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Abstract: The study provides a solution to a dimensional synthesis problem for a hexapod-type
reconfigurable parallel mechanism, which can change its configuration to realize different trajectories
of its output link while having a single drive. The work presents an original procedure to find the
dimensions of some mechanism’s links and their initial configuration to reproduce these trajectories.
After describing the mechanism, the paper examines kinematic relations representing the basis for the
subsequent synthesis algorithm. Next, the obtained expressions are extended and provide a system
of equations to be solved. The structure of this equation system allows it to be solved effectively by
numerical methods, which is demonstrated with an example. The proposed algorithm of dimensional
synthesis does not require solving the optimization problems, in contrast to the familiar methods
of dimensional synthesis of parallel mechanisms. Further, the suggested approach to the synthesis
problem allows finding solution in a fast and computationally efficient manner.

Keywords: reconfigurable parallel mechanism (RPM); degree-of-freedom (DOF); dimensional
(parametric) synthesis; kinematic analysis

1. Introduction

Dimensional (parametric) synthesis is one of the basic procedures in mechanisms
design. The main geometrical parameters that define a mechanism’s performance and the
motion of its output link are determined at this stage. In this study, we focus on parallel
mechanisms, where two or more kinematic chains control the output link motion [1,2].

The dimensional synthesis problem of parallel mechanisms is closely associated with
workspace construction, rigidity and accuracy criteria, etcetera. Studies [3–7] consider the
issues of the dimensional synthesis for the mechanisms with several degrees-of-freedom
(DOFs), and the algorithms for determining their geometrical parameters are usually based
on solving optimization problems. When synthesizing and evaluating the mechanism
performance, kinematic performance indices (e.g., conditioning index, global conditioning
index) are considered [8,9].

Several works analyze Jacobian matrix of a mechanism to determine its geometrical
parameters. For example, in [10], the authors perform dimensional synthesis of a 5-DOF
hybrid mechanism using a homogeneous Jacobian matrix. The optimal design of this
mechanism considers key features of parallel mechanical systems, such as workspace
dimensions, dexterity, and the geometrical parameters of kinematic chains. Studies [11,12]
present the multi-objective optimization problems demonstrated on the 4-DOF mechanisms
with Schönflies motion. These problems aim at maximizing the workspace and positioning
accuracy. Study [13] proposes a method for the synthesis of 3-DOF mechanisms that allows
for the avoidance of singularities at the design stage. Study [14] provides a parametric
synthesis algorithm based on a particle swarm optimization method, which was applied
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to an 8-SPU parallel mechanism. In [15], the authors present an approach that considers
positioning accuracy and is based on nonhomogeneous Jacobian matrices.

There are also dimensional synthesis algorithms based on minimizing an objective
function. In this case, a cost function is used as an optimization criterion. Study [16] presents
the interval analysis method applied to 3-DOF translational parallel mechanisms and aimed
to get the largest dexterous workspace. In [17], the authors performed the dimensional
synthesis of a Delta-like haptic device, optimizing its workspace. Study [18] provides a
mathematical modeling algorithm for the workspace construction of translational parallel
mechanisms with different topologies: Delta, 3-UPU, RAF (Romdhane-Affi-Fayet), and Tri-
pyramid (TP). Paper [19] shows the comparison of single- and multi-objective optimization
problems for the dimensional synthesis of a Delta robot and demonstrates the efficiency of
the second one. Another approach to multi-objective optimal design is presented in [20]
using the example of a cable-driven parallel robot for upper-limb rehabilitation tasks. The
study selects a suitable design by considering minimum cable tensions and the smallest
footprint. Paper [21] provides an approach based on interval analysis for the dimensional
synthesis of parallel mechanisms, considering accuracy requirements and manufacturing
errors. Work [22] demonstrates an approach for the dimensional synthesis of a 3-PRS
mechanism based on a dimensionally homogeneous Jacobian matrix. Paper [23] presents
another methodological procedure of dimensional synthesis for both parallel and serial
mechanisms. This procedure is a multi-objective optimization problem that considers
workspace dimensions, Jacobian matrices, and compliant displacements as design criteria.
Thus, the parametric synthesis problem for parallel mechanisms is complex, and its solution
is important for effective mechanism performance.

The current study focuses on an algorithm for the dimensional synthesis of a recon-
figurable parallel mechanism with a single drive. Such mechanisms can change their
configurations to vary the motion laws of the output links or the dimensions of their
workspaces [24–27]. Further, these mechanisms can avoid singularities during their motion
or find a way out of them [28,29]. Some of these mechanisms can change motion type.
For example, a 3-UPU robot presented in [30] can work either as a translational or rota-
tional mechanism by using different platform designs. Such functional properties provide
wide application opportunities for these mechanisms. In particular, they are applied in
rehabilitation procedures [31], pick-and-place operations [32], additive technology [33],
machining [34–36], and measuring tasks [37].

This study aims to determine the mechanism’s geometrical parameters based on the
prescribed motion laws of the output link. The advantage of the proposed approach is in
using simple kinematic relations and, in contrast to the methodologies discussed above,
that it does not require solving any optimization problems.

2. Mechanism Design

Let’s consider the structure of the mechanism. Figure 1a shows its virtual prototype
with the following elements: 1—circular guide (fixed link), 2—driving wheel (driving link),
3—driven gear, 4—driving pulley, 5—driven pulley, 6—crank, 7—slide block, 8—swinging
arm, 9—carriage, 10—leg, 11—platform (output link). Links 3 and 4, as well as 5 and 6,
have a common rotation axis; links 8 and 9 form one link; links 4 and 5 are coupled by a
belt; joints 9–10 and 10–11 are spherical.
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Figure 1. (a) Hexapod-type parallel mechanism with a reconfigurable design; (b) fragment of the horizontal part of the 
circular guide with a planar kinematic chain. 

Points Ki and Еi with i = 1…6 being the index number of a kinematic chain determine 
the centers of spherical joints 9–10 and 10–11, respectively. Fixed link 1 has a base 
reference frame OXYZ, and the movable frame PXPYPZP attaches to platform 11, with 
point P staying in its center. 

This mechanism can vary the platform trajectories using a single drive. To achieve 
this, one can reorient the cranks in each kinematic chain when the driving wheel is fixed. 
This becomes possible by disconnecting the belt between pulleys 4 and 5. 

One notes the following design features of the proposed mechanism: 
• a single drive that stays fixed in the center of the base; 
• correctly chosen cranks’ lengths allow for the elimination of the possibility of 

collision between the adjacent carriages (unlike other types of mechanisms with 
circular guides); 

• reconfigurability, which allows the platform to have diverse trajectories while 
having a single actuation. 

3. Configuration Analysis 
This section studies relations that describe the links’ coordinates and present the 

basis for the subsequent synthesis procedure. Let’s consider how to define the position 
and configuration of the output link. The former can be specified by Cartesian 
coordinates pP of its point P relative to the base frame OXYZ: 

pP = [x  y  z]T, (1) 

where x, y, and z are components of vector pP. 
To describe the orientation of movable frame 𝑃𝑃XPYPZP relative to OXYZ, we can 

use rotation matrix RP, which depends on three Euler angles φ, θ, and ψ: 

RP = RZ�φ� RY(θ) RX(ψ), (2) 
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Figure 1. (a) Hexapod-type parallel mechanism with a reconfigurable design; (b) fragment of the horizontal part of the
circular guide with a planar kinematic chain.

Points Ki and Ei with i = 1 . . . 6 being the index number of a kinematic chain determine
the centers of spherical joints 9–10 and 10–11, respectively. Fixed link 1 has a base reference
frame OXYZ, and the movable frame PXPYPZP attaches to platform 11, with point P staying
in its center.

This mechanism can vary the platform trajectories using a single drive. To achieve
this, one can reorient the cranks in each kinematic chain when the driving wheel is fixed.
This becomes possible by disconnecting the belt between pulleys 4 and 5.

One notes the following design features of the proposed mechanism:

• a single drive that stays fixed in the center of the base;
• correctly chosen cranks’ lengths allow for the elimination of the possibility of collision

between the adjacent carriages (unlike other types of mechanisms with circular guides);
• reconfigurability, which allows the platform to have diverse trajectories while having

a single actuation.

3. Configuration Analysis

This section studies relations that describe the links’ coordinates and present the basis
for the subsequent synthesis procedure. Let’s consider how to define the position and
configuration of the output link. The former can be specified by Cartesian coordinates pP
of its point P relative to the base frame OXYZ:

pP = [x y z]T, (1)

where x, y, and z are components of vector pP.
To describe the orientation of movable frame PXPYPZP relative to OXYZ, we can use

rotation matrix RP, which depends on three Euler angles ϕ, θ, and ψ:

RP = RZ(ϕ) RY(θ) RX(ψ), (2)

where the elementary rotation matrices are:
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RZ(ϕ) =

 cos ϕ – sin ϕ 0
sin ϕ cos ϕ 0

0 0 1

, RY(θ) =

 cos θ 0 sin θ
0 1 0

– sin θ 0 cos θ

,

RX(ψ) =

 1 0 0
0 cos ψ – sin ψ
0 sin ψ cos ψ

.

(3)

We can combine the platform coordinates into vector X:

X =
[

x y z ϕ θ ψ
]T. (4)

Next, let’s consider relations that connect vector X with the coordinates of the planar
links placed inside circular guide 1. Suppose driving link 2 rotates on angle q. Driven
gear 3 and pulley 5 will rotate on angles γ1i and γ2i, respectively:

γ1i= qR2/R3i, γ2i= γ1i R4i/R5i, (5)

where R2 is a radius of driving wheel 2; R3i is a radius of driven gear 3; R4i is a radius of
driving pulley 4; R5i is a radius of driven pulley 5.

Consider the triangle OBiCi (Figure 1b). Since center O of wheel 2, center Ai of pulley 4,
and center Bi of pulley 5 are collinear, we can write the distance OBi between the axes of
wheel 2 and pulley 5 as follows:

OBi= R2+R3i+di, (6)

where di is a distance between points Ai and Bi (between the centers of pulleys 4 and 5).
A length of OCi can be calculated by the cosine law for the triangle OBiCi:

OCi =
√

OB2
i +l2

i +2OBilicosβi, (7)

where li is a length of BiCi (length of crank 6); βi is the crank angle:

βi= β0
i − γ2i, (8)

where β0
i is an initial value of the crank angle.

To find swinging arm rotation angle δi, we apply the sine theorem for the triangle
OBiCi:

δi= arcsin(lisinβi/OCi). (9)

Now, we can write an expression for coordinates pKi of point Ki (coordinates of
carriage 9) relative to frame OXYZ:

pKi =
[

R1 cos(αi+δi) R1 sin(αi+δi) 0
]T, (10)

where R1 is a radius of circular guide 1; αi is an angle between axis OX of frame OXYZ
and line OBi (Figure 1b).

Let’s consider the output link of the mechanism. Coordinates pEi of points Ei (centers
of joints 10–11) relative to OXYZ have the following form:

pEi= pP+RPrEi, (11)

where rEi is the coordinates of point Ei relative to movable frame PXPYPZP.
Finally, we can write a relation that connects coordinates in Equations (10) and (11)

with length Li of leg 10:
(pEi − pKi)

2= L2
i . (12)
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Expression (12) written for all the kinematic chains represents a system of six equations
that connect coordinates X of the platform with the links’ coordinates in the mechanism’s
planar part. In the following section, we will show how to apply these relations for the
dimensional synthesis of the mechanism.

4. Dimensional Synthesis Algorithm

We can formulate the dimensional synthesis problem for the considered mechanism
in the following general form: finding the lengths of the links required to perform the
given output link trajectory. Before proceeding to the synthesis algorithm, we note two
important points:

1. Since the mechanism has only one degree of freedom, we cannot set all six components
of vector X independently. Only one coordinate can be defined explicitly.

2. As mentioned earlier in Section 2 and also shown in work [38], the output link can
reproduce various trajectories by uncoupling the belt between links 4 and 5 and
reorienting crank 6, i.e., by changing values β0

i that define the cranks’ initial angles.

Thus, it is reasonable to select these initial angles β0
i , i = 1 . . . 6, as unknown geo-

metrical parameters. Besides, we can complement our set of unknown parameters with
crank and leg lengths li and Li, respectively. These links have an ordinary rod-like design,
and we can easily substitute them for analogs with different lengths, if necessary (another
possibility is to apply a prismatic structure). We will also study the mechanism with a
“symmetrical” design: li = l and Li = L for all i. Other parameters are considered to have
constant values.

To solve the dimensional synthesis problem, we will use the relations obtained in the
previous section. Given the above, we can rewrite expression (12) in the following way:

(pEi − pKi)
2− L2

i =
(

pEi(X)− pKi(q, l,β0
i )
)2
− L2= f i

(
β0

i , l, L, q, X
)
= 0, i = 1 . . . 6. (13)

Let Xg be the given platform coordinate: it can represent any component of vector X.
The five remaining coordinates can be grouped as vector Xv. System of Equation (13) will
have the form:

fi

(
β0

i , l, L, q, Xv, Xg

)
= 0, i = 1 . . . 6. (14)

We can solve the system above numerically with respect to variables β0
i , l, L, q, and Xv

for each value of coordinate Xg. One should note a caveat here. If Xg has a form of some
trajectory Xg(t), where t is the time, then variables β0

i , l, and L should keep constant values
for each value of Xg on a given time interval to realize a specified trajectory. Given this, we
can use the following approach to find a solution to system (14).

We can represent trajectory Xg(t) specified on time interval [0, T] as N discrete values:

Xg(t) → Xg[1], Xg[2], . . . , Xg[j], . . . , Xg[N], (15)

where Xg[j] corresponds to value Xg(tj) at time tj, j = 1 . . . N, and Xg[1] = Xg(0), Xg[N] =
Xg(T).

For the given trajectory Xg(t), variables Xv and q will also be functions of time Xv(t)
and q(t), which we can represent similarly in a discrete form:

Xv(t) → Xv[1], Xv[2], . . . , Xv[j], . . . , Xv[N], (16)

q(t)→ q[1], q, . . . , q[j], . . . , q[N]. (17)

With this discretization, system (14) can be written as follows:

f ji(β
0
i , l, L, Xv[j], q[j], Xg[j]) = 0, i = 1 . . . 6, j = 1 . . . N. (18)
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The expression above is a system of 6N equations relative to 8 + 8N variables: six
unknowns are β0

i ; two unknowns are l and L; 5N unknowns are components of vectors Xv[j];
N unknowns are q[j]. We can augment the obtained equations with a relation that constrains
crank length l: to exclude the collisions between carriages 9, the crank length should be
limited by some value lmax:

l ≤ lmax. (19)

To include this condition into our analysis, we can rewrite inequality (19) as an equality
using slack variable s:

(l − lmax/2)2+s2 = (lmax/2)2. (20)

Work [39] (p. 84) presents a derivation of Equation (20) and its geometrical interpreta-
tion. This equation has the following meaning: condition (19) is satisfied if and only if we
can solve Equation (20) for some values of s. We can add relation (20) to system (18) as the
function fs:

l2 − l lmax+s2= f s(l, s)= 0. (21)

Let’s consider the structure of the obtained system of Equations (18) and (21). We can
group all variables into vector v with dimension 9 + 6N:

v =

[ (
β0
)T

l L s q[1]. . . q[N] (Xv[1])
T . . . (Xv[N])T

]T
=
[

v1 . . . v9+6N
]T, (22)

where β0 = [β0
1 . . . β0

6]T is a vector of crank initial angles β0
i .

We can also group Equations (18) and (21) into vector-function f with dimension
6N + 1:

f =[ f11 f 12 . . . f 16 f 21 . . . f N6 f s]
T. (23)

The Jacobian matrix for vector-function (23) can be written as follows:

∂f
∂v

=


∂ f11
∂v1

· · · ∂ f11
∂v9+6N

...
. . .

...
∂ fN6
∂v1

· · · ∂ fN6
∂v9+6N

∂ fs
∂v1

· · · ∂ fs
∂v9+6N

. (24)

For each pair of integers m and n, m = 1 . . . 6, n = 1 . . . N, function fnm depends
only on variables Xv[j] and q[j] with j = n and only on variable β0

i with i = m, and does
not depend on other variables. In this regard, the Jacobian matrix (24) will have a sparse
structure of the following form:

∂f
∂v

=


A1 b1 −2L 06×1 C1 D1
A2 b2 −2L 06×1 C2 D2
...

...
...

...
...

. . .
AN bN −2L 06×1 CN DN
01×6 2l − lmax 0 2s 01×N 01×5 01×5 · · · 01×5

, (25)



Machines 2021, 9, 117 7 of 12

where

Aj =

 ξj1
. . .

ξj6

, bj =

 µj1
...
µj6

, Dj =

 σj11 . . . σj15
...

. . .
...

σj61 . . . σj65

, j = 1 . . . N,

C1 =

 η11
...
η16

, C2 =

 η21
...
η26

, CN =

 ηN1
...
ηN6

,

ξji =
∂ f ji

∂β0
i
, µji =

∂ f ji
∂l , ηji =

∂ f ji
∂q[j] , σjik =

∂ f ji

∂Xk
v [j]

, i = 1 . . . 6, j = 1 . . . N.

(26)

In the expression above, Xv[j] is a k-th component of vector Xv[j], k = 1 . . . 5. All
elements in the right side of expression (25) are zeros, except for the notated ones and the
ones that contain ξji, µji, ηji, and σjik. One can see that the Jacobian matrix has a highly
sparse structure. We can estimate its sparsity sp as a ratio of zero elements to the total
number of elements. In the considered case, the latter is equal to (6N + 1) × (9 + 6N), and
the former equals 54N + 2, so:

sp =
(6N + 1)× (9 + 6N)− (54N + 2)

(6N + 1)× (9 + 6N)
=

36N2+6N + 7
36N2+60N + 9

. (27)

With large values of N, sparsity sp approaches one, i.e., almost all elements of the
matrix are zeros. Such a sparse structure significantly facilitates and speeds up the numeri-
cal solution of Equations (18) and (21). To find the solution, we should make some initial
guess, the choice of which is a key factor. Since the equations are nonlinear and the number
of variables is greater than the number of equations, different initial guesses will lead to
various solutions. Moreover, the solution may not exist at all for incorrect guesses. The
choice of this initial guess remains an open problem. However, there are several methods to
facilitate this choice, e.g., using experimental data or the virtual model of the mechanism.

Note that the numerical solution of Equations (18) and (21) provide not only the
geometrical values of the mechanism but also the driving wheel angle and five remaining
coordinates of the output link. Thus, the dimensional synthesis algorithm implicitly
includes the solution to the inverse kinematics problem.

We can also adapt the proposed approach for other mechanisms (not necessarily
reconfigurable) in which an output link performs a coupled motion changing several
coordinates at a time and for which both the inverse and forward kinematics are challenging
to solve in an explicit form. The differences will be in functions f and variables v, but the
overall technique will remain the same.

5. Examples of Dimensional Synthesis

Consider an example of the dimensional synthesis for the mechanism with parameters
that correspond to the model in Figure 1 and have the following values: R1 = 246 mm,
R2 = 64.25 mm, lmax = 69.2 mm; for all i: R3i = 24 mm, R4i = 15 mm, R5i = 30 mm,
di = 75.5 mm; αi = 30◦, 90◦, 150◦, 210◦, 270◦, 330◦; rEi =

[
R11cosχi R11sinχi 0

]T,
where R11 = 192.7 mm is a platform radius (a distance from point P to centers Ei of
spherical joints 10–11), χi = 10◦, 110◦, 130◦, 230◦, 250◦, 350◦ is an angular placement of
joints 10–11 that determines their position on the output link.

As a case study, let’s take platform coordinate x as given coordinate Xg with the
following time law:

Xg(t) = x(t) = 15 sin
2π
5

t mm, t = [0, 5] s, (28)

which corresponds to one full oscillation around axis OX with an amplitude of 15 mm.
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The numerical solution has been performed in MATLAB using the standard function
“fsolve” with the tolerance 1 × 10−8 as a stopping criterion. The value of N was equal to
200, which corresponded to sp = 0.99 according to (27). We applied the following initial
guess: 6◦ for all angles β0

i ; 39 mm for crank length l; 220 mm for leg length L; 195 mm for
coordinate z; zeros for all other variables, except for s, which had an initial guess calculated
using Equation (21). We also used the Jacobian matrix (25), the nonzero elements of which
were found in explicit form by the differentiation of expression (13) with respect to the
corresponding variables.

The solution was found after 35 iterations, which took about 3.2 s on a laptop with
an Intel Core i7-3610QM 2.3 GHz processor and 8 GB RAM. This solution included the
following values of lengths l and L and crank initial angles β0:

l = 34.38 mm, L = 219.05 mm, (29)

β0 =
[

122.41◦ 158.31◦ –112.20◦ 33.38◦ 2.44◦ –74.46◦
]T. (30)

We also determined the driving link angle q and five platform coordinates Xv (solid
lines in Figure 2). One can see that all five coordinates of the output link vary in time and
take the same values for t = 5 s as for t = 0.
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lines—l, L, and β0 correspond to (31) and (32).

As mentioned earlier, the numerical solution depends greatly on the initial guess. To
demonstrate this, let’s change the initial guess for crank length l from 39 mm to 44 mm
and for slack variable s according to (21), keeping other guesses similar to the previous
example. The following solution was found after 185 iterations, which took about 16.1 s on
the same laptop:

l = 58.83 mm, L = 207.96 mm, (31)

β0 =
[

8.23◦ 47.50◦ –174.63◦ 103.66◦ –101.47◦ 39.91◦
]T. (32)

Thus, we can realize given trajectory Xg(t) with different sets of mechanism parameters.
Moreover, Figure 2 (dashed lines) shows that driving link angle q and platform coordinates
Xv differ from the previous case. For example, in the second case, coordinates z, ϕ, and
ψ vary with greater amplitudes than in the first case. Theoretically, there can exist a set
of parameters that provides a minimum variation in unspecified coordinates Xv. If the
mechanism follows given trajectory Xg(t) with negligible variations in other coordinates, we
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can consider the mechanism as able to perform a pure rotational or pure translational motion
about a given axis. We can form an optimization problem to find such a set of parameters—
this is beyond the scope of the current study but is of interest for future research.

6. Computational Accuracy and Comparison with Other Works

The presented approach allows us to find eight design parameters: six initial crank
angles, crank length, and leg length. In addition, the algorithm uses one slack variable and
6N variables corresponding to the mechanism coordinates. To get more accurate results,
we can either diminish the tolerance value or increase the value of N. In particular, the
bigger the N value, the closer the calculated platform trajectory, which we can find using
forward kinematics [38], will be to given trajectory Xg(t). Nevertheless, in both cases, the
calculation time will rise. The number of iterations and calculation time also depend on
the initial guess as we have seen from the examples in the previous section.

As we mentioned in the introduction, most of the known works devoted to the dimen-
sional synthesis of parallel mechanisms consider solutions to the optimization problems.
One of the earliest studies in this field by Bhattacharya et al. [40] considered the optimal de-
sign of Stewart platform type manipulators optimizing several rigidity criteria. The authors
solved the problem with three design parameters using a sequential quadratic programming
technique on an HP 9000/850 computer, which took 12.5 s to find only one local minimum
of the objective function. Later, Merlet et al. in works [21,41,42] applied interval analysis
to the optimal design of various parallel manipulators. The authors considered single-
and multi-criteria optimization problems with a number of design parameters ranging
from two to six. The calculation time on different computers varied from 30 min to 48 h.
Miller [43] studied the optimal design of a Delta-like robot for manipulability and space
utilization criteria. The optimization problem with four design parameters was solved
using a MATLAB package in about 3 h on a Pentium II 200 MHz computer. Rao et al. [44]
performed the dimensional synthesis of hexaslide machines considering workspace volume
and global dexterity indices as optimization objectives for the problem with seven design
parameters. It took 211 s on a Pentium IV 1.7 GHz, 256 MB RAM computer to only calcu-
late these indices. Another multi-criteria design optimization problem with four design
parameters was studied by Unal et al. [45] using a normal boundary intersection method.
The calculation time varied from an hour up to several hours, depending on the tolerance
value, on a workstation with an Intel Xeon 3.4 GHz processor and 4 GB RAM. Jiang and
Gosselin [46] performed geometric optimization of a Gough-Stewart platform for maximal
singularity-free workspace. The authors applied Powell’s search method for the problem
with three design parameters, which took about 5 min to find a solution on a Pentium IV
2.4 GHz computer. Parivash and Ghasemi [47] solved an optimal dimensional problem
with five design parameters for a parallel manipulator with the desired workspace. The
solution was found using the MATLAB optimization toolbox on an Intel Core i7 2.2 GHz,
6 GB RAM computer in about 25 min. Russo et al. [4] also used this toolbox for the optimal
design of lower mobility manipulators. The authors solved a multi-loop optimization
problem with four design parameters which aimed at minimizing positioning errors. The
average calculation time was 273 s on an Intel Core i7-6700HQ 2.6 GHz computer. Mu-
ralidharan et al. [48] applied an approach based on a genetic algorithm to the dimensional
synthesis of 3-RRR and 3-RRS parallel manipulators. The authors considered two different
optimization problems related to the dynamic performance with five design parameters
for both mechanisms. The calculation time varied from 13 to 49 h on a computer with an
Intel Core i7-4930 3.4 GHz processor.

The abovementioned studies differ in their studied mechanisms, design parameters,
objective functions, applied methods, and computers that solve the problems. Though we
cannot perform an adequate comparison with the known works, the approach suggested
in the current paper seems to be computationally efficient with a proper choice of the
initial guess.
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7. Conclusions

This study has presented an original dimensional synthesis algorithm for the hexapod-
type reconfigurable parallel mechanism with single DOF. The suggested algorithm allows
the determination of the links’ dimensions (the crank and the leg lengths) and the crank
initial angles required to perform specified platform trajectories. The research has provided
the relations that express the coordinates of all links in terms of the drive angle and platform
position and orientation. Being written for all the kinematic chains, these relations form a
system of six equations that constitute a basis for the subsequent synthesis algorithm. The
advantage of the proposed algorithm is in calculation not only of the geometrical values
of the mechanism links, but also the driving wheel angle and five remaining coordinates
of the platform. From a computational point of view, the highly sparse structure of the
equations’ Jacobian matrix allows for the finding of a numerical solution to the synthesis
problem quickly and efficiently. The obtained theoretical results have been verified on
an example with a given trajectory along one of the platform coordinates. The numerical
solution has been found for different initial guesses. In contrast to the known dimensional
synthesis methods of parallel mechanisms, the proposed algorithm is straightforward and
does not require the solving of any optimization problem. Nevertheless, the techniques
suggested by this work can be extended to the optimal design of the mechanism. The
proposed approach can be also adapted for other mechanisms.
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