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Abstract: In this paper, we propose an adaptive data-driven control approach for linear time varying
systems, affected by bounded measurement noise. The plant to be controlled is assumed to be
unknown, and no information in regard to its time varying behaviour is exploited. First, using
set-membership identification techniques, we formulate the controller design problem through a
model-matching scheme, i.e., designing a controller such that the closed-loop behaviour matches
that of a given reference model. The problem is then reformulated as to derive a controller that
corresponds to the minimum variation bounding its parameters. Finally, a convex relaxation approach
is proposed to solve the formulated controller design problem by means of linear programming. The
effectiveness of the proposed scheme is demonstrated by means of two simulation examples.

Keywords: adaptive control; convex relaxation; linear programming; LTV systems; model-matching;
set-membership

1. Introduction

In the context of controlling linear time varying (LTV) systems, one of the most com-
mon approaches is adaptive control. This is due to the nature of these type of controllers,
as they are capable of adjusting their parameters to cope of with the variations in the
system to be controlled. Adaptive control techniques for LTV systems are not new and this
problem has received great research efforts. A model reference adaptive control (MRAC)
scheme is proposed in [1,2], while in [3,4], indirect adaptive schemes are considered for the
case of slowly varying systems. In [5], an indirect adaptive pole placement is proposed
for LTV systems with unmodeled dynamics and bounded disturbance. A linear periodic
controller is presented in [6], where instead of estimating the plant and controller param-
eters, the ideal control signal is directly computed. In [7], an adaptive output feedback
based controller is addressed, having a fixed structure that depends on the relative degree
of the plant.

All of the aforementioned approaches rely on the presence of a model for the plant,
or at least some sort of description for its dynamics and structure. In many control
applications, deriving a mathematical representation for the plant to be controlled may
not be an easy task, as the dynamics of the system may be too complex and may require
extensive efforts in order to find a suitable model. For this reason, in recent years, designing
feedback controllers from input-output data, collected experimentally from the plant, has
gained increasing interest from the control community. This approach is referred to as
data-driven control (DDC).

In the literature we can find several contributions addressing the design of data-driven
controllers, e.g., iterative feedback tuning (IFT) [8], virtual reference feedback tuning (VRFT)
[9,10], correlation based tuning (CbT) [11], unfalsified control [12], and a parametrized data-
dependent linear matrix inequalities (LMIs) approach [13]. The interested reader can find
further details on DDC methods in the survey paper [14] and the book [15]. More recently,
a method to compute the inverse of the ideal controller from data collected from the plant
is proposed in [16] through a prediction error approach. The controller structure consists of
two parts, fixed and identifiable, which allows the possibility of different controller designs,
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which can be either model-based or direct data-driven. In [17], we can find a neural-
network (NN) model-free VRFT-based adaptive actor-critic (AAC) scheme. The VRFT
approach is used to compute an initial stabilizing NN feedback controller, which is then
used to initialize the AAC learning controller tracking the output of a reference model.
Starting from the work presented in [18,19], a data-driven model-reference approach is
presented in [20] using frequency domain data with the aim of avoiding unmodelled
dynamics. In [21], a DDC approach for tuning a PID controller through iterative feedback
tuning for a rotational microscope stage system is presented. A robust data-driven model
predictive control is proposed in [22] for LTI systems. A novel non-iterative DDC scheme
for LTI systems is introduced in [23]. The problem is formulated in terms of set-membership
(SM) error-in-variables (EIV) identification in the presence of bounded noise. The approach
is extended to the case of non-minimum phase (NMP) plants in [24], where the authors
propose an algorithm which guarantees internal stability of the closed-loop system.

In this paper, we propose an adaptive DDC scheme for controlling LTV systems when
the output of the closed-loop system is affected by bounded noise. To the author’s best
knowledge, this is the first attempt to address such problem. The controller parameters
are estimated in real-time, using measurements collected from the plant at time instant
t, and the parameters computed at the previous time instant. Through set-membership
identification techniques, a model-matching scheme is presented, where the controller
is designed such that the behaviour of the closed-loop system matches that of a given a
reference model. Since the plant is assumed to be completely unknown, and as a result we
can not have any information about the structure of the controller and how its parameters
vary, we first provide a formulation for bounding these variations. Following that we use
recent results presented in [25] to compute the parameters of the controller by solving a
suitable linear program at each time step.

The paper is organized as follows. Section 2 is devoted to the problem formulation.
In Section 3, we address the adaptive DDC design procedure for LTV systems through
set-membership identification techniques. The problem for computing a single point con-
troller is presented in Section 4 by characterizing the variation bounds on the controller
parameters. A convex relaxation approach is proposed in Section 5, allowing us to compute
the controller parameters by solving a suitable linear program at each time step. The ef-
fectiveness of the proposed scheme is shown in Section 6 by means of two simulation
examples. Concluding remarks and planned future works end the paper.

2. Problem Formulation

Let us consider the discrete-time single-input single-output (SISO) feedback control
scheme depicted in Figure 1, where q−1 denotes the backward shift operator (i.e., q−1u(t) =
u(t− 1)), and M(q−1) is the transfer function of a given linear time invariant (LTI) reference
model that describes the desired closed-loop behaviour of the feedback control system to
be designed.

The plant G(t, q−1) to be controlled is described by a SISO LTV system defined by the
following linear difference equation

A(t, q−1)wt = B(t, q−1)ut, (1)

where ut is the plant input (controller output) and wt is the noise free output signal, while
A(·) and B(·) are time-varying polynomials described by

A(t, q−1) = 1 + a1(t)q−1 + · · ·+ ana(t)q
−na , (2)

B(t, q−1) = b0(t) + b1(t)q−1 + · · ·+ bnb(t)q
−nb , (3)

where na ≥ nb. The parameters ai(t) and bj(t) vary according to

ai(t) = ai(t− 1) + δai (t), i = 1, . . . , na, (4)
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and
bj(t) = bj(t− 1) + δbj

(t), j = 0, . . . , nb, (5)

where δai (t) and δbj
(t) are unknown parameter variations between two consecutive generic

time instants t− 1 and t.
Let yt be the noise-corrupted measurement of wt,

yt = wt + ηt. (6)

Measurement uncertainty ηt is known to range within given bound ∆η , more precisely

|ηt| ≤ ∆η . (7)

Let us now introduce the following two assumptions.

Assumption 1. The transfer function G(t, q−1) is assumed to be stable and minimum phase ∀t.

Assumption 2. The transfer function G(t, q−1) is assumed to be minimal ∀t.

Assumption 2 is equivalent to say that the system is completely controllable and observ-
able.

The controller K(ρ(t), q−1) is a SISO LTV system described by the following equations

ut =
B(t, q−1)

A(t, q−1)
et = K(ρ(t), q−1)et, (8)

where et is the difference between the reference signal rt and the noise-corrupted output yt,
i.e.,

et = rt − yt (9)

and time-varying polynomials A(·) and B(·) are represented as

A(t, q−1) = 1 + α1(t)q−1 + · · ·+ αmα(t)q
−mα , (10)

B(t, q−1) = β0(t) + β1(t)q−1 + · · ·+ βmβ
(t)q−mβ , (11)

where we assume that mα ≥ mβ.
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Figure 1. Data-driven LTV control closed-loop model-matching scheme
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As same as the plant, the parameters of the controller αi(t) and β j(t) are assumed to
vary according to

αi(t) = αi(t− 1) + δαi (t), i = 1, . . . , mα, (12)

and
β j(t) = β j(t− 1) + δβ j(t), j = 0, . . . , mβ, (13)

where δαi (t) and δβ j(t) are the controller’s parameter variations between two successive
time instants t− 1 and t. The parameter variation vector δρ(t) ∈ Rmp is defined as follows,

δρ(t) = [δα1(t), . . . , δαmα
(t), δβ0(t), . . . , δβmβ

(t)]T , (14)

where mp = mα + mβ + 1. We assume that δρ(t) is unknown, but bounded. More specifi-
cally, we assume that δρ(t) belongs to the the following time-varying set:

δρ(t) ∈ Sδ(t) = {δρ(t) ∈ Rmp : |δρk (t)| ≤ ∆ρk (t), k = 1, . . . , mp}, (15)

where ∆ρk (t), k = 1, . . . , mp, due to the structure of the addressed problem, are unknown
variation bounds. This point will be addressed in the next section.

The aim of this work is to estimate, at each time instant t, the parameter vector
ρ(t) ∈ Rmp , characterizing the controller K(ρ(t), q−1), defined as

ρ(t) = [α1(t), . . . , αmα(t), β0(t), . . . , βmβ
(t)]T , (16)

without explicitly taking into account any information about the plant, neither its structure
or how the parameters vary, i.e., Equations (1)–(5). This is due to the fact that we are con-
sidering a model-free setting for the plant, as we can not rely on having such information,
and we only use the input-output data from the plant to design K(ρ(t), q−1).

At this point, the data-driven control problem for LTV systems, considered in this
paper, can be stated as follows.

Problem 1 (Adaptive Data-Driven Controller Design). The problem addressed in this paper
is to design a time-varying controller K(ρ(t), q−1) such that the the closed loop transfer function
T(t, q−1), at each time step t, given by

T(t, q−1) =
K(ρ(t), q−1)G(t, q−1)

1 + K(ρ(t), q−1)G(t, q−1)
, (17)

matches, as close as possible, that of the assigned reference model M(q−1), under the assumption
that the plant transfer function G(t, q−1) is unknown. In other words, we want to find a controller
that makes the output matching error signal εt, defined as:

εt = M(q−1)rt − T(t, q−1)rt, (18)

as close as possible to zero.

Please note, in order to simplify notation, we drop the backward shift operator q−1

from all equations presented in the remainder of this paper.

3. Adaptive DDC for LTV Systems in the Set-Membership Framework

In this section, we address the formulation of the adaptive data-driven control design
problem, as described in Problem 1.

First let us introduce the time-varying feasible controller set (FCS), which is inspired
by the feasible parameter set (FPS) for LTV systems proposed in [26] and the FCS definition
for LTI controllers presented in [23]. The time-varying FCS, for the case of LTV systems, is
defined as follows.
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Definition 1. [Time-Varying Feasible Controller Set]
At a generic time t, the feasible controller set (FCS) is defined as the set of all controllers

belonging to a given model class K(mα ,mβ)
such that for each controller in this set there exists at

least one noise sequence |ηt| ≤ ∆η and parameter variations |δρk (t)| ≤ ∆ρk (t), k = 1, . . . , mp,
such that the difference between the reference model output and that of the closed-loop system

εt = 0. (19)

From Definition 1, the time-varying FCS can be described as:

DK(t) = {K(ρ(t)) ∈ K(mα ,mβ)
: Mrt − T(t)rt = 0, |ηt| ≤ ∆η ,

K(ρ(t)) =
β0(t) + · · ·+ βmβ

(t)q−mβ

1 + α1(t)q−1 + · · ·+ αmα(t)q−mα
,

ρk(t) = ρk(t− 1) + δρk (t), |δρk (t)| ≤ ∆ρk (t),

k = 1, ..., mp}.

(20)

As it can be clearly seen from the setDK(t), the controller class is parametrized by ρ(t),
hence we can replace the time-varying set DK(t) with the time-varying feasible controller
parameter set Dρ(t) which is defined as follows.

Definition 2. [Time-Varying Feasible Controller Parameter Set]
The feasible controller parameter set (FCPS), at a generic time t, is defined as the set of all the

controller parameters ρ(t) such that K(ρ(t)) ∈ DK(t).

On the basis of Definition 2, we now state the following result.

Result 1. Structure of the Feasible Controller Parameter Set
At a generic time instant t, the feasible controller parameter set (FCPS) for the time-varying

controller K(ρ(t)), is defined as

Dρ(t) = {ρ(t) ∈ Rmp :

V(t) = K(ρ(t))(yt − ηt), |ηt| ≤ ∆η ,

ρk(t) = ρk(t− 1) + δρk (t), |δρk (t)| ≤ ∆ρk (t),

k = 1, ..., mp},

(21)

where,

Vt =
M

1−M
ut, (22)

and ρ(0) are the parameters of an initial controller that stabilizes the plant.

Proof. Starting from the time-varying FCS, as in Definition 1, the output matching error
signal Equation (18) can be written as:

Mrt − T(t)rt = 0. (23)

The closed-loop system’s output wt, which is the unknown plant’s output, is equal to:

wt = T(t)(rt − ηt), (24)

or equivalently,
T(t)rt = wt + T(t)ηt. (25)

From here, Equation (23) can be rewritten as:

Mrt − wt − T(t)ηt = 0, (26)
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and from (6) and (9), (26) becomes:

MK(ρ(t))−1ut = yt(1−M)− ηt(1− T(t)). (27)

The term (1− T(t)) can be written as,

1− T(t) = S(t) =
1

1 + K(ρ(t))G(t)
, (28)

where S(t) is the sensitivity function.
Based on the approach presented in [27], we introduce the following approximation,

1
1 + K(ρ(t))G(t)

≈ 1
1 + K∗(t)G(t)

= 1−M, (29)

where K∗(t) is the ideal controller and follows the same definition as in [23].
Now thanks to (29), Equation (27) becomes

MK(ρ(t))−1ut = yt(1−M)− ηt(1−M). (30)

Finally, dividing both sides of Equation (30) by (1−M) and multiplying by K(ρ(t))
leads to:

M
1−M

ut = K(ρ(t))(yt − ηt), (31)

which can be equivalently rewritten as,

Vt = K(ρ(t))(yt − ηt), (32)

where,

Vt =
M

1−M
ut. (33)

A block diagram description of Equation (32), characterizing the FCPS in (21), is given
in Figure 2. This figure shows that by collecting from the closed-loop system, shown
in Figure 1, the noise corrupted output measurements yt and the control input ut, we
can design the adaptive controller by solving a suitable optimization problem as will be
described in the next section.
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As given from Definition 2, the FCPS contains all the parameters ρ(t) such that
K(ρ(t)) ∈ DK(t). In practice, however, we need to pick just a single point from the FCPS
to design the controller K(ρ(t)) to be implemented in the feedback control scheme as in
Figure 1. As it can be clearly seen from the set in (21), the FCPS is characterized by the
unknown variation bounds |δρk (t)| ≤ ∆ρk (t), k = 1, . . . , mp. Therefore, in order to design
K(ρ(t)) we need to compute these variation bounds. In the next section we will address
the problem of finding a single point controller, at each time instant t, in the FCPS that
corresponds to the minimum value bounding the variation on all parameters ρ(t) ∈ Rmp .

4. Parameter Variation Bounds Computation

In this section, we propose an algorithm for computing the minimum variation value
that bounds all parameters ρ(t) ∈ Rmp .

First, let us introduce the following time-dependant parameters variation vector

∆ρ(t) = [∆α1(t), . . . , ∆αmα
(t), ∆β0(t), . . . , ∆βmβ

(t)]T , (34)

where ∆ρ(t) characterizes the time-varying set Sδ(t) in (15). In order to compute the
minimum parameter variation vector we need to solve the following multi-objective
optimization problem

min
ρ(t)∈Dρ(t)

∆ρ1(t), ∆ρ2(t), . . . , ∆ρmp (t). (35)

Multi-objective optimization (MOO) problems are those that involve more than one
objective function to be optimized simultaneously. Several approaches tackling MOO
problems are present in the literature (see, e.g., [28–31]). All of these techniques do not
return the exact solution for each objective function, but rather a trade-off between all of
them by approximating a set of Pareto optimal solutions. In the problem addressed in this
section, we want to know the variation bound for each of the controller parameters, but the
solution of the multi-objective optimization problem (35) will return the best candidates
that minimize all objective functions together, which may not necessarily be the true value
for the variation bounds. On the other hand, another crucial point worth highlighting,
is the fact that the computation complexity of solving MOO can not be applied in the
adaptive scheme considered in this paper.

In the following formulation, we will consider the case of computing a single variation
bound, denoted as ∆∗ρ(t) hereinafter, that represents the minimum variation bounding
all ρ(t) ∈ Rmp . In other words, we want to find a single point controller K(ρ(t)) that
corresponds to the minimum variation bound ∆∗ρ(t). We can generically formulate the
problem mathematically as:

∆∗ρ(t) = min ∆ρ(t)

s.t :

K(ρ(t)) ∈ DK(t)
(36)

where,
∆ρ(t) = max

k=1,...,mp
∆ρk (t) (37)



Machines 2021, 9, 167 8 of 17

The following result shows that (36) can be written as a constrained polynomial
optimization problem.

Result 2. Computation of ρ(t)
The controller parameters ρ(t), corresponding to the minimum variation bound ∆∗ρ(t), can be

computed solving the following optimization problem:

min
ρ(t)

∆ρ(t)

s.t :

V(t) = K(ρ(t))(yt − ηt),

ηt ≤ ∆ηt , ηt ≥ −∆ηt ,

ρk(t) = ρk(t− 1) + δρk (t),

δρk (t) ≤ ∆ρ(t), δρk (t) ≥ −∆ρ(t),

k = 1, . . . , mp

(38)

where η = [ηt−mβ
, . . . , ηt]T .

Problem (38) is a nonconvex polynomial optimization problem due to the presence of
bilinear terms in the equation V(t) = K(ρ(t))(yt − ηt), i.e., the controller parameters are
multiplied by samples of the unknown measurement noise. The global optimal solution
of problem (38) can be approximated by means of semidefinite programming relaxation
techniques, see, e.g., [32–34]. However these methods require huge computational efforts
and memory resources, and hence can not be applied in the considered adaptive control
scheme. In the next section, we propose a convex relaxation approach which allows us to
rewrite optimization problem (38) as a linear problem starting from the results recently
presented in [25].

5. A Convex Relaxation Approach

In this section, we propose a convex relaxation approach, which allows us to rewrite
the nonconvex optimization problem (38) as an equivalent linear problem. The main idea
is based on the work recently proposed in [25], where we rely on the concept of McCormick
envelopes [35] to relax the original problem to an equivalent convex one.

Let us first rewrite Equation (32) as follows

V(t) +
mα

∑
i=1

αi(t)V(t− i) =
mβ

∑
j=0

β j(t)y(t− j)−
mβ

∑
j=0

β j(t)η(t− j). (39)

Now to eliminate the bilinear terms in (39), we introduce the following variables,

Mβ j(t) = β j(t)η(t− j), j = 0, . . . , mβ, (40)

allowing us to write (39) as

V(t) +
mα

∑
i=1

αi(t)V(t− i) =
mβ

∑
j=0

β j(t)y(t− j)−
mβ

∑
j=0
Mβ j(t). (41)

Now direct application of the approach presented in [25] allows us to state the follow-
ing result in order to boundMβ j(t).
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Result 3. Upper and lower bounds onMβ j(t)
Based on the concept of McCormick envelopes,Mβ j(t), j = 0, . . . , mβ, satisfies the following

set of inequalities
Mβ j(t) ≥ βLB

j (t)η(t− j)− β j(t)∆η + βLB
j (t)∆η , (42)

Mβ j(t) ≥ βUB
j (t)η(t− j) + β j(t)∆η − βUB

k (t)∆η , (43)

Mβ j(t) ≤ βUB
j (t)η(t− j)− β j(t)∆η + βUB

j (t)∆η , (44)

Mβ j(t) ≤ β j(t)∆η + βLB
j (t)η(t− j)− βLB

j (t)∆η , (45)

Bounds βLB
j (t) and βUB

j (t) are given by

βLB
j (t) = β j(t− 1)− ∆ρ(t), (46)

βUB
j (t) = β j(t− 1) + ∆ρ(t), (47)

where β j(t− 1) are the estimates at time t− 1.

As it can be clearly observed from Result 3, by substituting (46) and (47) into inequal-
ities (42)–(45), we once again encounter bilinear terms due to the multiplication of the
unknown variation bounds with the noise samples, i.e., ∆ρ(t)η(t− j). In the next result,
we show that (42)–(45) can be written as equivalent linear inequalities.

Result 4. Inequalities (42)–(45) are equivalent to:

| −Mβ j(t)− β j(t)∆η + βLB
j (t)∆η | ≤ |β j(t− 1)|∆η + ∆ρ(t)∆η , (48)

| −Mβ j(t) + β j(t)∆η − βUB
j (t)∆η | ≤ |β j(t− 1)|∆η + ∆ρ(t)∆η , (49)

|+Mβ j(t) + β j(t)∆η − βUB
j (t)∆η | ≤ |β j(t− 1)|∆η + ∆ρ(t)∆η , (50)

|+Mβ j(t)− β j(t)∆η + βLB
j (t)∆η | ≤ |β j(t− 1)|∆η + ∆ρ(t)∆η . (51)

Since the proof for all four inequalities in Result 4 is the same, for simplicity we will
only prove that inequality (48) is equivalent to (42).

Proof. Let us rewrite (42), substituting βLB
j (t) with (46), as follows

−Mβ j(t)− β j(t)∆η + βLB
j (t)∆η ≤ −β j(t− 1)η(t− j) + ∆ρ(t)η(t− j). (52)

Since η(t− j), j = 0, . . . , mβ, are unknown but bounded according to (7), Equation (52)
can be rewritten equivalently as:

| −Mβ j(t)− β j(t)∆η + βLB
j (t)∆η | ≤ |β j(t− 1)|∆η + ∆ρ(t)∆η , (53)

where β j(t− 1) is a known value (estimate at time t− 1), and upper bound on the variation
is greater than or equal to zero, i.e., ∆ρ(t) ≥ 0, ∀t.
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Remark 1. For LTV systems, in most cases it is safe to assume that all variation bounds are strictly
greater than zero, i.e., ∆ρ(t) > 0. However, there can be some cases where this statement is not
true, e.g., a PI controller, hence assuming that ∆ρ(t) ≥ 0 assures the possibility of having a more
general setting. Furthermore, one other case where this setting is useful is when the plant to be
controlled is an LTI one, which implies by definition that variations on the controller parameters,
after a transient state, are equal to zero.

At this point we are in a position to state the main result of the paper.

Result 5. Computation of ρ(t) by means of Linear Programming (LP)
The controller parameters ρ(t) can be computed by solving the following linear program:

min
ρ(t),Mβ(t)

∆ρ(t)

s.t :

V(t) +
mα

∑
i=1

αi(t)V(t− i) =
mβ

∑
j=0

β j(t)y(t− j)−
mβ

∑
j=0
Mβ j(t),

| −Mβ j(t)− β j(t)∆η + βLB
j (t)∆η | ≤ |β j(t− 1)|∆η + ∆ρ(t)∆η ,

| −Mβ j(t) + β j(t)∆η − βUB
j (t)∆η | ≤ |β j(t− 1)|∆η + ∆ρ(t)∆η ,

|+Mβ j(t) + β j(t)∆η − βUB
j (t)∆η | ≤ |β j(t− 1)|∆η + ∆ρ(t)∆η ,

|+Mβ j(t)− β j(t)∆η + βLB
j (t)∆η | ≤ |β j(t− 1)|∆η + ∆ρ(t)∆η ,

j = 1, . . . , mβ,

ρk(t) = ρk(t− 1) + δρk (t),

δρk (t) ≤ ∆ρ(t), δρk (t) ≥ −∆ρ(t),

k = 1, . . . , mp,

(54)

where the decision variables are the unknown parameters ρ(t), and the variables Mβ j(t), j =
0, . . . , mβ.

The proof of Result 5 is obtained by noticing that once V(t) = K(ρ(t))(yt − ηt) is
replaced with (41) and inequalities (48)–(51), problem (54) requires the solution of a linear
function subject to linear inequalities.

6. Simulation Examples

The effectiveness of the proposed approach is shown by means of a two simulation
examples. Computations are performed on an Intel Core i7-10510U @ 1.80 GHz computer
with 16 GB RAM, using the IBM ILOG CPLEX optimizer under Matlab R2018b.

6.1. Example 1

In this first example we demonstrate the parameter tracking properties of the proposed
adaptive control design scheme by considering an example where the structure of the ideal
controller, referred to as K∗(t) hereinafter, is known.

Let us consider the following second order LTV system,

G(t) =
b1(t)q−1

1 + a1(t)q−1 + a2(t)q−2 , (55)

where the coefficients characterizing G(t) vary according to,
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b1(t) = −2 + sin
[

2πt
750

]
, a1(t) = 1 + 0.1 sin

[
2πt
1000

]
,

a2(t) = 0.3 + 0.05 sin
[

2πt
1500

]
.

The assigned reference model, describing the desired closed-loop behaviour, has the
following transfer function

M =
0.6

z− 0.4
, (56)

and the model-based ideal controller K∗(t), computed algebraically through the model-
matching Equation (18) (where εt = 0) is given by,

K∗(t) =
M

G(t)(1−M)
=

β∗1(t) + β∗2(t)q
−1 + β∗3(t)q

−2

1− q−1 . (57)

The sampling time Ts is equal to 0.005 s.
The reference signal is a random sequence uniformly distributed between [−1 , +1].

The plant output wt is corrupted by a random additive noise ηt, uniformly distributed in
the range [−∆η , ∆η ]. The error bound ∆η is chosen such that the Signal to Noise Ratio on
the output SNRw, defined as:

SNRw = 10 log

{
N

∑
t=1

w2
t

/ N

∑
t=1

η2
t

}
, (58)

is equal to 33 dB.
Figure 3a shows the tracking performance of the closed-loop system, compared to that

of the reference model. Figures 3b–d show the computed controller parameters alongside
the ideal K∗(t) coefficients that are calculated algebraically according to Equation (57).
As it can be seen from these figures, parameters β∗2(t) and β∗3(t) have a time varying profile
that is not entirely linear. Nevertheless, the parameters computed, solving optimization
problem (54), are still able to track the variations in the system, and provide overall good
performance. In Figure 3e we can see the average CPU time to compute the controller at
each time step, which is less than 1 ms in most instances.

Remark 2. The aim behind this example is to showcase how the controller computed by solving
optimization problem (54) compares to the ideal model-based controller K∗(t). For this reason
the structure for K∗(t) has been chosen as a proper transfer function as shown in (57). However,
in general the transfer function of the ideal controller could be highly complex, and in some cases
not implementable, i.e., non proper, as it will depend on the choice of the reference model M, and the
model structure of the plant to be controlled. Since the aim of the DDC approach presented in this
work is to compute K(t) without explicitly having any knowledge about the plant, the next example
we will consider the case where we assume not to know the structure of K∗(t).
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Figure 3. Example 1: Performance of the designed closed-loop feedback control system.
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6.2. Example 2

The plant to be controlled, which is assumed to be unknown, is a third order LTV
system described by the following transfer function,

G(t) =
b1(t)q−1 + b2(t)q−2 + b3(t)q−3

1 + a1(t)q−1 + a2(t)q−2 + a3(t)q−3 , (59)

where,

b1(t) = 2 + 0.35 sin
[

2πt
750

]
, a1(t) = 1.8 + 0.05 sin

[
2πt
1000

]
,

b2(t) = 1.2 + 0.2 sin
[

2πt
500

]
, a3(t) = 0.21 + 0.01 sin

[
2πt
1500

]
,

b3(t) = 0.16 + 0.1 sin
[

2πt
1000

]
,

and a2 = 1.07 is a fixed parameter, while the reference model has the following transfer
function

M =
0.7009q−1 − 0.5005q−2

1− 1.123q−1 + 0.3234q−2 . (60)

The sampling time Ts is set equal to 0.01 s.
For this example we consider a square wave reference with an amplitude equal to

one and frequency 0.2 rad/s. The true plant output wt is corrupted by random additive
noise, uniformly distributed between [−∆η , ∆η ]. The error bound ∆η is chosen such that
the Signal to Noise Ratio on the output, calculated according to Equation (58), is equal to
SNRw = 24 dB.

In Figure 4a, we can see a comparison between the output of assigned reference model
and the performance of the designed feedback control system. The controller structure is
selected as:

K(ρ(t)) =
∑3

j=1 β j(t)q−j

1 + ∑3
i=1 αi(t)q−i

, (61)

which is the one that provides the best trade-off in terms of performance while maintaining
low complexity. It is worth mentioning that higher order controllers do not provide much
improvement in performance, and in some cases lead to unwanted behaviours. In Figure 4b
we can see the control input and how it is adjusting to cope up with the variations in the
plant. The adaptive controller parameters are reported in Figure 4c. The average elapsed
CPU time to compute the controller parameters, at each sampling instant is less than 1.5 ms
as can be seen in Figure 4d. This strongly motivates the validity of this approach, as it is
able to track the desired reference while maintaining very low computation time.

In order to further analyse the performance of the designed feedback control system,
we compare it against the output of the loop which includes the ideal controller K∗(t) given
through the model-matching equation,

K∗(t) =
M

G(t)(1−M)
=

∑4
j=0 β∗j (t)q

−j

1 + ∑4
i=1 α∗i (t)q

−i
. (62)
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Figure 4. Example 2: Performance of the designed closed-loop feedback control system.

In Figure 5, we compare the outputs of the closed-loop system with the ideal controller
K∗(t), calculated algebraically, and the system with K(ρ(t)). We use two reference signals
for performing the comparison; sine and sawtooth waves having the same amplitude and
frequency as the square wave mentioned above. From the figure, it can be noticed that
the overall performance of both control loops is quite similar, except for a relatively small
additional error appearing in the loop with K(ρ(t)).
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Figure 5. Example 2: Comparison between the closed-loop outputs: ideal controller K∗ vs. designed controller K(ρ(t)).

7. Conclusions and Future Works

An adaptive data-driven control approach for linear time varying systems is pre-
sented. First, through a model-matching scheme, we formulate the the controller design
problem as a suitable polynomial optimization problem in the set-membership identifi-
cation framework. Characterizing the variation on the controller parameters, we then
propose a reformulation to compute a single point controller that corresponds to the mini-
mum upper bound on the parameters variation. A convex relaxation approach, based on
McCormick envelopes, is proposed to solve the controller design problem by means of
linear programming. Effectiveness of the proposed approach is shown by means of two
simulation examples.

The work presented in this paper sets the basic foundations for the problem of design-
ing adaptive controllers for LTV systems using set-membership identification techniques.
In future works, activities will be devoted towards the following:

1. Deriving conditions that assure stability of the designed feedback control system,
allowing us to consider the problem of controlling unstable, as well as non-minimum
phase, systems.

2. Extension of the results to the control of nonlinear systems.
3. Extending the approach presented in this paper to the control of multivariable LTV

systems.
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Abbreviations
The following abbreviations are used in this manuscript:

DDC Data-driven control
LTV Linear time varying
LTI Linear time invariant
SISO Single-input single-output
FCS Feasible controller set
FCPS Feasible controller parameter set
FPS Feasible parameter set
MOO Multi-objective optimization
LB Lower bound
UB Upper bound
LP Linear programming
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30. Branke, J.; Branke, J.; Deb, K.; Miettinen, K.; Slowiński, R. Multiobjective Optimization: Interactive and Evolutionary Approaches;

Genetic Algorithms and Evolutionary Computation; Springer: Berlin, Germany, 2008.
31. Coello, C.; Lamont, G.; van Veldhuizen, D. Evolutionary Algorithms for Solving Multi-Objective Problems; Genetic and Evolutionary

Computation; Springer US: Berlin, Germany, 2007.
32. Lasserre, J.B. Global Optimization with Polynomials and the Problem of Moments. SIAM J. Optim. 2001, 11, 796–817. [CrossRef]
33. Chesi, G.; Garulli, A.; Tesi, A.; Vicino, A. Solving quadratic distance problems: An LMI-based approach. IEEE Trans. Autom.

Control 2003, 48, 200–212. [CrossRef]
34. Parrilo, P. Semidefinite Programming Relaxations for Semialgebraic Problems. Math. Program. Ser. B 2003, 96, 293–320. [CrossRef]
35. McCormick, G.P. Computability of global solutions to factorable nonconvex programs: Part I—Convex underestimating problems.

Math. Program. 1976, 10, 147–175. [CrossRef]

http://dx.doi.org/10.1002/acs.1212
http://dx.doi.org/10.1016/0270-0255(82)90038-0
http://dx.doi.org/10.1137/S1052623400366802
http://dx.doi.org/10.1109/TAC.2002.808465
http://dx.doi.org/10.1007/s10107-003-0387-5
http://dx.doi.org/10.1007/BF01580665

	Introduction
	Problem Formulation
	Adaptive DDC for LTV Systems in the Set-Membership Framework
	Parameter Variation Bounds Computation
	A Convex Relaxation Approach
	Simulation Examples
	Example 1
	Example 2

	Conclusions and Future Works
	References

