Diversity, Composition and Functional Inference of Gut Microbiota in Indian Cabbage white Pieris canidia (Lepidoptera: Pieridae)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sampling, Sequencing and Bioinformatics Analyses
2.2. Antibiotic Experiment
3. Results
3.1. Bacterial Community Diversity and Predicted Functional Metagenomes in P. canidia
3.2. Fitness of P. canidia Treated with Antibiotics
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Availability of Data and Material
References
- Evans, W.H. The Identification of Indian Butterflies, 2nd ed.; Bombay Natural History Society: Mumbai, India, 1932; p. 152. [Google Scholar]
- Hernández-Martínez, P.; Naseri, B.; Navarro-Cerrillo, G.; Escriche, B.; Ferré, J.; Herrero, S. Increase in midgut microbiota load induces an apparent immune priming and increases tolerance to Bacillus thuringiensis. Environ. Microbiol. 2010, 12, 2730–2737. [Google Scholar] [CrossRef] [PubMed]
- Lamichhane, J.R.; Schaefer, M.B.; Bluemel, S.; Dachbrodt-Saaydeh, S.; Dreux, L.; Jansen, J.P.; Kiss, J.; Köhl, J.; Kudsk, P.; Malausa, T. Identifying obstacles and ranking common biological control research priorities for Europe to manage most economically important pests in arable, vegetable and perennial crops. Pest Manag. Sci. 2017, 73, 14–21. [Google Scholar] [CrossRef] [PubMed]
- Provorov, N.A.; Onishchuk, O.P. Microbial symbionts of insects: Genetic organization, adaptive role, and evolution. Microbiology 2018, 87, 151–163. [Google Scholar] [CrossRef]
- Krishnan, M.; Bharathiraja, C.; Pandiarajan, J.; Prasanna, V.A.; Rajendhran, J.; Gunasekaran, P. Insect gut microbiome -An unexploited reserve for biotechnological application. Asian Pac. J. Trop. Biomed. 2014, 4, S16–S21. [Google Scholar] [CrossRef]
- Raymann, K.; Moran, N.A. The role of the gut microbiome in health and disease of adult honey bee workers. Curr. Opin. Insect Sci. 2018, 26, 97–104. [Google Scholar] [CrossRef]
- Hammer, T.J.; Janzen, D.H.; Hallwachs, W.; Jaffe, S.L.; Fierer, N. Caterpillars lack a resident gut microbiome. Proc. Natl. Acad. Sci. USA 2017, 114, 9641–9646. [Google Scholar] [CrossRef] [Green Version]
- Ravenscraft, A.; Berry, M.; Hammer, T.; Peay, K.; Boggs, C. Structure and function of the bacterial and fungal gut microbiota of Neotropical butterflies. Ecol. Monogr. 2019, 89, e01346. [Google Scholar] [CrossRef] [Green Version]
- Hammer, T.J.; Dickerson, J.C.; Fierer, N. Evidence-based recommendations on storing and handling specimens for analyses of insect microbiota. PeerJ 2015, 3, e1190. [Google Scholar] [CrossRef] [Green Version]
- Liu, Z.; DeSantis, T.Z.; Andersen, G.L.; Knight, R. Accurate taxonomy assignments from 16S rRNA sequences produced by highly parallel pyrosequencers. Nucleic Acids Res. 2008, 36, e120. [Google Scholar] [CrossRef] [Green Version]
- Edgar, R.C. UPARSE: Highly accurate OTU sequences from microbial amplicon reads. Nat. Methods 2013, 10, 996–998. [Google Scholar] [CrossRef]
- McDonald, D.; Price, M.N.; Goodrich, J.; Nawrocki, E.P.; DeSantis, T.Z.; Probst, A.; Andersen, G.L.; Knight, R.; Hugenholtz, P. An improved Greengenes taxonomy with explicit ranks for ecological and evolutionary analyses of bacteria and archaea. ISME J. 2012, 6, 610–618. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.; Garrity, G.M.; Tiedje, J.M.; Cole, J.R. Naive Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl. Environ. Microb. 2007, 73, 5261–5267. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Langille, M.G.I.; Zaneveld, J.; Caporaso, J.G.; McDonald, D.; Knights, D.; Reyes, J.A. Predictive functional profiling of microbial communities using 16S rRNA maker gene sequences. Nat. Biotechnol. 2013, 31, 814–821. [Google Scholar] [CrossRef] [PubMed]
- Mukherjee, A.; Chettri, B.; Langpoklakpam, J.S.; Basak, P.; Prasad, A.; Mukherjee, A.K.N. Bioinformatic approaches including predictive metagenomic profiling reveal characteristics of bacterial response to petroleum hydrocarbon contamination in diverse environments. Sci. Rep. UK 2017, 7, 1108. [Google Scholar] [CrossRef] [Green Version]
- Montagna, M.; Mereghetti, V.; Gargari, G.; Guglielmetti, S.; Faoro, F.; Lozzia, G.; Locatelli, D.; Limonta, L. Evidence of abacterial core in the stored products pest Plodia interpunctella: The influence of different diets. Environ. Microbiol. 2016, 18, 4961–4973. [Google Scholar] [CrossRef] [Green Version]
- Ceja-Navarro, J.A.; Vega, F.E.; Karaoz, U.; Hao, Z.; Jenkins, S.; Lim, H.C.; Kosina, P.; Infante, F.; Northen, T.R.; Brodie, E.L. Gut microbiota mediate caffeine detoxification in the primary insect pest of coffee. Nat. Commun. 2015, 6, 7618. [Google Scholar] [CrossRef] [Green Version]
- Padmanabha, H.; Lord, C.C.; Lounibos, L.P. Temperature induces trade-offs between development and starvation resistance in Aedes aegypti (L.) larvae. Med. Vet. Entomol. 2011, 25, 445–453. [Google Scholar] [CrossRef] [Green Version]
- Cao, L.J.; Jiang, W.B.; Hoffmann, A.A. Life history effects linked to an advantage for wAu Wolbachia in Drosophila. Insects 2019, 10, 126. [Google Scholar] [CrossRef] [Green Version]
- Hammer, T.J.; McMillan, W.O.; Fierer, N. Metamorphosis of a butterfly-associated bacterial community. PLoS ONE 2014, 9, e86995. [Google Scholar] [CrossRef] [PubMed]
- Robinson, C.J.; Schloss, P.; Ramos, Y.; Raffa, K.; Handelsman, J. Robustness of the bacterial community in the cabbage white butterfly larval midgut. Microb. Ecol. 2010, 59, 199–211. [Google Scholar] [CrossRef] [Green Version]
- Zaspel, J.M.; Hoy, M.A. Microbial diversity associated with the fruit-piercing and blood-feeding moth Calyptra thalictri (Lepidoptera: Noctuidae). Ann. Entomol. Soc. Am. 2008, 101, 1050–1055. [Google Scholar] [CrossRef]
- Johnson, K.; Felton, G. Potential influence of midgut pH and redox potential on protein utilization in insect herbivores. Arch. Insect Biochem. Physiol. 1996, 32, 85–105. [Google Scholar] [CrossRef]
- Jiang, H.; Vilcinskas, A.; Kanost, M.R. Immunity in Lepidopteran Insects. Invertebrate Immunity; Söderhäll, K., Ed.; Springer: New York, NY, USA, 2010; pp. 181–204. [Google Scholar]
- Appel, H. The Chewing Herbivore Gut Lumen: Physicochemical Conditions and Their Impact on Plant Nutrients, Allelochemicals, and Insect Pathogens. Insect–Plant Interactions; Bernays, E.A., Ed.; CRC Press: Boca Raton, FL, USA, 1994; pp. 225–240. [Google Scholar]
- Xia, X.F.; Zheng, D.D.; Zhong, H.Z.; Qin, B.C.; Gurr, G.M.; Vasseur, L.; Lin, H.L.; Bai, J.L.; He, W.Y.; You, M.S. DNA sequencing reveals the midgut microbiota of diamondback moth, Plutella xylostella (L.) and a possible relationship with insecticide resistance. PLoS ONE 2013, 8, e68852. [Google Scholar] [CrossRef] [PubMed]
- Anand, A.A.P.; Vennison, S.J.; Sankar, S.G.; Prabhu, D.I.G.; Vasan, P.T.; Raghuraman, T.; Geoffrey, C.J.; Vendan, S.E. Isolation and characterization of bacteria from the gut of Bombyx mori that degrade cellulose, xylan, pectin and starch and their impact on digestion. J. Insect Sci. 2010, 10, 1–20. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Potrikus, C.J.; Breznak, J.A. Nitrogen-fixing Entrobacter agglomerans isolated from guts of wood-eating termites. Appl. Environ. Microbiol. 1977, 33, 392–399. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhao, B.; He, Y.L.; Hughes, J.; Zhang, X.F. Heterotrophic nitrogen removal by a newly isolated Acinetobacter calcoaceticus HNR. Bioresour. Technol. 2010, 101, 5194–5200. [Google Scholar] [CrossRef] [PubMed]
- Zhou, S.L.; Huang, T.L.; Bai, S.Y.; He, X.X. Isolation, Identification, and nitrogen removal characteristics of oligotrophic aerobic denitrifiers. China Environ. Sci. 2016, 36, 238–348. [Google Scholar]
- Zhou, B.; Duan, J.; Xue, L.; Zhang, J.; Yang, L. Effect of plant-based carbon source supplements on denitrification of synthetic wastewater: Focus on the microbiology. Environ. Sci. Pollut. Res. 2019, 26, 24683–24694. [Google Scholar] [CrossRef]
- Marmulla, R.; Harder, J. Microbial monoterpene transformations-a review. Front. Microbiol. 2014, 5, 346. [Google Scholar] [CrossRef] [Green Version]
- Talia, P.; Sede, S.M.; Campos, E.; Rorig, M.; Principi, D.; Tosto, D.; Hopp, H.E.; Grasso, D.; Cataldi, A. Biodiversity characterization of cellulolytic bacteria present on native Chaco soil by comparison of ribosomal RNA genes. Res. Microbiol. 2012, 163, 221–232. [Google Scholar] [CrossRef]
- Mereghetti, V.; Chouaia, B.; Limonta, L.; Locatelli, D.P.; Montagna, M. Evidence for a conserved microbiota across the different developmental stages of Plodia interpunctella. Insect Sci. 2019, 26, 466–478. [Google Scholar] [CrossRef] [PubMed]
- Gandotra, S.; Kumar, A.; Naga, K.; Bhuyan, P.M.; Gogoi, D.K.; Sharma, K.; Subramanian, S. Bacterial community structure and diversity in the gut of Muga silkworm, Antheraea assamensis (Lepidoptera: Saturniidae) from India. Insect Mol. Biol. 2018, 27, 603–619. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.D.; Song, Y.B.; Wang, Y.J.; Gao, Y.M.; Jing, R.Y.; Cui, Z.J. Biodiversity of mesophilic microbial community BYND-8 capability of lignocellulose degradation and its effect on biogas production. Huan Jing Ke Xue 2011, 32, 253–258. [Google Scholar]
- Douglas, A.E. Multiorganismal insects: Diversity and function of resident microorganisms. Annu. Rev. Entomol. 2015, 60, 17–34. [Google Scholar] [CrossRef] [Green Version]
- Himler, A.G.; Adachi-Hagimori, T.; Bergen, J.E.; Kozuch, A.; Kelly, S.E.; Tabashnik, B.E.; Chiel, E.; Duckworth, V.E.; Dennehy, T.J.; Zchori-Fein, E.; et al. Rapid spread of a bacterial symbiont in an invasive whitefly is driven by fitness benefits and female bias. Science 2011, 332, 254–256. [Google Scholar] [CrossRef] [Green Version]
Taxonomic Classification | Total | Male Larvae | Female Larvae | Male Adults | Female Adults | Genus/Species Name |
---|---|---|---|---|---|---|
Proteobacteria (Enterobacteriaceae) | 23.4 | 1.2 | 22.5 | 25.8 | 45 | Enterobacter |
Proteobacteria (Enterobacteriaceae) | 16.8 | 54.4 | 0.6 | 6.1 | 0.6 | Providencia vermicola |
Proteobacteria (Moraxellaceae) | 9.9 | 8.9 | 0.5 | 20 | 8.9 | Acinetobacter |
Proteobacteria (Moraxellaceae) | 7.4 | 0.01 | 0.4 | 19.9 | 8.8 | Acinetobacter guillouiae |
Proteobacteria (Burkholderiaceae) | 3.9 | 0.01 | 0.02 | 16.1 | 0.06 | Ralstonia mannitolilytica |
Proteobacteria (Enterobacteriaceae) | 3.7 | 9.8 | 3.9 | 0.02 | 0.01 | Kluyvera |
Proteobacteria (Pseudomonadaceae) | 3.2 | 0.5 | 2.4 | 9.6 | 0.9 | Pseudomonas |
Proteobacteria (Xanthomonadaceae) | 2.6 | 0.01 | 0.6 | 7.3 | 1.3 | Stenotrophomonas |
Proteobacteria (Brucellaceae) | 1.8 | 0.02 | 7.6 | 0.02 | 0.3 | Ochrobactrum pseudogrignonense |
Firmicutes (Paenibacillaceae) | 1.3 | 0.01 | 0.1 | 0.01 | 6.8 | Brevibacterium |
Proteobacteria (Rickettsiaceae) | 1.1 | 0.05 | 1.2 | 2.7 | 0.3 | Rickettsia |
Proteobacteria (Comamonadaceae) | 0.6 | 0.01 | 0.02 | 2.4 | 0.08 | Uncultured beta proteobacterium |
Proteobacteria (Pseudomonadaceae) | 0.6 | 0.01 | 0.03 | 2.3 | 0.3 | Pseudomonas aeruginosa |
Firmicutes (Staphylococcaceae) | 0.6 | 0.01 | 0.04 | 0.1 | 3.6 | Staphylococcus |
Actinobacteria (Nocardiaceae) | 0.5 | 0.2 | 0.5 | 0.7 | 0.6 | Rhodococcus |
Proteobacteria (Pseudomonadaceae) | 0.5 | 0.4 | 1.6 | 0.02 | 0.02 | Pseudomonas protegens |
Firmicutes (Bacillaceae) | 0.2 | 0.01 | 0.01 | 0.7 | 0.01 | Anoxybacillus |
Proteobacteria (Comamonadaceae) | 0.2 | 0.02 | 0.05 | 0.2 | 0.7 | Aquabacterium |
Bacteroidetes (Sphingobacteriaceae) | 0.2 | 0.01 | 0.02 | 0.02 | 1.0 | Sphingobacterium |
Bacteroidetes (Bacteroidaceae) | 0.1 | 0.01 | 0.02 | 0.01 | 0.6 | Bacteroides |
Sample Name | Clean Reads | Tags | OTUs |
---|---|---|---|
Male larva 1 | 30,832 | 28,467 | 78 |
Male larva 2 | 31,836 | 29,642 | 89 |
Male larva 3 | 35,873 | 33,895 | 40 |
Female larva 1 | 30,150 | 24,244 | 128 |
Female larva 2 | 25,145 | 23,521 | 45 |
Female larva 3 | 25,612 | 23,003 | 48 |
Male adult 1 | 38,990 | 36,377 | 86 |
Male adult 2 | 26,316 | 24,431 | 44 |
Male adult 3 | 27,648 | 24,893 | 82 |
Female adult 1 | 47,496 | 20,165 | 69 |
Female adult 2 | 46,537 | 15,318 | 62 |
Female adult 3 | 26,431 | 24,109 | 80 |
Sobs (Observed Species) | Chao | Ace | Shannon | Simpson | |
---|---|---|---|---|---|
Male larvae | 69 ± 5.71 | 84.85 ± 17.65 | 103.53 ± 15.19 | 0.93 ± 0.51 | 0.56 ± 0.27 |
Female larvae | 73.67 ± 7.08 | 97.5 ± 7.08 | 103.94 ± 6.53 | 1.10 ± 0.55 | 0.53 ± 0.08 |
Male adults | 70.67 ± 23.18 | 88.73 ± 30.36 | 95.71 ± 9.06 | 1.53 ± 0.35 | 0.34 ± 0.12 |
Female adults | 70.33 ± 9.07 | 74.22 ± 11.19 | 77.21 ± 12.68 | 2.16 ± 0.94 | 0.28 ± 0.08 |
Tetracycline Treatment | Group | Development Time (Days) | Weight of 5th Instars Larvae (g) | Pupation Rate | Emergence Rate | Adult Survival Rate | ||
---|---|---|---|---|---|---|---|---|
Larvae | Pupae | Adults | ||||||
1.68 mg/mL | 1 | 16 | 7 | 6 | 0.0401 | 0.50 | 1.00 | 0.50 |
13 | 7 | 5 | 0.0241 | |||||
15 | 5 | 6 | 0.0234 | |||||
14 | 7 | 5 | 0.0331 | |||||
13 | 7 | 6 | 0.0215 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Y.; Zhu, J.; Fang, J.; Shen, L.; Ma, S.; Zhao, Z.; Yu, W.; Jiang, W. Diversity, Composition and Functional Inference of Gut Microbiota in Indian Cabbage white Pieris canidia (Lepidoptera: Pieridae). Life 2020, 10, 254. https://doi.org/10.3390/life10110254
Wang Y, Zhu J, Fang J, Shen L, Ma S, Zhao Z, Yu W, Jiang W. Diversity, Composition and Functional Inference of Gut Microbiota in Indian Cabbage white Pieris canidia (Lepidoptera: Pieridae). Life. 2020; 10(11):254. https://doi.org/10.3390/life10110254
Chicago/Turabian StyleWang, Ying, Jianqing Zhu, Jie Fang, Li Shen, Shuojia Ma, Zimiao Zhao, Weidong Yu, and Weibin Jiang. 2020. "Diversity, Composition and Functional Inference of Gut Microbiota in Indian Cabbage white Pieris canidia (Lepidoptera: Pieridae)" Life 10, no. 11: 254. https://doi.org/10.3390/life10110254
APA StyleWang, Y., Zhu, J., Fang, J., Shen, L., Ma, S., Zhao, Z., Yu, W., & Jiang, W. (2020). Diversity, Composition and Functional Inference of Gut Microbiota in Indian Cabbage white Pieris canidia (Lepidoptera: Pieridae). Life, 10(11), 254. https://doi.org/10.3390/life10110254