.350215 | |
5.286654 | 5.288404 | 5.286654 | 5.286654 | 5.286654 | 5.286656 | 5.286654 | 5.286654 |
Algorithm | Best | Mean | Worst | Std | CPU Time (s) |
---|---|---|---|---|---|
AVOA | 2994.355035177460 | 2996.948906023790 | 3010.205238324880 | 3.050912549282 | 0.00199605 |
CryStAl | 2999.199820220130 | 3025.816152450150 | 3167.006692311780 | 23.589811855532 | 0.00682740 |
HBBO | 2994.355026112020 | 2995.873515410200 | 3033.632877394140 | 7.534482000137 | 0.00670371 |
GBO | 2994.355026112020 | 2994.355026112010 | 2994.355026112020 | 0.000000000004 | 0.00293696 |
GTO | 2994.355026112020 | 2996.909938595160 | 3016.654294988220 | 5.793856810156 | 0.00263637 |
RUN | 2994.360057223500 | 2996.941885889620 | 3005.175063824030 | 2.571268627965 | 0.00529230 |
SNS | 2994.355026112020 | 2994.355026112010 | 2994.355026112020 | 0.000000000004 | 0.00225359 |
SSA | 2994.355026112020 | 2994.355026112010 | 2994.355026112020 | 0.000000000004 | 0.00206693 |
Var. | Algorithm | |||||||
---|---|---|---|---|---|---|---|---|
AVOA | CryStAl | HBBO | GBO | GTO | RUN | SNS | SSA | |
5885.373899 | 5974.379050 | 5885.331251 | 5885.331290 | 5885.331251 | 5885.358639 | 5885.331259 | 5885.334152 | |
0.778193 | 0.782667 | 0.778168 | 0.778168 | 0.778168 | 0.778170 | 0.778168 | 0.778170 | |
0.384661 | 0.393180 | 0.384649 | 0.384649 | 0.384649 | 0.384655 | 0.384649 | 0.384650 | |
40.320911 | 40.525039 | 40.319619 | 40.319619 | 40.319619 | 40.319678 | 40.319619 | 40.319705 | |
199.982005 | 199.890718 | 200.000000 | 199.999998 | 200.000000 | 199.999554 | 200.000000 | 199.998801 |
Algorithm | Best | Mean | Worst | Std | CPU Time (s) |
---|---|---|---|---|---|
AVOA | 5885.3738987482 | 6435.3490970377 | 7318.9955182938 | 495.3062860591 | 0.00205490 |
CryStAl | 5974.3790500167 | 6470.6393698594 | 7102.3066251881 | 256.7609412380 | 0.01141518 |
HBBO | 5885.3312508567 | 6184.9051478586 | 7318.9989210708 | 347.8356798794 | 0.01408385 |
GBO | 5885.3312900824 | 5912.3347543230 | 6309.3266189585 | 68.5231352046 | 0.00535753 |
GTO | 5885.3312508567 | 6209.8831784614 | 7318.9989210708 | 433.7313628757 | 0.00415526 |
RUN | 5885.3586393254 | 6889.2020918829 | 7319.1357489398 | 628.5456318607 | 0.00902184 |
SNS | 5885.3312588460 | 5967.6346717171 | 7318.2220337882 | 250.1319816538 | 0.00297717 |
SSA | 5885.3341524728 | 6411.1266934476 | 7318.9989210708 | 479.2420166123 | 0.00303397 |
Var. | Algorithm | |||||||
---|---|---|---|---|---|---|---|---|
AVOA | CryStAl | HBBO | GBO | GTO | RUN | SNS | SSA | |
19,544.66481 | 20,551.94918 | 23,183.54393 | 19,505.31331 | 19,505.76493 | 19,505.85672 | 19,515.50557 | 20,459.41775 | |
5.959052191 | 6.038211653 | 6.398078596 | 5.955780499 | 5.955888118 | 5.955827384 | 5.956719465 | 6.042305703 | |
5.3926286 | 5.452684743 | 5.874142492 | 5.38901305 | 5.389131987 | 5.38905445 | 5.389912069 | 5.4780081 | |
5.38 × | 5.57 × | 6.73 × | 5.36 × | 5.36 × | 5.36 × | 5.36 × | 5.74 × | |
2.286644923 | 2.539761897 | 4.066687785 | 2.269656072 | 2.269723697 | 2.269807988 | 2.272161645 | 2.647407856 |
Algorithm | Best | Mean | Worst | Std | CPU Time (s) |
---|---|---|---|---|---|
AVOA | 19,544.6648069058 | 23,956.5558577224 | 42,889.0448729199 | 3127.6848031821 | 0.021506546 |
CryStAl | 20,551.9491788596 | 22,834.6295959337 | 24,761.4009721265 | 1016.4245763020 | 0.103373525 |
HBBO | 23,183.5439311853 | 31,259.1001178412 | 48,556.9957076442 | 4573.4127562409 | 0.094215091 |
GBO | 19,505.3133077224 | 20,886.4642416408 | 26,025.4186699601 | 1481.9044873111 | 0.044018051 |
GTO | 19,505.7649269808 | 22,182.0691330824 | 28,734.8082159540 | 1890.1924714863 | 0.038249415 |
RUN | 19,505.8567225382 | 20,680.5525292687 | 33,034.8218788356 | 3044.6733188831 | 0.085310708 |
SNS | 19,515.5055737337 | 19,536.7881264808 | 19,600.1259774218 | 16.5978846836 | 0.027272087 |
SSA | 20,459.4177472381 | 31,040.7176967004 | 78,295.6327390864 | 8912.0581928620 | 0.025494880 |
GA | ||||
---|---|---|---|---|
Problem | Best | Mean | Worst | Std |
Tension/compression spring | 0.0127 | 0.0147 | 0.0194 | 0.0018 |
Crane hook | 37.5020 | 37.5097 | 37.5534 | 0.0092 |
Reduction gear | 2997.7740 | 3006.4162 | 3017.4886 | 4.7139 |
Pressure vessel | 6188.2862 | 8392.3701 | 12,661.0607 | 1003.2803 |
Hydrostatic thrust bearing | 20,569.5064 | 26,767.7566 | 51,065.2918 | 5032.2942 |
PSO | ||||
Tension/compression spring | 0.0127 | 0.0133 | 0.0164 | 0.0009 |
Crane hook | 37.5018 | 37.5109 | 37.5918 | 0.0172 |
Reduction gear | 2994.3550 | 2994.3550 | 2994.3550 | 0.0000 |
Pressure vessel | 5909.6257 | 6277.7288 | 7182.9114 | 307.6918 |
Hydrostatic thrust bearing | 19,819.4262 | 26,077.9339 | 36,586.4885 | 4305.7754 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alkan, B.; Kaniappan Chinnathai, M. Performance Comparison of Recent Population-Based Metaheuristic Optimisation Algorithms in Mechanical Design Problems of Machinery Components. Machines 2021, 9, 341. https://doi.org/10.3390/machines9120341
Alkan B, Kaniappan Chinnathai M. Performance Comparison of Recent Population-Based Metaheuristic Optimisation Algorithms in Mechanical Design Problems of Machinery Components. Machines. 2021; 9(12):341. https://doi.org/10.3390/machines9120341
Chicago/Turabian StyleAlkan, Bugra, and Malarvizhi Kaniappan Chinnathai. 2021. "Performance Comparison of Recent Population-Based Metaheuristic Optimisation Algorithms in Mechanical Design Problems of Machinery Components" Machines 9, no. 12: 341. https://doi.org/10.3390/machines9120341
APA StyleAlkan, B., & Kaniappan Chinnathai, M. (2021). Performance Comparison of Recent Population-Based Metaheuristic Optimisation Algorithms in Mechanical Design Problems of Machinery Components. Machines, 9(12), 341. https://doi.org/10.3390/machines9120341