Comparison of the Effect of Unfractionated Heparin and Enoxaparin Sodium at Different Doses on the Course of COVID-19-Associated Coagulopathy
Abstract
:1. Introduction
2. Materials and Methods
- confirmed SARS-CoV-2 infection (confirmed with a positive reverse transcription polymerase chain reaction (RT PCR) test),
- the presence of bilateral interstitial pneumonia on a computed tomography (CT) scan,
- respiratory failure with arterial partial pressure of oxygen (PaO2) < 60 mm Hg with room air,
- a D-dimer level > 3 mg/L,
- a platelet count < 120 × 109/L, and
- the informed consent of the patient or their legal representative to participate in the study.
- respiratory failure requiring intubation prior to enrolment,
- hypersensitivity to enoxaparin sodium or unfractionated heparin,
- a history of heparin-induced type-II thrombocytopenia caused by the use of unfractionated heparin or low-molecular-weight heparin,
- clinically significant active bleeding,
- creatinine clearance (Cockcroft-Gault formula) < 30 mL/min,
- unstable arterial hypertension (systolic pressure > 180 mmHg or diastolic pressure > 110 mmHg),
- pulmonary embolism (PE) confirmed by a CT pulmonary angiography,
- pregnancy or breastfeeding, and
- participation in other clinical studies.
Statistical Analysis
3. Results
4. Discussion
5. Limitations
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Malas, M.B.; Naazie, I.N.; Elsayed, N.; Mathlouthi, A.; Marmor, R.; Clary, B. Thromboembolism risk of COVID-19 is high and associated with a higher risk of mortality: A systematic review and meta-analysis. EClinicalMedicine 2020, 29, 100639. [Google Scholar] [CrossRef] [PubMed]
- Xiong, M.; Liang, X.; Wei, Y.D. Changes in blood coagulation in patients with severe coronavirus disease 2019 (COVID-19): A meta-analysis. Br. J. Haematol. 2020, 189, 1050–1052. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tang, N.; Li, D.; Wang, X.; Sun, Z. Abnormal coagulation parameters are associated with poor prognosis in patients with novel coronavirus pneumonia. J. Thromb. Haemost. 2020, 18, 844–847. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cattaneo, M.; Bertinato, E.M.; Birocchi, S.; Brizio, C.; Malavolta, D.; Manzoni, M.; Muscarella, G.; Orlandi, M. Pulmonary Embolism or Pulmonary Thrombosis in COVID-19? Is the Recommendation to Use High-Dose Heparin for Thromboprophylaxis Justified? Thromb. Haemost. 2020, 120, 1230–1232. [Google Scholar] [CrossRef]
- Teuwen, L.A.; Geldhof, V.; Pasut, A.; Carmeliet, P. COVID-19: The vasculature unleashed. Nat. Rev. Immunol. 2020, 20, 389–391. [Google Scholar] [CrossRef]
- Lowenstein, C.J.; Solomon, S.D. Severe COVID-19 Is a Microvascular Disease. Circulation 2020, 142, 1609–1611. [Google Scholar] [CrossRef]
- Libby, P.; Lüscher, T. COVID-19 is, in the end, an endothelial disease. Eur. Heart J. 2020, 41, 3038–3044. [Google Scholar] [CrossRef]
- Thachil, J.; Tang, N.; Gando, S.; Falanga, A.; Cattaneo, M.; Levi, M.; Clark, C.; Iba, T. ISTH interim guidance on recognition and management of coagulopathy in COVID-19. J. Thromb. Haemost 2020, 18, 1023–1026. [Google Scholar] [CrossRef]
- Panigada, M.; Bottino, N.; Tagliabue, P.; Grasselli, G.; Novembrino, C.; Chantarangkul, V.; Pesenti, A.; Peyvandi, F.; Tripodi, A. Hypercoagulability of COVID-19 patients in intensive care unit: A report of thromboelastography findings and other parameters of hemostasis. J. Thromb. Haemost. 2020, 18, 1738–1742. [Google Scholar] [CrossRef]
- Ranucci, M.; Ballotta, A.; Di Dedda, U.; Baryshnikova, E.; Dei Poli, M.; Resta, M.; Falco, M.; Albano, G.; Menicanti, L. The procoagulant pattern of patients with COVID-19 acute respiratory distress syndrome. J. Thromb. Haemost. 2020, 18, 1747–1751. [Google Scholar] [CrossRef]
- Yang, X.H.; Li, R.R.; Sun, R.H.; Liu, J.; Chen, D.C. Focus on coronavirus disease 2019 associated coagulopathy. Chin. Med. J. (Engl.) 2020, 133, 2239–2241. [Google Scholar] [CrossRef]
- Menezes-Rodrigues, F.S.; Padrão Tavares, J.G.; Pires de Oliveira, M.; Guzella de Carvalho, R.; Ruggero Errante, P.; Omar Taha, M.; José Fagundes, D.; Caricati-Neto, A. Anticoagulant and antiarrhythmic effects of heparin in the treatment of COVID-19 patients. J. Thromb. Haemost. 2020, 18, 2073–2075. [Google Scholar] [CrossRef]
- Hippensteel, J.A.; La Riviere, W.B.; Colbert, J.F.; Langouët-Astrié, C.J.; Schmidt, E.P. Heparin as a therapy for COVID-19: Current evidence and future possibilities. Am. J. Physiol. Lung Cell Mol. Physiol. 2020, 319, L211–L217. [Google Scholar] [CrossRef]
- COVID-19 Treatment Guidelines Panel Coronavirus Disease 2019 (COVID-19) Treatment Guidelines; National Institutes of Health: Bethesda, MD, USA, 2020; Antithrombotic Therapy in Patients With COVID-19. Available online: https://www.covid19treatmentguidelines.nih.gov/therapies/antithrombotic-therapy/ (accessed on 11 February 2021).
- Anticoagulation Management in COVID-19 Positive Patients BSTH Consensus Guideline. Available online: https://covid-19.sciensano.be/sites/default/files/Covid19/COVID19_Anticoagulation_Management.pdf (accessed on 11 February 2021).
- INSPIRATION Investigators; Sadeghipour, P.; Talasaz, A.H.; Rashidi, F.; Sharif-Kashani, B.; Beigmohammadi, M.T.; Farrokhpour, M.; Sezavar, S.H.; Payandemehr, P.; Dabbagh, A.; et al. Effect of Intermediate-Dose vs. Standard-Dose Prophylactic Anticoagulation on Thrombotic Events, Extracorporeal Membrane Oxygenation Treatment, or Mortality Among Patients With COVID-19 Admitted to the Intensive Care Unit: The INSPIRATION Randomized Clinical Trial. JAMA 2021, 325, 1620–1630. [Google Scholar]
- Shi, C.; Tingting, W.; Li, J.P.; Sullivan, M.A.; Wang, C.; Wang, H.; Deng, B.; Zhang, Y. Comprehensive Landscape of Heparin Therapy for COVID-19. Carbohydr. Polym. 2021, 254, 117232. [Google Scholar] [CrossRef]
- COVID-19 MANAGEMENT PROTOCOL. An Overview of the MATH+ and I-MASK+ Protocols. Available online: https://www.evms.edu/media/evms_public/departments/internal_medicine/Marik_Critical_Care_COVID-19_Protocol.pdf (accessed on 20 February 2020).
- Coronavirus Disease 2019 (COVID-19) Treatment Guidelines Get the Latest Public Health Information from CDC. Available online: https://www.coronavirus.gov (accessed on 20 February 2020).
- Barbar, S.; Noventa, F.; Rossetto, V.; Ferrari, A.; Brandolin, B.; Perlati, M.; De Bon, E.; Tormene, D.; Pagnan, A.; Prandoni, P. A risk assessment model for the identification of hospitalized medical patients at risk for venous thromboembolism: The Padua Prediction Score. J. Thromb. Haemost. 2010, 8, 2450–2457. [Google Scholar] [CrossRef]
- Zeng, D.X.; Xu, J.L.; Mao, Q.X.; Liu, R.; Zhang, W.Y.; Qian, H.Y.; Xu, L. Association of Padua prediction score with in-hospital prognosis in COVID-19 patients. QJM. 2020, 113, 789–793. [Google Scholar] [CrossRef]
- Bikdeli, B.; Madhavan, M.V.; Gupta, A.; Jimenez, D.; Burton, J.R.; Der Nigoghossian, C.; Chuich, T.; Nouri, S.N.; Dreyfus, I.; Driggin, E.; et al. Pharmacological Agents Targeting Thromboinflammation in COVID-19: Review and Implications for Future Research. Thromb. Haemost. 2020, 120, 1004–1024. [Google Scholar]
- Iba, T.; Warkentin, T.E.; Thachil, J.; Levi, M.; Levy, J.H. Proposal of the Definition for COVID-19-Associated Coagulopathy. J. Clin. Med. 2021, 10, 191. [Google Scholar] [CrossRef]
- Klok, F.A.; Kruip, M.J.H.A.; van der Meer, N.J.M.; Arbous, M.S.; Gommers, D.; Kant, K.M.; Kaptein, F.H.J.; van Paassen, J.; Stals, M.A.M.; Huisman, M.V.; et al. Confirmation of the high cumulative incidence of thrombotic complications in critically ill ICU patients with COVID-19: An updated analysis. Thromb. Res. 2020, 191, 148–150. [Google Scholar] [CrossRef]
- Helms, J.; Tacquard, C.; Severac, F.; Leonard-Lorant, I.; Ohana, M.; Delabranche, X.; Merdji, H.; Clere-Jehl, R.; Schenck, M.; Fagot Gandet, F.; et al. High risk of thrombosis in patients with severe SARS-CoV-2 infection: A multicenter prospective cohort study. Intensive Care Med. 2020, 46, 1089–1098. [Google Scholar] [CrossRef]
- Gómez-Mesa, J.E.; Galindo-Coral, S.; Montes, M.; Muñoz Martin, A.J. Thrombosis and Coagulopathy in COVID-19. Curr. Probl. Cardiol. 2021, 46, 100742. [Google Scholar] [CrossRef]
- Iba, T.; Levy, J.H.; Levi, M.; Thachil, J. Coagulopathy in COVID-19. Thromb. Haemost. 2020, 18, 2103–2109. [Google Scholar] [CrossRef]
- Asakura, H.; Ogawa, H. COVID-19-associated coagulopathy and disseminated intravascular coagulation. Int. J. Hematol. 2021, 113, 45–57. [Google Scholar] [CrossRef]
- American Society of Hematology. Should DOACs, LMWH, UFH, Fondaparinux, Argatroban, or Bivalirudin at Intermediate-Intensity or Therapeutic-Intensity vs. Prophylactic Intensity Be Used for Patients with COVID-19 Related Critical Illness Who Do not Have Suspected or Confirmed VTE? 2020. Available online: https://guidelines.ash.gradepro.org/profile/3CQ7J0SWt58 (accessed on 7 December 2020).
- Bikdeli, B.; Madhavan, M.V.; Jimenez, D.; Chuich, T.; Dreyfus, I.; Driggin, E.; Nigoghossian, C.; Ageno, W.; Madjid, M.; Guo, Y.; et al. COVID-19 and Thrombotic or Thromboembolic Disease: Implications for Prevention, Antithrombotic Therapy, and Follow-up: JACC State-of-the-Art Review. J. Am. Coll. Cardiol. 2020, 75, 2950–2973. [Google Scholar] [CrossRef]
- Tang, N.; Bai, H.; Chen, X.; Gong, J.; Li, D.; Sun, Z. Anticoagulant treatment is associated with decreased mortality in severe coronavirus disease 2019 patients with coagulopathy. J. Thromb. Haemost. 2020, 18, 1094–1099. [Google Scholar] [CrossRef]
- Lucatelli, P.; De Rubeis, G.; Citone, M.; Lucarelli, N.M.; Pasqualini, V.; Sturiale, M.; Giuliani, S.; Rosati, M.; Ceccherini, C.; Corona, M.; et al. Heparin-related major bleeding in covid-19-positive patient: Perspective from the outbreak. Cardiovasc. Intervent. Radiol. 2020, 43, 1216–1217. [Google Scholar] [CrossRef]
- Cohen, A.T.; Spiro, T.E.; Büller, H.R.; Haskell, L.; Hu, D.; Hull, R.; Mebazaa, A.; Merli, G.; Schellong, S.; MAGELLAN Investigators; et al. Rivaroxaban for thromboprophylaxis in acutely ill medical patients. N. Engl. J. Med. 2013, 368, 513–523. [Google Scholar] [CrossRef] [Green Version]
- Konstantinides, S.V.; Meyer, G.; Becattini, C.; Bueno, H.; Geersing, G.J.; Harjola, V.P.; Huisman, M.V.; Humbert, M.; Jennings, C.S.; Jiménez, D.; et al. 2019 ESC Guidelines for the diagnosis and management of acute pulmonary embolism developed in collaboration with the European Respiratory Society (ERS). Eur. Heart. J. 2020, 41, 543–603. [Google Scholar] [CrossRef]
- Alhazzani, W.; Evans, L.; Alshamsi, F.; Møller, M.H.; Ostermann, M.; Prescott, H.C.; Arabi, Y.M.; Loeb, M.; Ng Gong, M.; Fan, E.; et al. Surviving Sepsis Campaign Guidelines on the Management of Adults With Coronavirus Disease 2019 (COVID-19) in the ICU: First Update. Crit. Care Med. 2021, 49, e219–e234. [Google Scholar] [CrossRef]
- Esponda, O. Deep venous thrombosis and pulmonary embolism. Part 1. Initial treatment: Usually a low-molecular-weight heparin. Prescrire Int. 2013, 22, 99–101, 103–104. [Google Scholar]
- Kearon, C.; Ginsberg, J.S.; Julian, J.A.; Douketis, J.; Solymoss, S.; Ockelford, P.; Jackson, S.; Turpie, A.G.; MacKinnon, B.; Fixed-Dose Heparin (FIDO) Investigators; et al. Comparison of fixed-dose weight-adjusted unfractionated heparin and low-molecular-weight heparin for acute treatment of venous thromboembolism. JAMA 2006, 296, 935–942. [Google Scholar] [CrossRef] [PubMed]
- Merli, G.J.; Groce, J.B. Pharmacological and Clinical Differences Between Low-Molecular-Weight Heparins. P. T. 2010, 35, 95–105. [Google Scholar] [PubMed]
- van Haren, F.; Page, C.; Laffey, J.G.; Artigas, A.; Camprubi-Rimblas, M.; Nunes, Q.; Smith, R.; Shute, J.; Carroll, M.; Tree, J.; et al. Nebulised heparin as a treatment for COVID-19: Scientific rationale and a call for randomised evidence. Crit. Care 2020, 24, 454. [Google Scholar] [CrossRef] [PubMed]
- Balfour, H. Increased Heparin Dose Reduces Need for Life Support in Hospitalised COVID-19 Patients (European Pharmaceutical Review) 25 January 2021. MerckNews. Available online: https://www.europeanpharmaceuticalreview.com/news/140801/increased-heparin-dose-reduces-need-for-life-support-in-hospitalised-covid-19 (accessed on 9 August 2021).
LMWH-Prev (n = 42) | LMWH-Ther (n = 42) | UFH (n = 42) | p Value | |
---|---|---|---|---|
Age, years | 71 (68–72) | 70 (68–72) | 71 (69–72) | 0.525 |
Female (%) | 15 (35.7) | 16 (38.1) | 19 (45.2) | 0.650 |
Temperature, °C | 37.5 (37.4–37.9) | 37.5 (37.4–37.8) | 37.5 (37.3–37.7) | 0.712 |
Heart rate, beat per min | 83.5 ** (80–86) | 86 (84–88) | 86 (84–88) | 0.018 |
CRP, mg/L | 48 (34–72) | 44.5 (35–66) | 50 (39–72) | 0.480 |
Interleukin-6, pg/mL | 34 (32–45) | 33.5 (23–60) | 36.5 (33–44) | 0.757 |
Procalcitonin, ng/mL | 0.6 (0.5–0.8) | 0.6 (0.6–0.7) | 0.6 (0.4–0.8) | 0.321 |
Ferritin, ng/mL | 443 (365–556) | 450.5 (345–554) | 446 (348–545) | 0.997 |
Fibrinogen, g/L | 6.4 (5.5–6.5) | 5.6 (5.5–5.9) | 5.5 (5.4–5.9) | 0.215 |
D-dimer, µg/L | 5246 (3567–5657) | 4494 (4221–5664) | 5245 (4221–5445) | 0.853 |
Leukocytes, × 109/L | 4.2 ** (4.0–4.3) | 4.7 * (4.1–4.8) | 4.2 (3.5–4.3) | 0.008 |
Lymphocytes, % | 23.5 (22–26) | 18 (17–24) | 24 (22–26) | 0.053 |
Thrombocytes, × 109/L | 127 (122–138) | 128 (102–165) | 130 (126–143) | 0.379 |
Erythrocytes, × 1012/L | 2.8 (2.5–3.3) | 2.7 (2.3–3.4) | 2.8 (2.6–3.3) | 0.498 |
PaO2/FiO2, mm Hg | 145 ** (124–176) | 124 * (119–139) | 147 (132–176) | 0.039 |
Factorial Feature | The Model Coefficient, b ± m | Significance Level of Difference of the Coefficient from 0, p Value | OR (95% CI) | |
---|---|---|---|---|
Treatment | UFH therapeutic dose | Reference | ||
LMWH, therapeutic dose | 0.56 ± 0.55 | 0.308 | - | |
LMWH, prophylactic dose | 1.20 ± 0.54 | 0.026 | 3.33 (1.15–9.59) | |
Sex | −0.81 ± 0.43 | 0.061 | 0.44 (0.19–1.04) | |
D-dimer, µg/L | 0.0008 ± 0.0002 | 0.001 | 1.001 (1.000–1.001) |
Factorial Feature | The Model Coefficient, b ± m | Significance Level of Difference of the Coefficient from 0, p Value | OR (95% CI) | |
---|---|---|---|---|
Treatment | UFH therapeutic dose | Reference | ||
LMWH, therapeutic dose | 0.59 ± 0.58 | 0.311 | - | |
LMWH, prophylactic dose | 1.10 ± 0.55 | 0.046 | 3.01 (1.02–8.90) | |
Age, years | 0.12 ± 0.05 | 0.030 | 1.13 (1.01–1.25) | |
D-dimer, µg/L | 0.0006 ± 0.0002 | 0.017 | 1.001 (1.000–1.001) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Oliynyk, O.; Barg, W.; Slifirczyk, A.; Oliynyk, Y.; Dubrov, S.; Gurianov, V.; Rorat, M. Comparison of the Effect of Unfractionated Heparin and Enoxaparin Sodium at Different Doses on the Course of COVID-19-Associated Coagulopathy. Life 2021, 11, 1032. https://doi.org/10.3390/life11101032
Oliynyk O, Barg W, Slifirczyk A, Oliynyk Y, Dubrov S, Gurianov V, Rorat M. Comparison of the Effect of Unfractionated Heparin and Enoxaparin Sodium at Different Doses on the Course of COVID-19-Associated Coagulopathy. Life. 2021; 11(10):1032. https://doi.org/10.3390/life11101032
Chicago/Turabian StyleOliynyk, Oleksandr, Wojciech Barg, Anna Slifirczyk, Yanina Oliynyk, Serhij Dubrov, Vitaliy Gurianov, and Marta Rorat. 2021. "Comparison of the Effect of Unfractionated Heparin and Enoxaparin Sodium at Different Doses on the Course of COVID-19-Associated Coagulopathy" Life 11, no. 10: 1032. https://doi.org/10.3390/life11101032
APA StyleOliynyk, O., Barg, W., Slifirczyk, A., Oliynyk, Y., Dubrov, S., Gurianov, V., & Rorat, M. (2021). Comparison of the Effect of Unfractionated Heparin and Enoxaparin Sodium at Different Doses on the Course of COVID-19-Associated Coagulopathy. Life, 11(10), 1032. https://doi.org/10.3390/life11101032